2008-07-28 Richard Guenther <rguenther@suse.de> Merge from gimple-tuples-branch. * ChangeLog.tuples: ChangeLog from gimple-tuples-branch. * gimple.def: New file. * gsstruct.def: Likewise. * gimple-iterator.c: Likewise. * gimple-pretty-print.c: Likewise. * tree-gimple.c: Removed. Merged into ... * gimple.c: ... here. New file. * tree-gimple.h: Removed. Merged into ... * gimple.h: ... here. New file. * Makefile.in: Add dependencies on GIMPLE_H and tree-iterator.h. * configure.ac: Added support for ENABLE_GIMPLE_CHECKING and the --enable-checking=gimple flag. * config.in: Likewise. * configure: Regenerated. * tree-ssa-operands.h: Tuplified. * tree-vrp.c: Likewise. * tree-loop-linear.c: Likewise. * tree-into-ssa.c: Likewise. * tree-ssa-loop-im.c: Likewise. * tree-dump.c: Likewise. * tree-complex.c: Likewise. * cgraphbuild.c: Likewise. * tree-ssa-threadupdate.c: Likewise. * tree-ssa-loop-niter.c: Likewise. * tree-pretty-print.c: Likewise. * tracer.c: Likewise. * gengtype.c: Likewise. * tree-loop-distribution.c: Likewise. * tree-ssa-loop-unswitch.c: Likewise. * cgraph.c: Likewise. * cgraph.h: Likewise. * tree-ssa-loop-manip.c: Likewise. * value-prof.c: Likewise. * tree-ssa-loop-ch.c: Likewise. * tree-tailcall.c: Likewise. * value-prof.h: Likewise. * tree.c: Likewise. * tree.h: Likewise. * tree-pass.h: Likewise. * ipa-cp.c: Likewise. * tree-scalar-evolution.c: Likewise. * tree-scalar-evolution.h: Likewise. * target.h: Likewise. * lambda-mat.c: Likewise. * tree-phinodes.c: Likewise. * diagnostic.h: Likewise. * builtins.c: Likewise. * tree-ssa-alias-warnings.c: Likewise. * cfghooks.c: Likewise. * fold-const.c: Likewise. * cfghooks.h: Likewise. * omp-low.c: Likewise. * tree-ssa-dse.c: Likewise. * ipa-reference.c: Likewise. * tree-ssa-uncprop.c: Likewise. * toplev.c: Likewise. * tree-gimple.c: Likewise. * tree-gimple.h: Likewise. * tree-chrec.c: Likewise. * tree-chrec.h: Likewise. * tree-ssa-sccvn.c: Likewise. * tree-ssa-sccvn.h: Likewise. * cgraphunit.c: Likewise. * tree-ssa-copyrename.c: Likewise. * tree-ssa-ccp.c: Likewise. * tree-ssa-loop-ivopts.c: Likewise. * tree-nomudflap.c: Likewise. * tree-call-cdce.c: Likewise. * ipa-pure-const.c: Likewise. * c-format.c: Likewise. * tree-stdarg.c: Likewise. * tree-ssa-math-opts.c: Likewise. * tree-ssa-dom.c: Likewise. * tree-nrv.c: Likewise. * tree-ssa-propagate.c: Likewise. * ipa-utils.c: Likewise. * tree-ssa-propagate.h: Likewise. * tree-ssa-alias.c: Likewise. * gimple-low.c: Likewise. * tree-ssa-sink.c: Likewise. * ipa-inline.c: Likewise. * c-semantics.c: Likewise. * dwarf2out.c: Likewise. * expr.c: Likewise. * tree-ssa-loop-ivcanon.c: Likewise. * predict.c: Likewise. * tree-ssa-loop.c: Likewise. * tree-parloops.c: Likewise. * tree-ssa-address.c: Likewise. * tree-ssa-ifcombine.c: Likewise. * matrix-reorg.c: Likewise. * c-decl.c: Likewise. * tree-eh.c: Likewise. * c-pretty-print.c: Likewise. * lambda-trans.c: Likewise. * function.c: Likewise. * langhooks.c: