15a63be14c
From-SVN: r236
3842 lines
110 KiB
C
3842 lines
110 KiB
C
/* Optimize jump instructions, for GNU compiler.
|
||
Copyright (C) 1987, 1988, 1989, 1991 Free Software Foundation, Inc.
|
||
|
||
This file is part of GNU CC.
|
||
|
||
GNU CC is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 2, or (at your option)
|
||
any later version.
|
||
|
||
GNU CC is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with GNU CC; see the file COPYING. If not, write to
|
||
the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
|
||
|
||
|
||
/* This is the jump-optimization pass of the compiler.
|
||
It is run two or three times: once before cse, sometimes once after cse,
|
||
and once after reload (before final).
|
||
|
||
jump_optimize deletes unreachable code and labels that are not used.
|
||
It also deletes jumps that jump to the following insn,
|
||
and simplifies jumps around unconditional jumps and jumps
|
||
to unconditional jumps.
|
||
|
||
Each CODE_LABEL has a count of the times it is used
|
||
stored in the LABEL_NUSES internal field, and each JUMP_INSN
|
||
has one label that it refers to stored in the
|
||
JUMP_LABEL internal field. With this we can detect labels that
|
||
become unused because of the deletion of all the jumps that
|
||
formerly used them. The JUMP_LABEL info is sometimes looked
|
||
at by later passes.
|
||
|
||
Optionally, cross-jumping can be done. Currently it is done
|
||
only the last time (when after reload and before final).
|
||
In fact, the code for cross-jumping now assumes that register
|
||
allocation has been done, since it uses `rtx_renumbered_equal_p'.
|
||
|
||
Jump optimization is done after cse when cse's constant-propagation
|
||
causes jumps to become unconditional or to be deleted.
|
||
|
||
Unreachable loops are not detected here, because the labels
|
||
have references and the insns appear reachable from the labels.
|
||
find_basic_blocks in flow.c finds and deletes such loops.
|
||
|
||
The subroutines delete_insn, redirect_jump, and invert_jump are used
|
||
from other passes as well. */
|
||
|
||
#include "config.h"
|
||
#include "rtl.h"
|
||
#include "flags.h"
|
||
#include "hard-reg-set.h"
|
||
#include "regs.h"
|
||
#include "expr.h"
|
||
#include "insn-config.h"
|
||
#include "insn-flags.h"
|
||
#include "real.h"
|
||
|
||
/* ??? Eventually must record somehow the labels used by jumps
|
||
from nested functions. */
|
||
/* Pre-record the next or previous real insn for each label?
|
||
No, this pass is very fast anyway. */
|
||
/* Condense consecutive labels?
|
||
This would make life analysis faster, maybe. */
|
||
/* Optimize jump y; x: ... y: jumpif... x?
|
||
Don't know if it is worth bothering with. */
|
||
/* Optimize two cases of conditional jump to conditional jump?
|
||
This can never delete any instruction or make anything dead,
|
||
or even change what is live at any point.
|
||
So perhaps let combiner do it. */
|
||
|
||
/* Vector indexed by uid.
|
||
For each CODE_LABEL, index by its uid to get first unconditional jump
|
||
that jumps to the label.
|
||
For each JUMP_INSN, index by its uid to get the next unconditional jump
|
||
that jumps to the same label.
|
||
Element 0 is the start of a chain of all return insns.
|
||
(It is safe to use element 0 because insn uid 0 is not used. */
|
||
|
||
static rtx *jump_chain;
|
||
|
||
/* List of labels referred to from initializers.
|
||
These can never be deleted. */
|
||
rtx forced_labels;
|
||
|
||
/* Maximum index in jump_chain. */
|
||
|
||
static int max_jump_chain;
|
||
|
||
/* Set nonzero by jump_optimize if control can fall through
|
||
to the end of the function. */
|
||
int can_reach_end;
|
||
|
||
/* Indicates whether death notes are significant in cross jump analysis.
|
||
Normally they are not significant, because of A and B jump to C,
|
||
and R dies in A, it must die in B. But this might not be true after
|
||
stack register conversion, and we must compare death notes in that
|
||
case. */
|
||
|
||
static int cross_jump_death_matters = 0;
|
||
|
||
static int duplicate_loop_exit_test ();
|
||
rtx delete_insn ();
|
||
int redirect_jump ();
|
||
static int redirect_exp ();
|
||
void redirect_tablejump ();
|
||
static int delete_labelref_insn ();
|
||
int invert_jump ();
|
||
static int invert_exp ();
|
||
int condjump_p ();
|
||
int simplejump_p ();
|
||
|
||
extern rtx gen_jump ();
|
||
|
||
void squeeze_notes ();
|
||
static void mark_jump_label ();
|
||
void delete_jump ();
|
||
static void delete_from_jump_chain ();
|
||
static int tension_vector_labels ();
|
||
static void find_cross_jump ();
|
||
static void do_cross_jump ();
|
||
static int jump_back_p ();
|
||
|
||
/* Delete no-op jumps and optimize jumps to jumps
|
||
and jumps around jumps.
|
||
Delete unused labels and unreachable code.
|
||
|
||
If CROSS_JUMP is 1, detect matching code
|
||
before a jump and its destination and unify them.
|
||
If CROSS_JUMP is 2, do cross-jumping, but pay attention to death notes.
|
||
|
||
If NOOP_MOVES is nonzero, delete no-op move insns.
|
||
|
||
If AFTER_REGSCAN is nonzero, then this jump pass is being run immediately
|
||
after regscan, and it is safe to use regno_first_uid and regno_last_uid.
|
||
|
||
If `optimize' is zero, don't change any code,
|
||
just determine whether control drops off the end of the function.
|
||
This case occurs when we have -W and not -O.
|
||
It works because `delete_insn' checks the value of `optimize'
|
||
and refrains from actually deleting when that is 0. */
|
||
|
||
void
|
||
jump_optimize (f, cross_jump, noop_moves, after_regscan)
|
||
rtx f;
|
||
int cross_jump;
|
||
int noop_moves;
|
||
int after_regscan;
|
||
{
|
||
register rtx insn;
|
||
int changed;
|
||
int first = 1;
|
||
int max_uid = 0;
|
||
rtx last_insn;
|
||
|
||
cross_jump_death_matters = (cross_jump == 2);
|
||
|
||
/* Initialize LABEL_NUSES and JUMP_LABEL fields. */
|
||
|
||
for (insn = f; insn; insn = NEXT_INSN (insn))
|
||
{
|
||
if (GET_CODE (insn) == CODE_LABEL)
|
||
LABEL_NUSES (insn) = (LABEL_PRESERVE_P (insn) != 0);
|
||
else if (GET_CODE (insn) == JUMP_INSN)
|
||
JUMP_LABEL (insn) = 0;
|
||
if (INSN_UID (insn) > max_uid)
|
||
max_uid = INSN_UID (insn);
|
||
}
|
||
|
||
max_uid++;
|
||
|
||
/* Delete insns following barriers, up to next label. */
|
||
|
||
for (insn = f; insn;)
|
||
{
|
||
if (GET_CODE (insn) == BARRIER)
|
||
{
|
||
insn = NEXT_INSN (insn);
|
||
while (insn != 0 && GET_CODE (insn) != CODE_LABEL)
|
||
{
|
||
if (GET_CODE (insn) == NOTE
|
||
&& NOTE_LINE_NUMBER (insn) != NOTE_INSN_FUNCTION_END)
|
||
insn = NEXT_INSN (insn);
|
||
else
|
||
insn = delete_insn (insn);
|
||
}
|
||
/* INSN is now the code_label. */
|
||
}
|
||
else
|
||
insn = NEXT_INSN (insn);
|
||
}
|
||
|
||
/* Leave some extra room for labels and duplicate exit test insns
|
||
we make. */
|
||
max_jump_chain = max_uid * 14 / 10;
|
||
jump_chain = (rtx *) alloca (max_jump_chain * sizeof (rtx));
|
||
bzero (jump_chain, max_jump_chain * sizeof (rtx));
|
||
|
||
/* Mark the label each jump jumps to.
|
||
Combine consecutive labels, and count uses of labels.
|
||
|
||
For each label, make a chain (using `jump_chain')
|
||
of all the *unconditional* jumps that jump to it;
|
||
also make a chain of all returns. */
|
||
|
||
for (insn = f; insn; insn = NEXT_INSN (insn))
|
||
if ((GET_CODE (insn) == JUMP_INSN || GET_CODE (insn) == INSN
|
||
|| GET_CODE (insn) == CALL_INSN)
|
||
&& ! INSN_DELETED_P (insn))
|
||
{
|
||
mark_jump_label (PATTERN (insn), insn, cross_jump);
|
||
if (GET_CODE (insn) == JUMP_INSN)
|
||
{
|
||
if (JUMP_LABEL (insn) != 0 && simplejump_p (insn))
|
||
{
|
||
jump_chain[INSN_UID (insn)]
|
||
= jump_chain[INSN_UID (JUMP_LABEL (insn))];
|
||
jump_chain[INSN_UID (JUMP_LABEL (insn))] = insn;
|
||
}
|
||
if (GET_CODE (PATTERN (insn)) == RETURN)
|
||
{
|
||
jump_chain[INSN_UID (insn)] = jump_chain[0];
|
||
jump_chain[0] = insn;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Keep track of labels used from static data;
|
||
they cannot ever be deleted. */
|
||
|
||
for (insn = forced_labels; insn; insn = XEXP (insn, 1))
|
||
LABEL_NUSES (XEXP (insn, 0))++;
|
||
|
||
/* Delete all labels already not referenced.
|
||
Also find the last insn. */
|
||
|
||
last_insn = 0;
|
||
for (insn = f; insn; )
|
||
{
|
||
if (GET_CODE (insn) == CODE_LABEL && LABEL_NUSES (insn) == 0)
|
||
insn = delete_insn (insn);
|
||
else
|
||
{
|
||
last_insn = insn;
|
||
insn = NEXT_INSN (insn);
|
||
}
|
||
}
|
||
|
||
if (!optimize)
|
||
{
|
||
/* See if there is still a NOTE_INSN_FUNCTION_END in this function.