Likewise. * ebitmap.h: Likewise. * tree-vectorizer.c: Likewise. * function.h: Likewise. * langhooks.h: Likewise. * tree-vectorizer.h: Likewise. * ipa-type-escape.c: Likewise. * ipa-type-escape.h: Likewise. * domwalk.c: Likewise. * tree-if-conv.c: Likewise. * profile.c: Likewise. * domwalk.h: Likewise. * tree-data-ref.c: Likewise. * tree-data-ref.h: Likewise. * tree-flow-inline.h: Likewise. * tree-affine.c: Likewise. * tree-vect-analyze.c: Likewise. * c-typeck.c: Likewise. * gimplify.c: Likewise. * coretypes.h: Likewise. * tree-ssa-phiopt.c: Likewise. * calls.c: Likewise. * tree-ssa-coalesce.c: Likewise. * tree.def: Likewise. * tree-dfa.c: Likewise. * except.c: Likewise. * except.h: Likewise. * cfgexpand.c: Likewise. * tree-cfgcleanup.c: Likewise. * tree-ssa-pre.c: Likewise. * tree-ssa-live.c: Likewise. * tree-sra.c: Likewise. * tree-ssa-live.h: Likewise. * tree-predcom.c: Likewise. * lambda.h: Likewise. * tree-mudflap.c: Likewise. * ipa-prop.c: Likewise. * print-tree.c: Likewise. * tree-ssa-copy.c: Likewise. * ipa-prop.h: Likewise. * tree-ssa-forwprop.c: Likewise. * ggc-page.c: Likewise. * c-omp.c: Likewise. * tree-ssa-dce.c: Likewise. * tree-vect-patterns.c: Likewise. * tree-ssa-ter.c: Likewise. * tree-nested.c: Likewise. * tree-ssa.c: Likewise. * lambda-code.c: Likewise. * tree-ssa-loop-prefetch.c: Likewise. * tree-inline.c: Likewise. * tree-inline.h: Likewise. * tree-iterator.c: Likewise. * tree-optimize.c: Likewise. * tree-ssa-phiprop.c: Likewise. * tree-vect-transform.c: Likewise. * tree-object-size.c: Likewise. * tree-outof-ssa.c: Likewise. * cfgloop.c: Likewise. * system.h: Likewise. * tree-profile.c: Likewise. * cfgloop.h: Likewise. * c-gimplify.c: Likewise. * c-common.c: Likewise. * tree-vect-generic.c: Likewise. * tree-flow.h: Likewise. * c-common.h: Likewise. * basic-block.h: Likewise. * tree-ssa-structalias.c: Likewise. * tree-switch-conversion.c: Likewise. * tree-ssa-structalias.h: Likewise. * tree-cfg.c: Likewise. * passes.c: Likewise. * ipa-struct-reorg.c: Likewise. * ipa-struct-reorg.h: Likewise. * tree-ssa-reassoc.c: Likewise. * cfgrtl.c: Likewise. * varpool.c: Likewise. * stmt.c: Likewise. * tree-ssanames.c: Likewise. * tree-ssa-threadedge.c: Likewise. * langhooks-def.h: Likewise. * tree-ssa-operands.c: Likewise. * config/alpha/alpha.c: Likewise. * config/frv/frv.c: Likewise. * config/s390/s390.c: Likewise. * config/m32c/m32c.c: Likewise. * config/m32c/m32c-protos.h: Likewise. * config/spu/spu.c: Likewise. * config/sparc/sparc.c: Likewise. * config/i386/i386.c: Likewise. * config/sh/sh.c: Likewise. * config/xtensa/xtensa.c: Likewise. * config/stormy16/stormy16.c: Likewise. * config/ia64/ia64.c: Likewise. * config/rs6000/rs6000.c: Likewise. * config/pa/pa.c: Likewise. * config/mips/mips.c: Likewise. From-SVN: r138207
575 lines
15 KiB
C
575 lines
15 KiB
C
/* Code sinking for trees
|
|
Copyright (C) 2001, 2002, 2003, 2004, 2007 Free Software Foundation, Inc.
|
|
Contributed by Daniel Berlin <dan@dberlin.org>
|
|
|
|
This file is part of GCC.
|
|
|
|
GCC is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 3, or (at your option)
|
|
any later version.
|
|
|
|
GCC is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with GCC; see the file COPYING3. If not see
|
|
<http://www.gnu.org/licenses/>. */
|
|
|
|
#include "config.h"
|
|
#include "system.h"
|
|
#include "coretypes.h"
|
|
#include "tm.h"
|
|
#include "ggc.h"
|
|
#include "tree.h"
|
|
#include "basic-block.h"
|
|
#include "diagnostic.h"
|
|
#include "tree-inline.h"
|
|
#include "tree-flow.h"
|
|
#include "gimple.h"
|
|
#include "tree-dump.h"
|
|
#include "timevar.h"
|
|
#include "fibheap.h"
|
|
#include "hashtab.h"
|
|
#include "tree-iterator.h"
|
|
#include "real.h"
|
|
#include "alloc-pool.h"
|
|
#include "tree-pass.h"
|
|
#include "flags.h"
|
|
#include "bitmap.h"
|
|
#include "langhooks.h"
|
|
#include "cfgloop.h"
|
|
|
|
/* TODO:
|
|
1. Sinking store only using scalar promotion (IE without moving the RHS):
|
|
|
|
*q = p;
|
|
p = p + 1;
|
|
if (something)
|
|
*q = <not p>;
|
|
else
|
|
y = *q;
|
|
|
|
|
|
should become
|
|
sinktemp = p;
|
|
p = p + 1;
|
|
if (something)
|
|
*q = <not p>;
|
|
else
|
|
{
|
|
*q = sinktemp;
|
|
y = *q
|
|
}
|
|
Store copy propagation will take care of the store elimination above.
|
|
|
|
|
|
2. Sinking using Partial Dead Code Elimination. */
|
|
|
|
|
|
static struct
|
|
{
|
|
/* The number of statements sunk down the flowgraph by code sinking. */
|
|
int sunk;
|
|
|
|
} sink_stats;
|
|
|
|
|
|
/* Given a PHI, and one of its arguments (DEF), find the edge for
|
|
that argument and return it. If the argument occurs twice in the PHI node,
|
|
we return NULL. */
|
|
|
|
static basic_block
|
|
find_bb_for_arg (gimple phi, tree def)
|
|
{
|
|
size_t i;
|
|
bool foundone = false;
|
|
basic_block result = NULL;
|
|
for (i = 0; i < gimple_phi_num_args (phi); i++)
|
|
if (PHI_ARG_DEF (phi, i) == def)
|
|
{
|
|
if (foundone)
|
|
return NULL;
|
|
foundone = true;
|
|
result = gimple_phi_arg_edge (phi, i)->src;
|
|
}
|
|
return result;
|
|
}
|
|
|
|
/* When the first immediate use is in a statement, then return true if all
|
|
immediate uses in IMM are in the same statement.