|
||
If so record that this function can drop off the end. */
|
||
|
||
insn = last_insn;
|
||
{
|
||
int n_labels = 1;
|
||
while (insn
|
||
/* One label can follow the end-note: the return label. */
|
||
&& ((GET_CODE (insn) == CODE_LABEL && n_labels-- > 0)
|
||
/* Ordinary insns can follow it if returning a structure. */
|
||
|| GET_CODE (insn) == INSN
|
||
/* If machine uses explicit RETURN insns, no epilogue,
|
||
then one of them follows the note. */
|
||
|| (GET_CODE (insn) == JUMP_INSN
|
||
&& GET_CODE (PATTERN (insn)) == RETURN)
|
||
/* Other kinds of notes can follow also. */
|
||
|| (GET_CODE (insn) == NOTE
|
||
&& NOTE_LINE_NUMBER (insn) != NOTE_INSN_FUNCTION_END)))
|
||
insn = PREV_INSN (insn);
|
||
}
|
||
|
||
/* Report if control can fall through at the end of the function. */
|
||
if (insn && GET_CODE (insn) == NOTE
|
||
&& NOTE_LINE_NUMBER (insn) == NOTE_INSN_FUNCTION_END
|
||
&& ! INSN_DELETED_P (insn))
|
||
can_reach_end = 1;
|
||
|
||
/* Zero the "deleted" flag of all the "deleted" insns. */
|
||
for (insn = f; insn; insn = NEXT_INSN (insn))
|
||
INSN_DELETED_P (insn) = 0;
|
||
return;
|
||
}
|
||
|
||
#ifdef HAVE_return
|
||
if (HAVE_return)
|
||
{
|
||
/* If we fall through to the epilogue, see if we can insert a RETURN insn
|
||
in front of it. If the machine allows it at this point (we might be
|
||
after reload for a leaf routine), it will improve optimization for it
|
||
to be there. */
|
||
insn = get_last_insn ();
|
||
while (insn && GET_CODE (insn) == NOTE)
|
||
insn = PREV_INSN (insn);
|
||
|
||
if (insn && GET_CODE (insn) != BARRIER)
|
||
{
|
||
emit_jump_insn (gen_return ());
|
||
emit_barrier ();
|
||
}
|
||
}
|
||
#endif
|
||
|
||
if (noop_moves)
|
||
for (insn = f; insn; )
|
||
{
|
||
register rtx next = NEXT_INSN (insn);
|
||
|
||
if (GET_CODE (insn) == INSN)
|
||
{
|
||
register rtx body = PATTERN (insn);
|
||
|
||
/* Combine stack_adjusts with following push_insns. */
|
||
#ifdef PUSH_ROUNDING
|
||
if (GET_CODE (body) == SET
|
||
&& SET_DEST (body) == stack_pointer_rtx
|
||
&& GET_CODE (SET_SRC (body)) == PLUS
|
||
&& XEXP (SET_SRC (body), 0) == stack_pointer_rtx
|
||
&& GET_CODE (XEXP (SET_SRC (body), 1)) == CONST_INT
|
||
&& INTVAL (XEXP (SET_SRC (body), 1)) > 0)
|
||
{
|
||
rtx p;
|
||
rtx stack_adjust_insn = insn;
|
||
int stack_adjust_amount = INTVAL (XEXP (SET_SRC (body), 1));
|
||
int total_pushed = 0;
|
||
int pushes = 0;
|
||
|
||
/* Find all successive push insns. */
|
||
p = insn;
|
||
/* Don't convert more than three pushes;
|
||
that starts adding too many displaced addresses
|
||
and the whole thing starts becoming a losing
|
||
proposition. */
|
||
while (pushes < 3)
|
||
{
|
||
rtx pbody, dest;
|
||
p = next_nonnote_insn (p);
|
||
if (p == 0 || GET_CODE (p) != INSN)
|
||
break;
|
||
pbody = PATTERN (p);
|
||
if (GET_CODE (pbody) != SET)
|
||
break;
|
||
dest = SET_DEST (pbody);
|
||
/* Allow a no-op move between the adjust and the push. */
|
||
if (GET_CODE (dest) == REG
|
||
&& GET_CODE (SET_SRC (pbody)) == REG
|
||
&& REGNO (dest) == REGNO (SET_SRC (pbody)))
|
||
continue;
|
||
if (! (GET_CODE (dest) == MEM
|
||
&& GET_CODE (XEXP (dest, 0)) == POST_INC
|
||
&& XEXP (XEXP (dest, 0), 0) == stack_pointer_rtx))
|
||
break;
|
||
pushes++;
|
||
if (total_pushed + GET_MODE_SIZE (SET_DEST (pbody))
|
||
> stack_adjust_amount)
|
||
break;
|
||
total_pushed += GET_MODE_SIZE (SET_DEST (pbody));
|
||
}
|
||
|
||
/* Discard the amount pushed from the stack adjust;
|
||
maybe eliminate it entirely. */
|
||
if (total_pushed >= stack_adjust_amount)
|
||
{
|
||
delete_insn (stack_adjust_insn);
|
||
total_pushed = stack_adjust_amount;
|
||
}
|
||
else
|
||
XEXP (SET_SRC (PATTERN (stack_adjust_insn)), 1)
|
||
= gen_rtx (CONST_INT, VOIDmode,
|
||
stack_adjust_amount - total_pushed);
|
||
|
||
/* Change the appropriate push insns to ordinary stores. */
|
||
p = insn;
|
||
while (total_pushed > 0)
|
||
{
|
||
rtx pbody, dest;
|
||
p = next_nonnote_insn (p);
|
||
if (GET_CODE (p) != INSN)
|
||
break;
|
||
pbody = PATTERN (p);
|
||
if (GET_CODE (pbody) == SET)
|
||
break;
|
||
dest = SET_DEST (pbody);
|
||
if (! (GET_CODE (dest) == MEM
|
||
&& GET_CODE (XEXP (dest, 0)) == POST_INC
|
||
&& XEXP (XEXP (dest, 0), 0) == stack_pointer_rtx))
|
||
break;
|
||
total_pushed -= GET_MODE_SIZE (SET_DEST (pbody));
|
||
/* If this push doesn't fully fit in the space
|
||
of the stack adjust that we deleted,
|
||
make another stack adjust here for what we
|
||
didn't use up. There should be peepholes
|
||
to recognize the resulting sequence of insns. */
|
||
if (total_pushed < 0)
|
||
{
|
||
emit_insn_before (gen_add2_insn (stack_pointer_rtx,
|
||
gen_rtx (CONST_INT, VOIDmode, - total_pushed)),
|
||
p);
|
||
break;
|
||
}
|
||
XEXP (dest, 0)
|
||
= plus_constant (stack_pointer_rtx, total_pushed);
|
||
}
|
||
}
|
||
#endif
|
||
|
||
/* Detect and delete no-op move instructions
|
||
resulting from not allocating a parameter in a register. */
|
||
|
||
if (GET_CODE (body) == SET
|
||
&& (SET_DEST (body) == SET_SRC (body)
|
||
|| (GET_CODE (SET_DEST (body)) == MEM
|
||
&& GET_CODE (SET_SRC (body)) == MEM
|
||
&& rtx_equal_p (SET_SRC (body), SET_DEST (body))))
|
||
&& ! (GET_CODE (SET_DEST (body)) == MEM
|
||
&& MEM_VOLATILE_P (SET_DEST (body)))
|
||
&& ! (GET_CODE (SET_SRC (body)) == MEM
|
||
&& MEM_VOLATILE_P (SET_SRC (body))))
|
||
delete_insn (insn);
|
||
|
||
/* Detect and ignore no-op move instructions
|
||
resulting from smart or fortuitous register allocation. */
|
||
|
||
else if (GET_CODE (body) == SET)
|
||
{
|
||
int sreg = true_regnum (SET_SRC (body));
|
||
int dreg = true_regnum (SET_DEST (body));
|
||
|
||
if (sreg == dreg && sreg >= 0)
|
||
delete_insn (insn);
|
||
else if (sreg >= 0 && dreg >= 0)
|
||
{
|
||
rtx trial;
|
||
rtx tem = find_equiv_reg (0, insn, 0,
|
||
sreg, 0, dreg,
|
||
GET_MODE (SET_SRC (body)));
|
||
|
||
#ifdef PRESERVE_DEATH_INFO_REGNO_P
|
||
/* Deleting insn could lose a death-note for SREG or DREG
|
||
so don't do it if final needs accurate death-notes. */
|
||
if (! PRESERVE_DEATH_INFO_REGNO_P (sreg)
|
||
&& ! PRESERVE_DEATH_INFO_REGNO_P (dreg))
|
||
#endif
|
||
{
|
||
/* DREG may have been the target of a REG_DEAD note in
|
||
the insn which makes INSN redundant. If so, reorg
|
||
would still think it is dead. So search for such a
|
||
note and delete it if we find it. */
|
||
for (trial = prev_nonnote_insn (insn);
|
||
trial && GET_CODE (trial) != CODE_LABEL;
|
||
trial = prev_nonnote_insn (trial))
|
||
if (find_regno_note (trial, REG_DEAD, dreg))
|
||
{
|
||
remove_death (dreg, trial);
|
||
break;
|
||
}
|
||
|
||
if (tem != 0
|
||
&& GET_MODE (tem) == GET_MODE (SET_DEST (body)))
|
||
delete_insn (insn);
|
||
}
|
||
}
|
||
else if (dreg >= 0 && CONSTANT_P (SET_SRC (body))
|
||
&& find_equiv_reg (SET_SRC (body), insn, 0, dreg, 0,
|
||
0, GET_MODE (SET_DEST (body))))
|
||
{
|
||
/* This handles the case where we have two consecutive
|
||
assignments of the same constant to pseudos that didn't
|
||
get a hard reg. Each SET from the constant will be
|
||
converted into a SET of the spill register and an
|
||
output reload will be made following it. This produces
|
||
two loads of the same constant into the same spill
|
||
register. */
|
||
|
||
rtx in_insn = insn;
|
||
|
||
/* Look back for a death note for the first reg.
|
||
If there is one, it is no longer accurate. */
|
||
while (in_insn && GET_CODE (in_insn) != CODE_LABEL)
|
||
{
|
||
if ((GET_CODE (in_insn) == INSN
|
||
|| GET_CODE (in_insn) == JUMP_INSN)
|
||
&& find_regno_note (in_insn, REG_DEAD, dreg))
|
||
{
|
||
remove_death (dreg, in_insn);
|
||
break;
|
||
}
|
||
in_insn = PREV_INSN (in_insn);
|
||
}
|
||
|
||
/* Delete the second load of the value. */
|
||
delete_insn (insn);
|
||
}
|
||
}
|
||
else if (GET_CODE (body) == PARALLEL)
|
||
{
|
||
/* If each part is a set between two identical registers or
|
||
a USE or CLOBBER, delete the insn. */
|
||
int i, sreg, dreg;
|
||
rtx tem;
|
||
|
||
for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
|
||
{
|
||
tem = XVECEXP (body, 0, i);
|
||
if (GET_CODE (tem) == USE || GET_CODE (tem) == CLOBBER)
|
||
continue;
|
||
|
||
if (GET_CODE (tem) != SET
|
||
|| (sreg = true_regnum (SET_SRC (tem))) < 0
|
||
|| (dreg = true_regnum (SET_DEST (tem))) < 0
|
||
|| dreg != sreg)
|
||
break;
|
||
}
|
||
|
||
if (i < 0)
|
||
delete_insn (insn);
|
||
}
|
||
#if !BYTES_BIG_ENDIAN /* Not worth the hair to detect this
|
||
in the big-endian case. */
|
||
/* Also delete insns to store bit fields if they are no-ops. */
|
||
else if (GET_CODE (body) == SET
|
||
&& GET_CODE (SET_DEST (body)) == ZERO_EXTRACT
|
||
&& XEXP (SET_DEST (body), 2) == const0_rtx
|
||
&& XEXP (SET_DEST (body), 0) == SET_SRC (body)
|
||
&& ! (GET_CODE (SET_SRC (body)) == MEM
|
||
&& MEM_VOLATILE_P (SET_SRC (body))))
|
||
delete_insn (insn);
|
||
#endif /* not BYTES_BIG_ENDIAN */
|
||
}
|
||
insn = next;
|
||
}
|
||
|
||
/* Now iterate optimizing jumps until nothing changes over one pass. */
|
||
changed = 1;
|
||
while (changed)
|
||
{
|
||
register rtx next;
|
||
changed = 0;
|
||
|
||
for (insn = f; insn; insn = next)
|
||
{
|
||
rtx reallabelprev;
|
||
rtx temp, temp1, temp2, temp3, temp4, temp5;
|
||
rtx nlabel;
|
||
int this_is_simplejump, this_is_condjump;
|
||
#if 0
|
||
/* If NOT the first iteration, if this is the last jump pass
|
||
(just before final), do the special peephole optimizations.