|
|
We could also do the case where the first immediate use is in a phi node,
|
|
and all the other uses are in phis in the same basic block, but this
|
|
requires some expensive checking later (you have to make sure no def/vdef
|
|
in the statement occurs for multiple edges in the various phi nodes it's
|
|
used in, so that you only have one place you can sink it to. */
|
|
|
|
static bool
|
|
all_immediate_uses_same_place (gimple stmt)
|
|
{
|
|
gimple firstuse = NULL;
|
|
ssa_op_iter op_iter;
|
|
imm_use_iterator imm_iter;
|
|
use_operand_p use_p;
|
|
tree var;
|
|
|
|
FOR_EACH_SSA_TREE_OPERAND (var, stmt, op_iter, SSA_OP_ALL_DEFS)
|
|
{
|
|
FOR_EACH_IMM_USE_FAST (use_p, imm_iter, var)
|
|
{
|
|
if (firstuse == NULL)
|
|
firstuse = USE_STMT (use_p);
|
|
else
|
|
if (firstuse != USE_STMT (use_p))
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/* Some global stores don't necessarily have VDEF's of global variables,
|
|
but we still must avoid moving them around. */
|
|
|
|
bool
|
|
is_hidden_global_store (gimple stmt)
|
|
{
|
|
/* Check virtual definitions. If we get here, the only virtual
|
|
definitions we should see are those generated by assignment or call
|
|
statements. */
|
|
if (!ZERO_SSA_OPERANDS (stmt, SSA_OP_VIRTUAL_DEFS))
|
|
{
|
|
tree lhs;
|
|
|
|
gcc_assert (is_gimple_assign (stmt) || is_gimple_call (stmt));
|
|
|
|
/* Note that we must not check the individual virtual operands
|
|
here. In particular, if this is an aliased store, we could
|
|
end up with something like the following (SSA notation
|
|
redacted for brevity):
|
|
|
|
foo (int *p, int i)
|
|
{
|
|
int x;
|
|
p_1 = (i_2 > 3) ? &x : p;
|
|
|
|
# x_4 = VDEF <x_3>
|
|
*p_1 = 5;
|
|
|
|
return 2;
|
|
}
|
|
|
|
Notice that the store to '*p_1' should be preserved, if we
|
|
were to check the virtual definitions in that store, we would
|
|
not mark it needed. This is because 'x' is not a global
|
|
variable.
|
|
|
|
Therefore, we check the base address of the LHS. If the
|
|
address is a pointer, we check if its name tag or symbol tag is
|
|
a global variable. Otherwise, we check if the base variable
|
|
is a global. */
|
|
lhs = gimple_get_lhs (stmt);
|
|
|
|
if (REFERENCE_CLASS_P (lhs))
|
|
lhs = get_base_address (lhs);
|
|
|
|
if (lhs == NULL_TREE)
|
|
{
|
|
/* If LHS is NULL, it means that we couldn't get the base
|
|
address of the reference. In which case, we should not
|
|
move this store. */
|
|
return true;
|
|
}
|
|
else if (DECL_P (lhs))
|
|
{
|
|
/* If the store is to a global symbol, we need to keep it. */
|
|
if (is_global_var (lhs))
|
|
return true;
|
|
|
|
}
|
|
else if (INDIRECT_REF_P (lhs))
|
|
return may_point_to_global_var (TREE_OPERAND (lhs, 0));
|
|
else
|
|
gcc_unreachable ();
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/* Find the nearest common dominator of all of the immediate uses in IMM. */
|
|
|
|
static basic_block
|
|
nearest_common_dominator_of_uses (gimple stmt)
|
|
{
|
|
bitmap blocks = BITMAP_ALLOC (NULL);
|
|
basic_block commondom;
|
|
unsigned int j;
|
|
bitmap_iterator bi;
|
|
ssa_op_iter op_iter;
|
|
imm_use_iterator imm_iter;
|
|
use_operand_p use_p;
|
|
tree var;
|
|
|
|
bitmap_clear (blocks);
|
|
FOR_EACH_SSA_TREE_OPERAND (var, stmt, op_iter, SSA_OP_ALL_DEFS)
|
|
{
|
|
FOR_EACH_IMM_USE_FAST (use_p, imm_iter, var)
|
|
{
|
|
gimple usestmt = USE_STMT (use_p);
|
|
basic_block useblock;
|
|
|
|
if (gimple_code (usestmt) == GIMPLE_PHI)
|
|
{
|
|
int idx = PHI_ARG_INDEX_FROM_USE (use_p);
|
|
|
|
useblock = gimple_phi_arg_edge (usestmt, idx)->src;
|
|
}
|
|
else
|
|
{
|
|
useblock = gimple_bb (usestmt);
|
|
}
|
|
|
|
/* Short circuit. Nothing dominates the entry block. */
|
|
if (useblock == ENTRY_BLOCK_PTR)
|
|
{
|
|
BITMAP_FREE (blocks);
|
|
return NULL;
|
|
}
|
|
bitmap_set_bit (blocks, useblock->index);
|
|
}
|
|
}
|
|
commondom = BASIC_BLOCK (bitmap_first_set_bit (blocks));
|
|
EXECUTE_IF_SET_IN_BITMAP (blocks, 0, j, bi)
|
|
commondom = nearest_common_dominator (CDI_DOMINATORS, commondom,
|
|
BASIC_BLOCK (j));
|
|
BITMAP_FREE (blocks);
|
|
return commondom;
|
|
}
|
|
|
|
/* Given a statement (STMT) and the basic block it is currently in (FROMBB),
|
|
determine the location to sink the statement to, if any.