|
||
Avoiding the first iteration gives ordinary jump opts
|
||
a chance to work before peephole opts. */
|
||
|
||
if (reload_completed && !first && !flag_no_peephole)
|
||
if (GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN)
|
||
peephole (insn);
|
||
#endif
|
||
|
||
/* That could have deleted some insns after INSN, so check now
|
||
what the following insn is. */
|
||
|
||
next = NEXT_INSN (insn);
|
||
|
||
/* See if this is a NOTE_INSN_LOOP_BEG followed by an unconditional
|
||
jump. Try to optimize by duplicating the loop exit test if so.
|
||
This is only safe immediately after regscan, because it uses
|
||
the values of regno_first_uid and regno_last_uid. */
|
||
if (after_regscan && GET_CODE (insn) == NOTE
|
||
&& NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG
|
||
&& (temp1 = next_nonnote_insn (insn)) != 0
|
||
&& simplejump_p (temp1))
|
||
{
|
||
temp = PREV_INSN (insn);
|
||
if (duplicate_loop_exit_test (insn))
|
||
{
|
||
changed = 1;
|
||
next = NEXT_INSN (temp);
|
||
continue;
|
||
}
|
||
}
|
||
|
||
if (GET_CODE (insn) != JUMP_INSN)
|
||
continue;
|
||
|
||
this_is_simplejump = simplejump_p (insn);
|
||
this_is_condjump = condjump_p (insn);
|
||
|
||
/* Tension the labels in dispatch tables. */
|
||
|
||
if (GET_CODE (PATTERN (insn)) == ADDR_VEC)
|
||
changed |= tension_vector_labels (PATTERN (insn), 0);
|
||
if (GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC)
|
||
changed |= tension_vector_labels (PATTERN (insn), 1);
|
||
|
||
/* If a dispatch table always goes to the same place,
|
||
get rid of it and replace the insn that uses it. */
|
||
|
||
if (GET_CODE (PATTERN (insn)) == ADDR_VEC
|
||
|| GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC)
|
||
{
|
||
int i;
|
||
rtx pat = PATTERN (insn);
|
||
int diff_vec_p = GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC;
|
||
int len = XVECLEN (pat, diff_vec_p);
|
||
rtx dispatch = prev_real_insn (insn);
|
||
|
||
for (i = 0; i < len; i++)
|
||
if (XEXP (XVECEXP (pat, diff_vec_p, i), 0)
|
||
!= XEXP (XVECEXP (pat, diff_vec_p, 0), 0))
|
||
break;
|
||
if (i == len
|
||
&& GET_CODE (dispatch) == JUMP_INSN
|
||
&& JUMP_LABEL (dispatch) != 0
|
||
/* Don't mess with a casesi insn. */
|
||
&& !(GET_CODE (PATTERN (dispatch)) == SET
|
||
&& (GET_CODE (SET_SRC (PATTERN (dispatch)))
|
||
== IF_THEN_ELSE))
|
||
&& next_real_insn (JUMP_LABEL (dispatch)) == insn)
|
||
{
|
||
redirect_tablejump (dispatch,
|
||
XEXP (XVECEXP (pat, diff_vec_p, 0), 0));
|
||
changed = 1;
|
||
}
|
||
}
|
||
|
||
reallabelprev = prev_active_insn (JUMP_LABEL (insn));
|
||
|
||
/* If a jump references the end of the function, try to turn
|
||
it into a RETURN insn, possibly a conditional one. */
|
||
if (JUMP_LABEL (insn)
|
||
&& next_active_insn (JUMP_LABEL (insn)) == 0)
|
||
changed |= redirect_jump (insn, 0);
|
||
|
||
/* Detect jump to following insn. */
|
||
if (reallabelprev == insn && condjump_p (insn))
|
||
{
|
||
delete_jump (insn);
|
||
changed = 1;
|
||
continue;
|
||
}
|
||
|
||
/* If we have an unconditional jump preceeded by a USE, try to put
|
||
the USE before the target and jump there. This simplifies many
|
||
of the optimizations below since we don't have to worry about
|
||
dealing with these USE insns. We only do this if the label
|
||
being branch to already has the identical USE or if code
|
||
never falls through to that label. */
|
||
|
||
if (this_is_simplejump
|
||
&& (temp = prev_nonnote_insn (insn)) != 0
|
||
&& GET_CODE (temp) == INSN && GET_CODE (PATTERN (temp)) == USE
|
||
&& (temp1 = prev_nonnote_insn (JUMP_LABEL (insn))) != 0
|
||
&& (GET_CODE (temp1) == BARRIER
|
||
|| (GET_CODE (temp1) == INSN
|
||
&& rtx_equal_p (PATTERN (temp), PATTERN (temp1)))))
|
||
{
|
||
if (GET_CODE (temp1) == BARRIER)
|
||
{
|
||
reorder_insns (temp, temp, temp1);
|
||
temp1 = NEXT_INSN (temp1);
|
||
}
|
||
else
|
||
delete_insn (temp);
|
||
|
||
redirect_jump (insn, get_label_before (temp1));
|
||
reallabelprev = prev_real_insn (temp1);
|
||
changed = 1;
|
||
}
|
||
|
||
/* Simplify if (...) x = a; else x = b; by converting it
|
||
to x = b; if (...) x = a;
|
||
if B is sufficiently simple, the test doesn't involve X,
|
||
and nothing in the test modifies B or X.
|
||
|
||
If we have small register classes, we also can't do this if X
|
||
is a hard register.
|
||
|
||
If the "x = b;" insn has any REG_NOTES, we don't do this because
|
||
of the possibility that we are running after CSE and there is a
|
||
REG_EQUAL note that is only valid if the branch has already been
|
||
taken. If we move the insn with the REG_EQUAL note, we may
|
||
fold the comparison to always be false in a later CSE pass.
|
||
(We could also delete the REG_NOTES when moving the insn, but it
|
||
seems simpler to not move it.) An exception is that we can move
|
||
the insn if the only note is a REG_EQUAL or REG_EQUIV whose
|
||
value is the same as "b".
|
||
|
||
INSN is the branch over the `else' part.
|
||
|
||
We set:
|
||
|
||
TEMP to the jump insn preceeding "x = a;"
|
||
TEMP1 to X
|
||
TEMP2 to the insn that sets "x = b;"
|
||
TEMP3 to the insn that sets "x = a;" */
|
||
|
||
if (this_is_simplejump
|
||
&& (temp3 = prev_active_insn (insn)) != 0
|
||
&& GET_CODE (temp3) == INSN
|
||
&& GET_CODE (PATTERN (temp3)) == SET
|
||
&& GET_CODE (temp1 = SET_DEST (PATTERN (temp3))) == REG
|
||
#ifdef SMALL_REGISTER_CLASSES
|
||
&& REGNO (temp1) >= FIRST_PSEUDO_REGISTER
|
||
#endif
|
||
&& (temp2 = next_active_insn (insn)) != 0
|
||
&& GET_CODE (temp2) == INSN
|
||
&& GET_CODE (PATTERN (temp2)) == SET
|
||
&& rtx_equal_p (SET_DEST (PATTERN (temp2)), temp1)
|
||
&& (GET_CODE (SET_SRC (PATTERN (temp2))) == REG
|
||
|| CONSTANT_P (SET_SRC (PATTERN (temp2))))
|
||
&& (REG_NOTES (temp2) == 0
|
||
|| ((REG_NOTE_KIND (REG_NOTES (temp2)) == REG_EQUAL
|
||
|| REG_NOTE_KIND (REG_NOTES (temp2)) == REG_EQUIV)
|
||
&& XEXP (REG_NOTES (temp2), 1) == 0
|
||
&& rtx_equal_p (XEXP (REG_NOTES (temp2), 0),
|
||
SET_SRC (PATTERN (temp2)))))
|
||
&& (temp = prev_active_insn (temp3)) != 0
|
||
&& condjump_p (temp) && ! simplejump_p (temp)
|
||
/* TEMP must skip over the "x = a;" insn */
|
||
&& prev_real_insn (JUMP_LABEL (temp)) == insn
|
||
&& no_labels_between_p (insn, JUMP_LABEL (temp))
|
||
/* There must be no other entries to the "x = b;" insn. */
|
||
&& no_labels_between_p (JUMP_LABEL (temp), temp2)
|
||
/* INSN must either branch to the insn after TEMP2 or the insn
|
||
after TEMP2 must branch to the same place as INSN. */
|
||
&& (reallabelprev == temp2
|
||
|| ((temp4 = next_active_insn (temp2)) != 0
|
||
&& simplejump_p (temp4)
|
||
&& JUMP_LABEL (temp4) == JUMP_LABEL (insn))))
|
||
{
|
||
/* The test expression, X, may be a complicated test with
|
||
multiple branches. See if we can find all the uses of
|
||
the label that TEMP branches to without hitting a CALL_INSN
|
||
or a jump to somewhere else. */
|
||
rtx target = JUMP_LABEL (temp);
|
||
int nuses = LABEL_NUSES (target);
|
||
rtx p, q;
|
||
|
||
/* Set P to the first jump insn that goes around "x = a;". */
|
||
for (p = temp; nuses && p; p = prev_nonnote_insn (p))
|
||
{
|
||
if (GET_CODE (p) == JUMP_INSN)
|
||
{
|
||
if (condjump_p (p) && ! simplejump_p (p)
|
||
&& JUMP_LABEL (p) == target)
|
||
{
|
||
nuses--;
|
||
if (nuses == 0)
|
||
break;
|
||
}
|
||
else
|
||
break;
|
||
}
|
||
else if (GET_CODE (p) == CALL_INSN)
|
||
break;
|
||
}
|
||
|
||
#ifdef HAVE_cc0
|
||
/* We cannot insert anything between a set of cc and its use
|
||
so if P uses cc0, we must back up to the previous insn. */
|
||
q = prev_nonnote_insn (p);
|
||
if (q && GET_RTX_CLASS (GET_CODE (q)) == 'i'
|
||
&& sets_cc0_p (PATTERN (q)))
|
||
p = q;
|
||
#endif
|
||
|
||
if (p)
|
||
p = PREV_INSN (p);
|
||
|
||
/* If we found all the uses and there was no data conflict, we
|
||
can move the assignment unless we can branch into the middle
|
||
from somewhere. */
|
||
if (nuses == 0 && p
|
||
&& no_labels_between_p (p, insn)
|
||
&& ! reg_referenced_between_p (temp1, p, NEXT_INSN (temp3))
|
||
&& ! reg_set_between_p (temp1, p, temp3)
|
||
&& (GET_CODE (SET_SRC (PATTERN (temp2))) == CONST_INT
|
||
|| ! reg_set_between_p (SET_SRC (PATTERN (temp2)),
|
||
p, temp2)))
|
||
{
|
||
reorder_insns_with_line_notes (temp2, temp2, p);
|
||
|
||
/* Set NEXT to an insn that we know won't go away. */
|
||
next = next_active_insn (insn);
|
||
|
||
/* Delete the jump around the set. Note that we must do
|
||
this before we redirect the test jumps so that it won't
|
||
delete the code immediately following the assignment
|
||
we moved (which might be a jump). */
|
||
|
||
delete_insn (insn);
|
||
|
||
/* We either have two consecutive labels or a jump to
|
||
a jump, so adjust all the JUMP_INSNs to branch to where
|
||
INSN branches to. */
|
||
for (p = NEXT_INSN (p); p != next; p = NEXT_INSN (p))
|
||
if (GET_CODE (p) == JUMP_INSN)
|
||
redirect_jump (p, target);
|
||
|
||
changed = 1;
|
||
continue;
|
||
}
|
||
}
|
||
|
||
/* If we have x = a; if (...) x = b;
|
||
and either A or B is zero, or if we have if (...) x = 0;
|
||
and jumps are expensive, try to use a store-flag insn to
|
||
avoid the jump. (If the jump would be faster, the machine
|
||
should not have defined the scc insns!). These cases are often
|
||
made by the previous optimization.
|
||
|
||
INSN here is the jump around the store. We set:
|
||
|
||
TEMP to the "x = b;" insn.
|
||
TEMP1 to X.
|
||
TEMP2 to B (const0_rtx in the second case).
|
||
TEMP3 to A (X in the second case).
|
||
TEMP4 to the condition being tested.
|
||
TEMP5 to the earliest insn used to find the condition. */
|
||
|
||
if (/* We can't do this after reload has completed. */
|
||
! reload_completed
|
||
&& this_is_condjump && ! this_is_simplejump
|
||
/* Set TEMP to the "x = b;" insn. */
|
||
&& (temp = next_nonnote_insn (insn)) != 0
|
||
&& GET_CODE (temp) == INSN
|
||
&& GET_CODE (PATTERN (temp)) == SET
|
||
&& GET_CODE (temp1 = SET_DEST (PATTERN (temp))) == REG
|
||
#ifdef SMALL_REGISTER_CLASSES
|
||
&& REGNO (temp1) >= FIRST_PSEUDO_REGISTER
|
||
#endif
|
||
&& GET_MODE_CLASS (GET_MODE (temp1)) == MODE_INT
|
||
&& (GET_CODE (temp2 = SET_SRC (PATTERN (temp))) == REG
|
||
|| GET_CODE (temp2) == CONST_INT)
|
||
/* Allow either form, but prefer the former if both apply. */
|
||
&& (((temp3 = reg_set_last (temp1, insn)) != 0
|
||
&& ((GET_CODE (temp3) == REG
|
||
#ifdef SMALL_REGISTER_CLASSES
|
||
&& REGNO (temp3) >= FIRST_PSEUDO_REGISTER
|
||
#endif
|
||
)
|
||
|| GET_CODE (temp3) == CONST_INT))
|
||
/* Make the latter case look like x = x; if (...) x = 0; */
|
||
|| ((temp3 = temp1, BRANCH_COST > 1)
|
||
&& temp2 == const0_rtx))
|
||
/* INSN must either branch to the insn after TEMP or the insn
|
||
after TEMP must branch to the same place as INSN. */
|
||
&& (reallabelprev == temp
|
||
|| ((temp4 = next_active_insn (temp)) != 0
|
||
&& simplejump_p (temp4)
|
||
&& JUMP_LABEL (temp4) == JUMP_LABEL (insn)))
|
||
&& (temp4 = get_condition (insn, &temp5)) != 0
|
||
|
||
/* If B is zero, OK; if A is zero, can only do this if we
|
||
can reverse the condition. */
|
||
&& (temp2 == const0_rtx
|
||
|| (temp3 == const0_rtx
|
||
&& (can_reverse_comparison_p (temp4, insn)))))
|
||
{
|
||
enum rtx_code code = GET_CODE (temp4);
|
||
rtx yes = temp3, var = temp1;
|
||
int normalizep;
|
||
rtx target;
|
||
|
||
/* If necessary, reverse the condition. */
|
||
if (temp3 == const0_rtx)
|
||
code = reverse_condition (code), yes = temp2;
|
||
|
||
/* See if we can do this with a store-flag insn. */
|
||
start_sequence ();
|
||
|
||
/* If YES is the constant 1, it is best to just compute
|
||
the result directly. If YES is constant and STORE_FLAG_VALUE
|
||
includes all of its bits, it is best to compute the flag
|
||
value unnormalized and `and' it with YES. Otherwise,
|
||
normalize to -1 and `and' with YES. */
|
||
normalizep = (yes == const1_rtx ? 1
|
||
: (GET_CODE (yes) == CONST_INT
|
||
&& (INTVAL (yes) & ~ STORE_FLAG_VALUE) == 0) ? 0
|
||
: -1);
|
||
|
||
/* We will be putting the store-flag insn immediately in
|
||
front of the comparison that was originally being done,
|
||
so we know all the variables in TEMP4 will be valid.
|
||
However, this might be in front of the assignment of
|
||
A to VAR. If it is, it would clobber the store-flag
|
||
we will be emitting.
|
||
|
||
Therefore, emit into a temporary which will be copied to
|
||
VAR immediately after TEMP. */
|
||
|
||
target = emit_store_flag (gen_reg_rtx (GET_MODE (var)), code,
|
||
XEXP (temp4, 0), XEXP (temp4, 1),
|
||
VOIDmode,
|
||
(code == LTU || code == LEU
|
||
|| code == GEU || code == GTU),
|
||
normalizep);
|
||
if (target)
|
||
{
|
||
rtx seq;
|
||
|
||
if (normalizep != 1)
|
||
target = expand_and (yes, target,
|
||
(GET_CODE (target) == REG
|
||
? target : 0));
|
||
seq = gen_sequence ();
|
||
end_sequence ();
|
||
emit_insn_before (seq, temp5);
|
||
emit_insn_after (gen_move_insn (var, target), insn);
|
||
delete_insn (temp);
|
||
next = NEXT_INSN (insn);
|
||
#ifdef HAVE_cc0
|
||
delete_insn (prev_nonnote_insn (insn));
|
||
#endif
|
||
delete_insn (insn);
|
||
changed = 1;
|
||
continue;
|
||
}
|
||
else
|
||
end_sequence ();
|
||
}
|
||
|
||
/* If branches are expensive, convert
|
||
if (foo) bar++; to bar += (foo != 0);
|
||
and similarly for "bar--;"
|
||
|
||
INSN is the conditional branch around the arithmetic. We set:
|
||
|
||
TEMP is the arithmetic insn.
|
||
TEMP1 is the SET doing the arthmetic.
|
||
TEMP2 is the operand being incremented or decremented.
|
||
TEMP3 to the condition being tested.
|
||
TEMP4 to the earliest insn used to find the condition. */
|
||
|
||
if (BRANCH_COST >= 2
|
||
&& ! reload_completed
|
||
&& this_is_condjump && ! this_is_simplejump
|
||
&& (temp = next_nonnote_insn (insn)) != 0
|
||
&& (temp1 = single_set (temp)) != 0
|
||
&& (temp2 = SET_DEST (temp1),
|
||
GET_MODE_CLASS (GET_MODE (temp2)) == MODE_INT)
|
||
&& GET_CODE (SET_SRC (temp1)) == PLUS
|
||
&& (XEXP (SET_SRC (temp1), 1) == const1_rtx
|
||
|| XEXP (SET_SRC (temp1), 1) == constm1_rtx)
|
||
&& rtx_equal_p (temp2, XEXP (SET_SRC (temp1), 0))
|
||
/* INSN must either branch to the insn after TEMP or the insn
|
||
after TEMP must branch to the same place as INSN. */
|
||
&& (reallabelprev == temp
|
||
|| ((temp3 = next_active_insn (temp)) != 0
|
||
&& simplejump_p (temp3)
|
||
&& JUMP_LABEL (temp3) == JUMP_LABEL (insn)))
|
||
&& (temp3 = get_condition (insn, &temp4)) != 0
|
||
&& can_reverse_comparison_p (temp3, insn))
|
||
{
|
||
rtx target, seq;
|
||
enum rtx_code code = reverse_condition (GET_CODE (temp3));
|
||
|
||
start_sequence ();
|
||
|
||
target = emit_store_flag (gen_reg_rtx (GET_MODE (temp2)), code,
|
||
XEXP (temp3, 0), XEXP (temp3, 1),
|
||
VOIDmode,
|
||
(code == LTU || code == LEU
|
||
|| code == GTU || code == GEU), 1);
|
||
|
||
/* If we can do the store-flag, do the addition or
|
||
subtraction. */
|
||
|
||
if (target)
|
||
target = expand_binop (GET_MODE (temp2),
|
||
(XEXP (SET_SRC (temp1), 1) == const1_rtx
|
||
? add_optab : sub_optab),
|
||
temp2, target, temp2, OPTAB_WIDEN);
|
||
|
||
if (target != 0)
|
||
{
|
||
/* Put the result back in temp2 in case it isn't already.
|
||
Then replace the jump, possible a CC0-setting insn in
|
||
front of the jump, and TEMP, with the sequence we have
|
||
made. */
|
||
|
||
if (target != temp2)
|
||
emit_move_insn (temp2, target);
|
||
|
||
seq = get_insns ();
|
||
end_sequence ();
|
||
|
||
emit_insns_before (seq, temp4);
|
||
delete_insn (temp);
|
||
next = NEXT_INSN (insn);
|
||
#ifdef HAVE_cc0
|
||
delete_insn (prev_nonnote_insn (insn));
|
||
#endif
|
||
delete_insn (insn);
|
||
changed = 1;
|
||
continue;
|
||
}
|
||
else
|
||
end_sequence ();
|
||
}
|
||
|
||
/* Simplify if (...) x = 1; else {...} if (x) ...
|
||
We recognize this case scanning backwards as well.
|
||
|
||
TEMP is the assignment to x;
|
||
TEMP1 is the label at the head of the second if. */
|
||
/* ?? This should call get_condition to find the values being
|
||
compared, instead of looking for a COMPARE insn when HAVE_cc0
|
||
is not defined. This would allow it to work on the m88k. */
|
||
/* ?? This optimization is only safe before cse is run if HAVE_cc0
|
||
is not defined and the condition is tested by a separate compare
|
||
insn. This is because the code below assumes that the result
|
||
of the compare dies in the following branch.
|
||
|
||
Not only that, but there might be other insns between the
|
||
compare and branch whose results are live. Those insns need
|
||
to be executed.