|
|
Returns true if there is such location; in that case, TOGSI points to the
|
|
statement before that STMT should be moved. */
|
|
|
|
static bool
|
|
statement_sink_location (gimple stmt, basic_block frombb,
|
|
gimple_stmt_iterator *togsi)
|
|
{
|
|
gimple use;
|
|
tree def;
|
|
use_operand_p one_use = NULL_USE_OPERAND_P;
|
|
basic_block sinkbb;
|
|
use_operand_p use_p;
|
|
def_operand_p def_p;
|
|
ssa_op_iter iter;
|
|
imm_use_iterator imm_iter;
|
|
enum tree_code code;
|
|
|
|
FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_ALL_DEFS)
|
|
{
|
|
FOR_EACH_IMM_USE_FAST (one_use, imm_iter, def)
|
|
{
|
|
break;
|
|
}
|
|
if (one_use != NULL_USE_OPERAND_P)
|
|
break;
|
|
}
|
|
|
|
/* Return if there are no immediate uses of this stmt. */
|
|
if (one_use == NULL_USE_OPERAND_P)
|
|
return false;
|
|
|
|
if (gimple_code (stmt) != GIMPLE_ASSIGN)
|
|
return false;
|
|
|
|
/* There are a few classes of things we can't or don't move, some because we
|
|
don't have code to handle it, some because it's not profitable and some
|
|
because it's not legal.
|
|
|
|
We can't sink things that may be global stores, at least not without
|
|
calculating a lot more information, because we may cause it to no longer
|
|
be seen by an external routine that needs it depending on where it gets
|
|
moved to.
|
|
|
|
We don't want to sink loads from memory.
|
|
|
|
We can't sink statements that end basic blocks without splitting the
|
|
incoming edge for the sink location to place it there.
|
|
|
|
We can't sink statements that have volatile operands.
|
|
|
|
We don't want to sink dead code, so anything with 0 immediate uses is not
|
|
sunk.
|
|
|
|
*/
|
|
code = gimple_assign_rhs_code (stmt);
|
|
if (stmt_ends_bb_p (stmt)
|
|
|| gimple_has_side_effects (stmt)
|
|
|| code == EXC_PTR_EXPR
|
|
|| code == FILTER_EXPR
|
|
|| is_hidden_global_store (stmt)
|
|
|| gimple_has_volatile_ops (stmt)
|
|
|| !ZERO_SSA_OPERANDS (stmt, SSA_OP_VUSE))
|
|
return false;
|
|
|
|
FOR_EACH_SSA_DEF_OPERAND (def_p, stmt, iter, SSA_OP_ALL_DEFS)
|
|
{
|
|
tree def = DEF_FROM_PTR (def_p);
|
|
if (is_global_var (SSA_NAME_VAR (def))
|
|
|| SSA_NAME_OCCURS_IN_ABNORMAL_PHI (def))
|
|
return false;
|
|
}
|
|
|
|
FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_ALL_USES)
|
|
{
|
|
tree use = USE_FROM_PTR (use_p);
|
|
if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (use))
|
|
return false;
|
|
}
|
|
|
|
/* If all the immediate uses are not in the same place, find the nearest
|
|
common dominator of all the immediate uses. For PHI nodes, we have to
|
|
find the nearest common dominator of all of the predecessor blocks, since
|
|
that is where insertion would have to take place. */
|
|
if (!all_immediate_uses_same_place (stmt))
|
|
{
|
|
basic_block commondom = nearest_common_dominator_of_uses (stmt);
|
|
|
|
if (commondom == frombb)
|
|
return false;
|
|
|
|
/* Our common dominator has to be dominated by frombb in order to be a
|
|
trivially safe place to put this statement, since it has multiple
|
|
uses. */
|
|
if (!dominated_by_p (CDI_DOMINATORS, commondom, frombb))
|
|
return false;
|
|
|
|
/* It doesn't make sense to move to a dominator that post-dominates
|
|
frombb, because it means we've just moved it into a path that always
|
|
executes if frombb executes, instead of reducing the number of
|
|
executions . */
|
|
if (dominated_by_p (CDI_POST_DOMINATORS, frombb, commondom))
|
|
{