|
||
|
||
A way to fix this is to move the insns at JUMP_LABEL (insn)
|
||
to before INSN. If we are running before flow, they will
|
||
be deleted if they aren't needed. But this doesn't work
|
||
well after flow.
|
||
|
||
This is really a special-case of jump threading, anyway. The
|
||
right thing to do is to replace this and jump threading with
|
||
much simpler code in cse.
|
||
|
||
This code has been turned off in the non-cc0 case in the
|
||
meantime. */
|
||
|
||
#ifdef HAVE_cc0
|
||
else if (this_is_simplejump
|
||
/* Safe to skip USE and CLOBBER insns here
|
||
since they will not be deleted. */
|
||
&& (temp = prev_active_insn (insn))
|
||
&& no_labels_between_p (temp, insn)
|
||
&& GET_CODE (temp) == INSN
|
||
&& GET_CODE (PATTERN (temp)) == SET
|
||
&& GET_CODE (SET_DEST (PATTERN (temp))) == REG
|
||
&& CONSTANT_P (SET_SRC (PATTERN (temp)))
|
||
&& (temp1 = next_active_insn (JUMP_LABEL (insn)))
|
||
/* If we find that the next value tested is `x'
|
||
(TEMP1 is the insn where this happens), win. */
|
||
&& GET_CODE (temp1) == INSN
|
||
&& GET_CODE (PATTERN (temp1)) == SET
|
||
#ifdef HAVE_cc0
|
||
/* Does temp1 `tst' the value of x? */
|
||
&& SET_SRC (PATTERN (temp1)) == SET_DEST (PATTERN (temp))
|
||
&& SET_DEST (PATTERN (temp1)) == cc0_rtx
|
||
&& (temp1 = next_nonnote_insn (temp1))
|
||
#else
|
||
/* Does temp1 compare the value of x against zero? */
|
||
&& GET_CODE (SET_SRC (PATTERN (temp1))) == COMPARE
|
||
&& XEXP (SET_SRC (PATTERN (temp1)), 1) == const0_rtx
|
||
&& (XEXP (SET_SRC (PATTERN (temp1)), 0)
|
||
== SET_DEST (PATTERN (temp)))
|
||
&& GET_CODE (SET_DEST (PATTERN (temp1))) == REG
|
||
&& (temp1 = find_next_ref (SET_DEST (PATTERN (temp1)), temp1))
|
||
#endif
|
||
&& condjump_p (temp1))
|
||
{
|
||
/* Get the if_then_else from the condjump. */
|
||
rtx choice = SET_SRC (PATTERN (temp1));
|
||
if (GET_CODE (choice) == IF_THEN_ELSE)
|
||
{
|
||
enum rtx_code code = GET_CODE (XEXP (choice, 0));
|
||
rtx val = SET_SRC (PATTERN (temp));
|
||
rtx cond
|
||
= simplify_relational_operation (code, GET_MODE (SET_DEST (PATTERN (temp))),
|
||
val, const0_rtx);
|
||
rtx ultimate;
|
||
|
||
if (cond == const_true_rtx)
|
||
ultimate = XEXP (choice, 1);
|
||
else if (cond == const0_rtx)
|
||
ultimate = XEXP (choice, 2);
|
||
else
|
||
ultimate = 0;
|
||
|
||
if (ultimate == pc_rtx)
|
||
ultimate = get_label_after (temp1);
|
||
else if (ultimate && GET_CODE (ultimate) != RETURN)
|
||
ultimate = XEXP (ultimate, 0);
|
||
|
||
if (ultimate)
|
||
changed |= redirect_jump (insn, ultimate);
|
||
}
|
||
}
|
||
#endif
|
||
|
||
#if 0
|
||
/* @@ This needs a bit of work before it will be right.
|
||
|
||
Any type of comparison can be accepted for the first and
|
||
second compare. When rewriting the first jump, we must
|
||
compute the what conditions can reach label3, and use the
|
||
appropriate code. We can not simply reverse/swap the code
|
||
of the first jump. In some cases, the second jump must be
|
||
rewritten also.
|
||
|
||
For example,
|
||
< == converts to > ==
|
||
< != converts to == >
|
||
etc.
|
||
|
||
If the code is written to only accept an '==' test for the second
|
||
compare, then all that needs to be done is to swap the condition
|
||
of the first branch.
|
||
|
||
It is questionable whether we want this optimization anyways,
|
||
since if the user wrote code like this because he/she knew that
|
||
the jump to label1 is taken most of the time, then rewritting
|
||
this gives slower code. */
|
||
/* @@ This should call get_condition to find the values being
|
||
compared, instead of looking for a COMPARE insn when HAVE_cc0
|
||
is not defined. This would allow it to work on the m88k. */
|
||
/* @@ This optimization is only safe before cse is run if HAVE_cc0
|
||
is not defined and the condition is tested by a separate compare
|
||
insn. This is because the code below assumes that the result
|
||
of the compare dies in the following branch. */
|
||
|
||
/* Simplify test a ~= b
|
||
condjump label1;
|
||
test a == b
|
||
condjump label2;
|
||
jump label3;
|
||
label1:
|
||
|
||
rewriting as
|
||
test a ~~= b
|
||
condjump label3
|
||
test a == b
|
||
condjump label2
|
||
label1:
|
||
|
||
where ~= is an inequality, e.g. >, and ~~= is the swapped
|
||
inequality, e.g. <.
|
||
|
||
We recognize this case scanning backwards.
|
||
|
||
TEMP is the conditional jump to `label2';
|
||
TEMP1 is the test for `a == b';
|
||
TEMP2 is the conditional jump to `label1';
|
||
TEMP3 is the test for `a ~= b'. */
|
||
else if (this_is_simplejump
|
||
&& (temp = prev_active_insn (insn))
|
||
&& no_labels_between_p (temp, insn)
|
||
&& condjump_p (temp)
|
||
&& (temp1 = prev_active_insn (temp))
|
||
&& no_labels_between_p (temp1, temp)
|
||
&& GET_CODE (temp1) == INSN
|
||
&& GET_CODE (PATTERN (temp1)) == SET
|
||
#ifdef HAVE_cc0
|
||
&& sets_cc0_p (PATTERN (temp1)) == 1
|
||
#else
|
||
&& GET_CODE (SET_SRC (PATTERN (temp1))) == COMPARE
|
||
&& GET_CODE (SET_DEST (PATTERN (temp1))) == REG
|
||
&& (temp == find_next_ref (SET_DEST (PATTERN (temp1)), temp1))
|
||
#endif
|
||
&& (temp2 = prev_active_insn (temp1))
|
||
&& no_labels_between_p (temp2, temp1)
|
||
&& condjump_p (temp2)
|
||
&& JUMP_LABEL (temp2) == next_nonnote_insn (NEXT_INSN (insn))
|
||
&& (temp3 = prev_active_insn (temp2))
|
||
&& no_labels_between_p (temp3, temp2)
|
||
&& GET_CODE (PATTERN (temp3)) == SET
|
||
&& rtx_equal_p (SET_DEST (PATTERN (temp3)),
|
||
SET_DEST (PATTERN (temp1)))
|
||
&& rtx_equal_p (SET_SRC (PATTERN (temp1)),
|
||
SET_SRC (PATTERN (temp3)))
|
||
&& ! inequality_comparisons_p (PATTERN (temp))
|
||
&& inequality_comparisons_p (PATTERN (temp2)))
|
||
{
|
||
rtx fallthrough_label = JUMP_LABEL (temp2);
|
||
|
||
++LABEL_NUSES (fallthrough_label);
|
||
if (swap_jump (temp2, JUMP_LABEL (insn)))
|
||
{
|
||
delete_insn (insn);
|
||
changed = 1;
|
||
}
|
||
|
||
if (--LABEL_NUSES (fallthrough_label) == 0)
|
||
delete_insn (fallthrough_label);
|
||
}
|
||
#endif
|
||
/* Simplify if (...) {... x = 1;} if (x) ...
|
||
|
||
We recognize this case backwards.
|
||
|
||
TEMP is the test of `x';
|
||
TEMP1 is the assignment to `x' at the end of the
|
||
previous statement. */
|
||
/* @@ This should call get_condition to find the values being
|
||
compared, instead of looking for a COMPARE insn when HAVE_cc0
|
||
is not defined. This would allow it to work on the m88k. */
|
||
/* @@ This optimization is only safe before cse is run if HAVE_cc0
|
||
is not defined and the condition is tested by a separate compare
|
||
insn. This is because the code below assumes that the result
|
||
of the compare dies in the following branch. */
|
||
else if (this_is_condjump
|
||
/* Safe to skip USE and CLOBBER insns here
|
||
since they will not be deleted. */
|
||
&& (temp = prev_active_insn (insn))
|
||
&& no_labels_between_p (temp, insn)
|
||
&& GET_CODE (temp) == INSN
|
||
&& GET_CODE (PATTERN (temp)) == SET
|
||
#ifdef HAVE_cc0
|
||
&& sets_cc0_p (PATTERN (temp)) == 1
|
||
&& GET_CODE (SET_SRC (PATTERN (temp))) == REG
|
||
#else
|
||
/* Temp must be a compare insn, we can not accept a register
|
||
to register move here, since it may not be simply a
|
||
tst insn. */
|
||
&& GET_CODE (SET_SRC (PATTERN (temp))) == COMPARE
|
||
&& XEXP (SET_SRC (PATTERN (temp)), 1) == const0_rtx
|
||
&& GET_CODE (XEXP (SET_SRC (PATTERN (temp)), 0)) == REG
|
||
&& GET_CODE (SET_DEST (PATTERN (temp))) == REG
|
||
&& insn == find_next_ref (SET_DEST (PATTERN (temp)), temp)
|
||
#endif
|
||
/* May skip USE or CLOBBER insns here
|
||
for checking for opportunity, since we
|
||
take care of them later. */
|
||
&& (temp1 = prev_active_insn (temp))
|
||
&& GET_CODE (temp1) == INSN
|
||
&& GET_CODE (PATTERN (temp1)) == SET
|
||
#ifdef HAVE_cc0
|
||
&& SET_SRC (PATTERN (temp)) == SET_DEST (PATTERN (temp1))
|
||
#else
|
||
&& (XEXP (SET_SRC (PATTERN (temp)), 0)
|
||
== SET_DEST (PATTERN (temp1)))
|
||
#endif
|
||
&& CONSTANT_P (SET_SRC (PATTERN (temp1)))
|
||
/* If this isn't true, cse will do the job. */
|
||
&& ! no_labels_between_p (temp1, temp))
|
||
{
|
||
/* Get the if_then_else from the condjump. */
|
||
rtx choice = SET_SRC (PATTERN (insn));
|
||
if (GET_CODE (choice) == IF_THEN_ELSE
|
||
&& (GET_CODE (XEXP (choice, 0)) == EQ
|
||
|| GET_CODE (XEXP (choice, 0)) == NE))
|
||
{
|
||
int want_nonzero = (GET_CODE (XEXP (choice, 0)) == NE);
|
||
rtx last_insn;
|
||
rtx ultimate;
|
||
rtx p;
|
||
|
||
/* Get the place that condjump will jump to
|
||
if it is reached from here. */
|
||
if ((SET_SRC (PATTERN (temp1)) != const0_rtx)
|
||
== want_nonzero)
|
||
ultimate = XEXP (choice, 1);
|
||
else
|
||
ultimate = XEXP (choice, 2);
|
||
/* Get it as a CODE_LABEL. */
|
||
if (ultimate == pc_rtx)
|
||
ultimate = get_label_after (insn);
|
||
else
|
||
/* Get the label out of the LABEL_REF. */
|
||
ultimate = XEXP (ultimate, 0);
|
||
|
||
/* Insert the jump after any USE or CLOBBER
|
||
that follows TEMP1. */
|
||
last_insn = prev_real_insn (temp);
|
||
|
||
/* If we would be branching to the next insn, the jump
|
||
would immediately be deleted and the re-inserted in
|
||
a subsequent pass over the code. So don't do anything
|
||
in that case. */
|
||
if (next_active_insn (last_insn)
|
||
!= next_active_insn (ultimate))
|
||
{
|
||
emit_barrier_after (last_insn);
|
||
p = emit_jump_insn_after (gen_jump (ultimate),
|
||
last_insn);
|
||
JUMP_LABEL (p) = ultimate;
|
||
++LABEL_NUSES (ultimate);
|
||
if (INSN_UID (ultimate) < max_jump_chain
|
||
&& INSN_CODE (p) < max_jump_chain)
|
||
{
|
||
jump_chain[INSN_UID (p)]
|
||
= jump_chain[INSN_UID (ultimate)];
|
||
jump_chain[INSN_UID (ultimate)] = p;
|
||
}
|
||
changed = 1;
|
||
continue;
|
||
}
|
||
}
|
||
}
|
||
/* Detect a conditional jump going to the same place
|
||
as an immediately following unconditional jump. */
|
||
else if (this_is_condjump
|
||
&& (temp = next_active_insn (insn)) != 0
|
||
&& simplejump_p (temp)
|
||
&& (next_active_insn (JUMP_LABEL (insn))
|
||
== next_active_insn (JUMP_LABEL (temp))))
|
||
{
|
||
delete_jump (insn);
|
||
changed = 1;
|
||
continue;
|
||
}
|
||
/* Detect a conditional jump jumping over an unconditional jump. */
|
||
|
||
else if (this_is_condjump && ! this_is_simplejump
|
||
&& reallabelprev != 0
|
||
&& GET_CODE (reallabelprev) == JUMP_INSN
|
||
&& prev_active_insn (reallabelprev) == insn
|
||
&& no_labels_between_p (insn, reallabelprev)
|
||
&& simplejump_p (reallabelprev))
|
||
{
|
||
/* When we invert the unconditional jump, we will be
|
||
decrementing the usage count of its old label.
|
||
Make sure that we don't delete it now because that
|
||
might cause the following code to be deleted. */
|
||
rtx prev_uses = prev_nonnote_insn (reallabelprev);
|
||
rtx prev_label = JUMP_LABEL (insn);
|
||
|
||
++LABEL_NUSES (prev_label);
|
||
|
||
if (invert_jump (insn, JUMP_LABEL (reallabelprev)))
|
||
{
|
||
/* It is very likely that if there are USE insns before
|
||
this jump, they hold REG_DEAD notes. These REG_DEAD
|
||
notes are no longer valid due to this optimization,
|
||
and will cause the life-analysis that following passes
|
||
(notably delayed-branch scheduling) to think that
|
||
these registers are dead when they are not.
|
||
|
||
To prevent this trouble, we just remove the USE insns
|
||
from the insn chain. */
|
||
|
||
while (prev_uses && GET_CODE (prev_uses) == INSN
|
||
&& GET_CODE (PATTERN (prev_uses)) == USE)
|
||
{
|
||
rtx useless = prev_uses;
|
||
prev_uses = prev_nonnote_insn (prev_uses);
|
||
delete_insn (useless);
|
||
}
|
||
|
||
delete_insn (reallabelprev);
|
||
next = insn;
|
||
changed = 1;
|
||
}
|
||
|
||
/* We can now safely delete the label if it is unreferenced
|
||
since the delete_insn above has deleted the BARRIER. */
|
||
if (--LABEL_NUSES (prev_label) == 0)
|
||
delete_insn (prev_label);
|
||
continue;
|
||
}
|
||
else
|
||
{
|
||
/* Detect a jump to a jump. */
|
||
|
||
nlabel = follow_jumps (JUMP_LABEL (insn));
|
||
if (nlabel != JUMP_LABEL (insn)
|
||
&& redirect_jump (insn, nlabel))
|
||
{
|
||
changed = 1;
|
||
next = insn;
|
||
}
|
||
|
||
/* Look for if (foo) bar; else break; */
|
||
/* The insns look like this:
|
||
insn = condjump label1;
|
||
...range1 (some insns)...
|
||
jump label2;
|
||
label1:
|
||
...range2 (some insns)...
|
||
jump somewhere unconditionally
|
||
label2: */
|
||
{
|
||
rtx label1 = next_label (insn);
|
||
rtx range1end = label1 ? prev_active_insn (label1) : 0;
|
||
/* Don't do this optimization on the first round, so that
|
||
jump-around-a-jump gets simplified before we ask here
|
||
whether a jump is unconditional.
|
||
|
||
Also don't do it when we are called after reload since
|
||
it will confuse reorg. */
|
||
if (! first
|
||
&& (reload_completed ? ! flag_delayed_branch : 1)
|
||
/* Make sure INSN is something we can invert. */
|
||
&& condjump_p (insn)
|
||
&& label1 != 0
|
||
&& JUMP_LABEL (insn) == label1
|
||
&& LABEL_NUSES (label1) == 1
|
||
&& GET_CODE (range1end) == JUMP_INSN
|
||
&& simplejump_p (range1end))
|
||
{
|
||
rtx label2 = next_label (label1);
|
||
rtx range2end = label2 ? prev_active_insn (label2) : 0;
|
||
if (range1end != range2end
|
||
&& JUMP_LABEL (range1end) == label2
|
||
&& GET_CODE (range2end) == JUMP_INSN
|
||
&& GET_CODE (NEXT_INSN (range2end)) == BARRIER
|
||
/* Invert the jump condition, so we
|
||
still execute the same insns in each case. */
|
||
&& invert_jump (insn, label1))
|
||
{
|
||
rtx range1beg = next_active_insn (insn);
|
||
rtx range2beg = next_active_insn (label1);
|
||
rtx range1after, range2after;
|
||
rtx range1before, range2before;
|
||
|
||
/* Don't move NOTEs for blocks or loops; shift them
|
||
outside the ranges, where they'll stay put. */
|
||
squeeze_notes (range1beg, range1end);
|
||
squeeze_notes (range2beg, range2end);
|
||
|
||
/* Get current surrounds of the 2 ranges. */
|
||
range1before = PREV_INSN (range1beg);
|
||
range2before = PREV_INSN (range2beg);
|
||
range1after = NEXT_INSN (range1end);
|
||
range2after = NEXT_INSN (range2end);
|
||
|
||
/* Splice range2 where range1 was. */
|
||
NEXT_INSN (range1before) = range2beg;
|
||
PREV_INSN (range2beg) = range1before;
|
||
NEXT_INSN (range2end) = range1after;
|
||
PREV_INSN (range1after) = range2end;
|
||
/* Splice range1 where range2 was. */
|
||
NEXT_INSN (range2before) = range1beg;
|
||
PREV_INSN (range1beg) = range2before;
|
||
NEXT_INSN (range1end) = range2after;
|
||
PREV_INSN (range2after) = range1end;
|
||
changed = 1;
|
||
continue;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Now that the jump has been tensioned,
|
||
try cross jumping: check for identical code
|
||
before the jump and before its target label. */
|
||
|
||
/* First, cross jumping of conditional jumps: */
|
||
|
||
if (cross_jump && condjump_p (insn))
|
||
{
|
||
rtx newjpos, newlpos;
|
||
rtx x = prev_real_insn (JUMP_LABEL (insn));
|
||
|
||
/* A conditional jump may be crossjumped
|
||
only if the place it jumps to follows
|
||
an opposing jump that comes back here. */
|
||
|
||
if (x != 0 && ! jump_back_p (x, insn))
|
||
/* We have no opposing jump;
|
||
cannot cross jump this insn. */
|
||
x = 0;
|
||
|
||
newjpos = 0;
|
||
/* TARGET is nonzero if it is ok to cross jump
|
||
to code before TARGET. If so, see if matches. */
|
||
if (x != 0)
|
||
find_cross_jump (insn, x, 2,
|
||
&newjpos, &newlpos);
|
||
|
||
if (newjpos != 0)
|
||
{
|
||
do_cross_jump (insn, newjpos, newlpos);
|
||
/* Make the old conditional jump
|
||
into an unconditional one. */
|
||
SET_SRC (PATTERN (insn))
|
||
= gen_rtx (LABEL_REF, VOIDmode, JUMP_LABEL (insn));
|
||
INSN_CODE (insn) = -1;
|
||
emit_barrier_after (insn);
|
||
/* Add to jump_chain unless this is a new label
|
||
whose UID is too large. */
|
||
if (INSN_UID (JUMP_LABEL (insn)) < max_jump_chain)
|
||
{
|
||
jump_chain[INSN_UID (insn)]
|
||
= jump_chain[INSN_UID (JUMP_LABEL (insn))];
|
||
jump_chain[INSN_UID (JUMP_LABEL (insn))] = insn;
|
||
}
|
||
changed = 1;
|
||
next = insn;
|
||
}
|
||
}
|
||
|
||
/* Cross jumping of unconditional jumps:
|
||
a few differences. */
|
||
|
||
if (cross_jump && simplejump_p (insn))
|
||
{
|
||
rtx newjpos, newlpos;
|
||
rtx target;
|
||
|
||
newjpos = 0;
|
||
|
||
/* TARGET is nonzero if it is ok to cross jump
|
||
to code before TARGET. If so, see if matches. */
|
||
find_cross_jump (insn, JUMP_LABEL (insn), 1,
|
||
&newjpos, &newlpos);
|
||
|
||
/* If cannot cross jump to code before the label,
|
||
see if we can cross jump to another jump to
|
||
the same label. */
|
||
/* Try each other jump to this label. */
|
||
if (INSN_UID (JUMP_LABEL (insn)) < max_uid)
|
||
for (target = jump_chain[INSN_UID (JUMP_LABEL (insn))];
|
||
target != 0 && newjpos == 0;
|
||
target = jump_chain[INSN_UID (target)])
|
||
if (target != insn
|
||
&& JUMP_LABEL (target) == JUMP_LABEL (insn)
|
||
/* Ignore TARGET if it's deleted. */
|
||
&& ! INSN_DELETED_P (target))
|
||
find_cross_jump (insn, target, 2,
|
||
&newjpos, &newlpos);
|
||
|
||
if (newjpos != 0)
|
||
{
|
||
do_cross_jump (insn, newjpos, newlpos);
|
||
changed = 1;
|
||
next = insn;
|
||
}
|
||
}
|
||
|
||
/* This code was dead in the previous jump.c! */
|
||
if (cross_jump && GET_CODE (PATTERN (insn)) == RETURN)
|
||
{
|
||
/* Return insns all "jump to the same place"
|
||
so we can cross-jump between any two of them. */
|
||
|
||
rtx newjpos, newlpos, target;
|
||
|
||
newjpos = 0;
|
||
|
||
/* If cannot cross jump to code before the label,
|
||
see if we can cross jump to another jump to
|
||
the same label. */
|
||
/* Try each other jump to this label. */
|
||
for (target = jump_chain[0];
|
||
target != 0 && newjpos == 0;
|
||
target = jump_chain[INSN_UID (target)])
|
||
if (target != insn
|
||
&& ! INSN_DELETED_P (target)
|
||
&& GET_CODE (PATTERN (target)) == RETURN)
|
||
find_cross_jump (insn, target, 2,
|
||
&newjpos, &newlpos);
|
||
|
||
if (newjpos != 0)
|
||
{
|
||
do_cross_jump (insn, newjpos, newlpos);
|
||
changed = 1;
|
||
next = insn;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
first = 0;
|
||
}
|
||
|
||
/* Delete extraneous line number notes.