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
fprintf (dump_file, "Not moving store, common dominator post-dominates from block.\n");
|
|
return false;
|
|
}
|
|
|
|
if (commondom == frombb || commondom->loop_depth > frombb->loop_depth)
|
|
return false;
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
fprintf (dump_file, "Common dominator of all uses is %d\n",
|
|
commondom->index);
|
|
}
|
|
*togsi = gsi_after_labels (commondom);
|
|
return true;
|
|
}
|
|
|
|
use = USE_STMT (one_use);
|
|
if (gimple_code (use) != GIMPLE_PHI)
|
|
{
|
|
sinkbb = gimple_bb (use);
|
|
if (sinkbb == frombb || sinkbb->loop_depth > frombb->loop_depth
|
|
|| sinkbb->loop_father != frombb->loop_father)
|
|
return false;
|
|
|
|
*togsi = gsi_for_stmt (use);
|
|
return true;
|
|
}
|
|
|
|
/* Note that at this point, all uses must be in the same statement, so it
|
|
doesn't matter which def op we choose, pick the first one. */
|
|
FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_ALL_DEFS)
|
|
break;
|
|
|
|
sinkbb = find_bb_for_arg (use, def);
|
|
if (!sinkbb)
|
|
return false;
|
|
|
|
/* This will happen when you have
|
|
a_3 = PHI <a_13, a_26>
|
|
|
|
a_26 = VDEF <a_3>
|
|
|
|
If the use is a phi, and is in the same bb as the def,
|
|
we can't sink it. */
|
|
|
|
if (gimple_bb (use) == frombb)
|
|
return false;
|
|
if (sinkbb == frombb || sinkbb->loop_depth > frombb->loop_depth
|
|
|| sinkbb->loop_father != frombb->loop_father)
|
|
return false;
|
|
|
|
*togsi = gsi_after_labels (sinkbb);
|
|
|
|
return true;
|
|
}
|
|
|
|
/* Perform code sinking on BB */
|
|
|
|
static void
|
|
sink_code_in_bb (basic_block bb)
|
|
{
|
|
basic_block son;
|
|
gimple_stmt_iterator gsi;
|
|
edge_iterator ei;
|
|
edge e;
|
|
bool last = true;
|
|
|
|
/* If this block doesn't dominate anything, there can't be any place to sink
|
|
the statements to. */
|
|
if (first_dom_son (CDI_DOMINATORS, bb) == NULL)
|
|
goto earlyout;
|
|
|
|
/* We can't move things across abnormal edges, so don't try. */
|
|
FOR_EACH_EDGE (e, ei, bb->succs)
|
|
if (e->flags & EDGE_ABNORMAL)
|
|
goto earlyout;
|
|
|
|
for (gsi = gsi_last_bb (bb); !gsi_end_p (gsi);)
|
|
{
|
|
gimple stmt = gsi_stmt (gsi);
|
|
gimple_stmt_iterator togsi;
|
|
|
|
if (!statement_sink_location (stmt, bb, &togsi))
|
|
{
|
|
if (!gsi_end_p (gsi))
|
|
gsi_prev (&gsi);
|
|
last = false;
|
|
continue;
|
|
}
|
|
if (dump_file)
|
|
{
|
|
fprintf (dump_file, "Sinking ");
|
|
print_gimple_stmt (dump_file, stmt, 0, TDF_VOPS);
|
|
fprintf (dump_file, " from bb %d to bb %d\n",
|
|
bb->index, (gsi_bb (togsi))->index);
|
|
}
|
|
|
|
/* If this is the end of the basic block, we need to insert at the end
|
|
of the basic block. */
|
|
if (gsi_end_p (togsi))
|
|
gsi_move_to_bb_end (&gsi, gsi_bb (togsi));
|
|
else
|
|
gsi_move_before (&gsi, &togsi);
|
|
|
|
sink_stats.sunk++;
|
|
|
|
/* If we've just removed the last statement of the BB, the
|
|
gsi_end_p() test below would fail, but gsi_prev() would have
|
|
succeeded, and we want it to succeed. So we keep track of
|
|
whether we're at the last statement and pick up the new last
|
|
statement. */
|
|
if (last)
|
|
{
|
|
gsi = gsi_last_bb (bb);
|
|
continue;
|
|
}
|
|
|
|
last = false;
|
|
if (!gsi_end_p (gsi))
|
|
gsi_prev (&gsi);
|
|
|
|
}
|
|
earlyout:
|
|
for (son = first_dom_son (CDI_POST_DOMINATORS, bb);
|
|
son;
|
|
son = next_dom_son (CDI_POST_DOMINATORS, son))
|
|
{
|
|
sink_code_in_bb (son);
|
|
}
|
|
}
|
|
|
|
/* Perform code sinking.
|
|
This moves code down the flowgraph when we know it would be
|
|
profitable to do so, or it wouldn't increase the number of
|
|
executions of the statement.
|
|
|
|
IE given
|
|
|
|
a_1 = b + c;
|
|
if (<something>)
|
|
{
|
|
}
|
|
else
|
|
{
|
|
foo (&b, &c);
|
|
a_5 = b + c;
|
|
}
|
|
a_6 = PHI (a_5, a_1);
|
|
USE a_6.
|
|
|
|
we'll transform this into:
|
|
|
|
if (<something>)
|
|
{
|
|
a_1 = b + c;
|
|
}
|
|
else
|
|
{
|
|
foo (&b, &c);
|
|
a_5 = b + c;
|
|
}
|
|
a_6 = PHI (a_5, a_1);
|
|
USE a_6.
|
|
|
|
Note that this reduces the number of computations of a = b + c to 1
|
|
when we take the else edge, instead of 2.
|
|
*/
|
|
static void
|
|
execute_sink_code (void)
|
|
{
|
|
loop_optimizer_init (LOOPS_NORMAL);
|
|
|
|
connect_infinite_loops_to_exit ();
|
|
memset (&sink_stats, 0, sizeof (sink_stats));
|
|
calculate_dominance_info (CDI_DOMINATORS);
|
|
calculate_dominance_info (CDI_POST_DOMINATORS);
|
|
sink_code_in_bb (EXIT_BLOCK_PTR);
|
|
statistics_counter_event (cfun, "Sunk statements", sink_stats.sunk);
|
|
free_dominance_info (CDI_POST_DOMINATORS);
|
|
remove_fake_exit_edges ();
|
|
loop_optimizer_finalize ();
|
|
}
|
|
|
|
/* Gate and execute functions for PRE. */
|
|
|
|
static unsigned int
|
|
do_sink (void)
|
|
{
|
|
execute_sink_code ();
|
|
return 0;
|
|
}
|
|
|
|
static bool
|
|
gate_sink (void)
|
|
{
|
|
return flag_tree_sink != 0;
|
|
}
|
|
|
|
struct gimple_opt_pass pass_sink_code =
|
|
{
|
|
{
|
|
GIMPLE_PASS,
|
|
"sink", /* name */
|
|
gate_sink, /* gate */
|
|
do_sink, /* execute */
|
|
NULL, /* sub */
|
|
NULL, /* next */
|
|
0, /* static_pass_number */
|
|
TV_TREE_SINK, /* tv_id */
|
|
PROP_no_crit_edges | PROP_cfg
|
|
| PROP_ssa | PROP_alias, /* properties_required */
|
|
0, /* properties_provided */
|
|
0, /* properties_destroyed */
|
|
0, /* todo_flags_start */
|
|
TODO_update_ssa
|
|
| TODO_dump_func
|
|
| TODO_ggc_collect
|
|
| TODO_verify_ssa /* todo_flags_finish */
|
|
}
|
|
};
|