|
||
Note that two consecutive notes for different lines are not really
|
||
extraneous. There should be some indication where that line belonged,
|
||
even if it became empty. */
|
||
|
||
{
|
||
rtx last_note = 0;
|
||
|
||
for (insn = f; insn; insn = NEXT_INSN (insn))
|
||
if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) >= 0)
|
||
{
|
||
/* Delete this note if it is identical to previous note. */
|
||
if (last_note
|
||
&& NOTE_SOURCE_FILE (insn) == NOTE_SOURCE_FILE (last_note)
|
||
&& NOTE_LINE_NUMBER (insn) == NOTE_LINE_NUMBER (last_note))
|
||
{
|
||
delete_insn (insn);
|
||
continue;
|
||
}
|
||
|
||
last_note = insn;
|
||
}
|
||
}
|
||
|
||
/* See if there is still a NOTE_INSN_FUNCTION_END in this function.
|
||
If so, delete it, and record that this function can drop off the end. */
|
||
|
||
insn = last_insn;
|
||
{
|
||
int n_labels = 1;
|
||
while (insn
|
||
/* One label can follow the end-note: the return label. */
|
||
&& ((GET_CODE (insn) == CODE_LABEL && n_labels-- > 0)
|
||
/* Ordinary insns can follow it if returning a structure. */
|
||
|| GET_CODE (insn) == INSN
|
||
/* If machine uses explicit RETURN insns, no epilogue,
|
||
then one of them follows the note. */
|
||
|| (GET_CODE (insn) == JUMP_INSN
|
||
&& GET_CODE (PATTERN (insn)) == RETURN)
|
||
/* Other kinds of notes can follow also. */
|
||
|| (GET_CODE (insn) == NOTE
|
||
&& NOTE_LINE_NUMBER (insn) != NOTE_INSN_FUNCTION_END)))
|
||
insn = PREV_INSN (insn);
|
||
}
|
||
|
||
/* Report if control can fall through at the end of the function. */
|
||
if (insn && GET_CODE (insn) == NOTE
|
||
&& NOTE_LINE_NUMBER (insn) == NOTE_INSN_FUNCTION_END)
|
||
{
|
||
can_reach_end = 1;
|
||
delete_insn (insn);
|
||
}
|
||
|
||
/* Show JUMP_CHAIN no longer valid. */
|
||
jump_chain = 0;
|
||
}
|
||
|
||
/* LOOP_START is a NOTE_INSN_LOOP_BEG note that is followed by an unconditional
|
||
jump. Assume that this unconditional jump is to the exit test code. If
|
||
the code is sufficiently simple, make a copy of it before INSN,
|
||
followed by a jump to the exit of the loop. Then delete the unconditional
|
||
jump after INSN.
|
||
|
||
Note that it is possible we can get confused here if the jump immediately
|
||
after the loop start branches outside the loop but within an outer loop.
|
||
If we are near the exit of that loop, we will copy its exit test. This
|
||
will not generate incorrect code, but could suppress some optimizations.
|
||
However, such cases are degenerate loops anyway.
|
||
|
||
Return 1 if we made the change, else 0.
|
||
|
||
This is only safe immediately after a regscan pass because it uses the
|
||
values of regno_first_uid and regno_last_uid. */
|
||
|
||
static int
|
||
duplicate_loop_exit_test (loop_start)
|
||
rtx loop_start;
|
||
{
|
||
rtx insn, set, p;
|
||
rtx copy, link;
|
||
int num_insns = 0;
|
||
rtx exitcode = NEXT_INSN (JUMP_LABEL (next_nonnote_insn (loop_start)));
|
||
rtx lastexit;
|
||
int max_reg = max_reg_num ();
|
||
rtx *reg_map = 0;
|
||
|
||
/* Scan the exit code. We do not perform this optimization if any insn:
|
||
|
||
is a CALL_INSN
|
||
is a CODE_LABEL
|
||
has a REG_RETVAL or REG_LIBCALL note (hard to adjust)
|
||
is a NOTE_INSN_LOOP_BEG because this means we have a nested loop
|
||
is a NOTE_INSN_BLOCK_{BEG,END} because duplicating these notes
|
||
are not valid
|
||
|
||
Also, don't do this if the exit code is more than 20 insns. */
|
||
|
||
for (insn = exitcode;
|
||
insn
|
||
&& ! (GET_CODE (insn) == NOTE
|
||
&& NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_END);
|
||
insn = NEXT_INSN (insn))
|
||
{
|
||
switch (GET_CODE (insn))
|
||
{
|
||
case CODE_LABEL:
|
||
case CALL_INSN:
|
||
return 0;
|
||
case NOTE:
|
||
if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG
|
||
|| NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_BEG
|
||
|| NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_END)
|
||
return 0;
|
||
break;
|
||
case JUMP_INSN:
|
||
case INSN:
|
||
if (++num_insns > 20
|
||
|| find_reg_note (insn, REG_RETVAL, 0)
|
||
|| find_reg_note (insn, REG_LIBCALL, 0))
|
||
return 0;
|
||
break;
|
||
}
|
||
}
|
||
|
||
/* Unless INSN is zero, we can do the optimization. */
|
||
if (insn == 0)
|
||
return 0;
|
||
|
||
lastexit = insn;
|
||
|
||
/* See if any insn sets a register only used in the loop exit code and
|
||
not a user variable. If so, replace it with a new register. */
|
||
for (insn = exitcode; insn != lastexit; insn = NEXT_INSN (insn))
|
||
if (GET_CODE (insn) == INSN
|
||
&& (set = single_set (insn)) != 0
|
||
&& GET_CODE (SET_DEST (set)) == REG
|
||
&& REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER
|
||
&& regno_first_uid[REGNO (SET_DEST (set))] == INSN_UID (insn))
|
||
{
|
||
for (p = NEXT_INSN (insn); p != lastexit; p = NEXT_INSN (p))
|
||
if (regno_last_uid[REGNO (SET_DEST (set))] == INSN_UID (p))
|
||
break;
|
||
|
||
if (p != lastexit)
|
||
{
|
||
/* We can do the replacement. Allocate reg_map if this is the
|
||
first replacement we found. */
|
||
if (reg_map == 0)
|
||
{
|
||
reg_map = (rtx *) alloca (max_reg * sizeof (rtx));
|
||
bzero (reg_map, max_reg * sizeof (rtx));
|
||
}
|
||
|
||
REG_LOOP_TEST_P (SET_DEST (set)) = 1;
|
||
|
||
reg_map[REGNO (SET_DEST (set))]
|
||
= gen_reg_rtx (GET_MODE (SET_DEST (set)));
|
||
}
|
||
}
|
||
|
||
/* Now copy each insn. */
|
||
for (insn = exitcode; insn != lastexit; insn = NEXT_INSN (insn))
|
||
switch (GET_CODE (insn))
|
||
{
|
||
case BARRIER:
|
||
copy = emit_barrier_before (loop_start);
|
||
break;
|
||
case NOTE:
|
||
/* Only copy line-number notes. */
|
||
if (NOTE_LINE_NUMBER (insn) >= 0)
|
||
{
|
||
copy = emit_note_before (NOTE_LINE_NUMBER (insn), loop_start);
|
||
NOTE_SOURCE_FILE (copy) = NOTE_SOURCE_FILE (insn);
|
||
}
|
||
break;
|
||
|
||
case INSN:
|
||
copy = emit_insn_before (copy_rtx (PATTERN (insn)), loop_start);
|
||
if (reg_map)
|
||
replace_regs (PATTERN (copy), reg_map, max_reg, 1);
|
||
|
||
mark_jump_label (PATTERN (copy), copy, 0);
|
||
|
||
/* Copy all REG_NOTES except REG_LABEL since mark_jump_label will
|
||
make them. */
|
||
for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
|
||
if (REG_NOTE_KIND (link) != REG_LABEL)
|
||
REG_NOTES (copy)
|
||
= copy_rtx (gen_rtx (EXPR_LIST, REG_NOTE_KIND (link),
|
||
XEXP (link, 0), REG_NOTES (copy)));
|
||
if (reg_map && REG_NOTES (copy))
|
||
replace_regs (REG_NOTES (copy), reg_map, max_reg, 1);
|
||
break;
|
||
|
||
case JUMP_INSN:
|
||
copy = emit_jump_insn_before (copy_rtx (PATTERN (insn)), loop_start);
|
||
if (reg_map)
|
||
replace_regs (PATTERN (copy), reg_map, max_reg, 1);
|
||
mark_jump_label (PATTERN (copy), copy, 0);
|
||
if (REG_NOTES (insn))
|
||
{
|
||
REG_NOTES (copy) = copy_rtx (REG_NOTES (insn));
|
||
if (reg_map)
|
||
replace_regs (REG_NOTES (copy), reg_map, max_reg, 1);
|
||
}
|
||
|
||
/* If this is a simple jump, add it to the jump chain. */
|
||
|
||
if (INSN_UID (copy) < max_jump_chain && JUMP_LABEL (copy)
|
||
&& simplejump_p (copy))
|
||
{
|
||
jump_chain[INSN_UID (copy)]
|
||
= jump_chain[INSN_UID (JUMP_LABEL (copy))];
|
||
jump_chain[INSN_UID (JUMP_LABEL (copy))] = copy;
|
||
}
|
||
break;
|
||
|
||
default:
|
||
abort ();
|
||
}
|
||
|
||
/* Now clean up by emitting a jump to the end label and deleting the jump
|
||
at the start of the loop. */
|
||
if (GET_CODE (copy) != BARRIER)
|
||
{
|
||
copy = emit_jump_insn_before (gen_jump (get_label_after (insn)),
|
||
loop_start);
|
||
mark_jump_label (PATTERN (copy), copy, 0);
|
||
if (INSN_UID (copy) < max_jump_chain
|
||
&& INSN_UID (JUMP_LABEL (copy)) < max_jump_chain)
|
||
{
|
||
jump_chain[INSN_UID (copy)]
|
||
= jump_chain[INSN_UID (JUMP_LABEL (copy))];
|
||
jump_chain[INSN_UID (JUMP_LABEL (copy))] = copy;
|
||
}
|
||
emit_barrier_before (loop_start);
|
||
}
|
||
|
||
delete_insn (next_nonnote_insn (loop_start));
|
||
|
||
/* Mark the exit code as the virtual top of the converted loop. */
|
||
emit_note_before (NOTE_INSN_LOOP_VTOP, exitcode);
|
||
|
||
return 1;
|
||
}
|
||
|
||
/* Move all block-beg, block-end, loop-beg, loop-cont, loop-vtop, and
|
||
loop-end notes between START and END out before START. Assume neither
|
||
START nor END is such a note. */
|
||
|
||
void
|
||
squeeze_notes (start, end)
|
||
rtx start, end;
|
||
{
|
||
rtx insn;
|
||
rtx next;
|
||
|
||
for (insn = start; insn != end; insn = next)
|
||
{
|
||
next = NEXT_INSN (insn);
|
||
if (GET_CODE (insn) == NOTE
|
||
&& (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_END
|
||
|| NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_BEG
|
||
|| NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG
|
||
|| NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_END
|
||
|| NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_CONT
|
||
|| NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_VTOP))
|
||
{
|
||
rtx prev = PREV_INSN (insn);
|
||
PREV_INSN (insn) = PREV_INSN (start);
|
||
NEXT_INSN (insn) = start;
|
||
NEXT_INSN (PREV_INSN (insn)) = insn;
|
||
PREV_INSN (NEXT_INSN (insn)) = insn;
|
||
NEXT_INSN (prev) = next;
|
||
PREV_INSN (next) = prev;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Compare the instructions before insn E1 with those before E2
|
||
to find an opportunity for cross jumping.
|
||
(This means detecting identical sequences of insns followed by
|
||
jumps to the same place, or followed by a label and a jump
|
||
to that label, and replacing one with a jump to the other.)
|
||
|
||
Assume E1 is a jump that jumps to label E2
|
||
(that is not always true but it might as well be).
|
||
Find the longest possible equivalent sequences
|
||
and store the first insns of those sequences into *F1 and *F2.
|
||
Store zero there if no equivalent preceding instructions are found.
|
||
|
||
We give up if we find a label in stream 1.
|
||
Actually we could transfer that label into stream 2. */
|
||
|
||
static void
|
||
find_cross_jump (e1, e2, minimum, f1, f2)
|
||
rtx e1, e2;
|
||
int minimum;
|
||
rtx *f1, *f2;
|
||
{
|
||
register rtx i1 = e1, i2 = e2;
|
||
register rtx p1, p2;
|
||
int lose = 0;
|
||
|
||
rtx last1 = 0, last2 = 0;
|
||
rtx afterlast1 = 0, afterlast2 = 0;
|
||
rtx prev1;
|
||
|
||
*f1 = 0;
|
||
*f2 = 0;
|
||
|
||
while (1)
|
||
{
|
||
i1 = prev_nonnote_insn (i1);
|
||
|
||
i2 = PREV_INSN (i2);
|
||
while (i2 && (GET_CODE (i2) == NOTE || GET_CODE (i2) == CODE_LABEL))
|
||
i2 = PREV_INSN (i2);
|
||
|
||
if (i1 == 0)
|
||
break;
|
||
|
||
/* Don't allow the range of insns preceding E1 or E2
|
||
to include the other (E2 or E1). */
|
||
if (i2 == e1 || i1 == e2)
|
||
break;
|
||
|
||
/* If we will get to this code by jumping, those jumps will be
|
||
tensioned to go directly to the new label (before I2),
|
||
so this cross-jumping won't cost extra. So reduce the minimum. */
|
||
if (GET_CODE (i1) == CODE_LABEL)
|
||
{
|
||
--minimum;
|
||
break;
|
||
}
|
||
|
||
if (i2 == 0 || GET_CODE (i1) != GET_CODE (i2))
|
||
break;
|
||
|
||
p1 = PATTERN (i1);
|
||
p2 = PATTERN (i2);
|
||
|
||
#ifdef STACK_REGS
|
||
/* If cross_jump_death_matters is not 0, the insn's mode
|
||
indicates whether or not the insn contains any stack-like
|
||
regs. */
|
||
|
||
if (cross_jump_death_matters && GET_MODE (i1) == QImode)
|
||
{
|
||
/* If register stack conversion has already been done, then
|
||
death notes must also be compared before it is certain that
|
||
the two instruction streams match. */
|
||
|
||
rtx note;
|
||
HARD_REG_SET i1_regset, i2_regset;
|
||
|
||
CLEAR_HARD_REG_SET (i1_regset);
|
||
CLEAR_HARD_REG_SET (i2_regset);
|
||
|
||
for (note = REG_NOTES (i1); note; note = XEXP (note, 1))
|
||
if (REG_NOTE_KIND (note) == REG_DEAD
|
||
&& STACK_REG_P (XEXP (note, 0)))
|
||
SET_HARD_REG_BIT (i1_regset, REGNO (XEXP (note, 0)));
|
||
|
||
for (note = REG_NOTES (i2); note; note = XEXP (note, 1))
|
||
if (REG_NOTE_KIND (note) == REG_DEAD
|
||
&& STACK_REG_P (XEXP (note, 0)))
|
||
SET_HARD_REG_BIT (i2_regset, REGNO (XEXP (note, 0)));
|
||
|
||
GO_IF_HARD_REG_EQUAL (i1_regset, i2_regset, done);
|
||
|
||
lose = 1;
|
||
|
||
done:
|
||
;
|
||
}
|
||
#endif
|
||
|
||
if (lose || GET_CODE (p1) != GET_CODE (p2)
|
||
|| ! rtx_renumbered_equal_p (p1, p2))
|
||
{
|
||
/* The following code helps take care of G++ cleanups. */
|
||
rtx equiv1;
|
||
rtx equiv2;
|
||
|
||
if (!lose && GET_CODE (p1) == GET_CODE (p2)
|
||
&& ((equiv1 = find_reg_note (i1, REG_EQUAL, 0)) != 0
|
||
|| (equiv1 = find_reg_note (i1, REG_EQUIV, 0)) != 0)
|
||
&& ((equiv2 = find_reg_note (i2, REG_EQUAL, 0)) != 0
|
||
|| (equiv2 = find_reg_note (i2, REG_EQUIV, 0)) != 0)
|
||
/* If the equivalences are not to a constant, they may
|
||
reference pseudos that no longer exist, so we can't
|
||
use them. */
|
||
&& CONSTANT_P (XEXP (equiv1, 0))
|
||
&& rtx_equal_p (XEXP (equiv1, 0), XEXP (equiv2, 0)))
|
||
{
|
||
rtx s1 = single_set (i1);
|
||
rtx s2 = single_set (i2);
|
||
if (s1 != 0 && s2 != 0
|
||
&& rtx_renumbered_equal_p (SET_DEST (s1), SET_DEST (s2)))
|
||
{
|
||
validate_change (i1, &SET_SRC (s1), XEXP (equiv1, 0), 1);
|
||
validate_change (i2, &SET_SRC (s2), XEXP (equiv2, 0), 1);
|
||
if (! rtx_renumbered_equal_p (p1, p2))
|
||
cancel_changes (0);
|
||
else if (apply_change_group ())
|
||
goto win;
|
||
}
|
||
}
|
||
|
||
/* Insns fail to match; cross jumping is limited to the following
|
||
insns. */
|
||
|
||
#ifdef HAVE_cc0
|
||
/* Don't allow the insn after a compare to be shared by
|
||
cross-jumping unless the compare is also shared.
|
||
Here, if either of these non-matching insns is a compare,
|
||
exclude the following insn from possible cross-jumping. */
|
||
if (sets_cc0_p (p1) || sets_cc0_p (p2))
|
||
last1 = afterlast1, last2 = afterlast2, ++minimum;
|
||
#endif
|
||
|
||
/* If cross-jumping here will feed a jump-around-jump
|
||
optimization, this jump won't cost extra, so reduce
|
||
the minimum. */
|
||
if (GET_CODE (i1) == JUMP_INSN
|
||
&& JUMP_LABEL (i1)
|
||
&& prev_real_insn (JUMP_LABEL (i1)) == e1)
|
||
--minimum;
|
||
break;
|
||
}
|
||
|
||
win:
|
||
if (GET_CODE (p1) != USE && GET_CODE (p1) != CLOBBER)
|
||
{
|
||
/* Ok, this insn is potentially includable in a cross-jump here. */
|
||
afterlast1 = last1, afterlast2 = last2;
|
||
last1 = i1, last2 = i2, --minimum;
|
||
}
|
||
}
|
||
|
||
/* We have to be careful that we do not cross-jump into the middle of
|
||
USE-CALL_INSN-CLOBBER sequence. This sequence is used instead of
|
||
putting the USE and CLOBBERs inside the CALL_INSN. The delay slot
|
||
scheduler needs to know what registers are used and modified by the
|
||
CALL_INSN and needs the adjacent USE and CLOBBERs to do so.
|
||
|
||
??? At some point we should probably change this so that these are
|
||
part of the CALL_INSN. The way we are doing it now is a kludge that
|
||
is now causing trouble. */
|
||
|
||
if (last1 != 0 && GET_CODE (last1) == CALL_INSN
|
||
&& (prev1 = prev_nonnote_insn (last1))
|
||
&& GET_CODE (prev1) == INSN
|
||
&& GET_CODE (PATTERN (prev1)) == USE)
|
||
{
|
||
/* Remove this CALL_INSN from the range we can cross-jump. */
|
||
last1 = next_real_insn (last1);
|
||
last2 = next_real_insn (last2);
|
||
|
||
minimum++;
|
||
}
|
||
|
||
/* Skip past CLOBBERS since they may be right after a CALL_INSN. It
|
||
isn't worth checking for the CALL_INSN. */
|
||
while (last1 != 0 && GET_CODE (PATTERN (last1)) == CLOBBER)
|
||
last1 = next_real_insn (last1), last2 = next_real_insn (last2);
|
||
|
||
if (minimum <= 0 && last1 != 0 && last1 != e1)
|
||
*f1 = last1, *f2 = last2;
|
||
}
|
||
|
||
static void
|
||
do_cross_jump (insn, newjpos, newlpos)
|
||
rtx insn, newjpos, newlpos;
|
||
{
|
||
/* Find an existing label at this point
|
||
or make a new one if there is none. */
|
||
register rtx label = get_label_before (newlpos);
|
||
|
||
/* Make the same jump insn jump to the new point. */
|
||
if (GET_CODE (PATTERN (insn)) == RETURN)
|
||
{
|
||
/* Remove from jump chain of returns. */
|
||
delete_from_jump_chain (insn);
|
||
/* Change the insn. */
|
||
PATTERN (insn) = gen_jump (label);
|
||
INSN_CODE (insn) = -1;
|
||
JUMP_LABEL (insn) = label;
|
||
LABEL_NUSES (label)++;
|
||
/* Add to new the jump chain. */
|
||
if (INSN_UID (label) < max_jump_chain
|
||
&& INSN_UID (insn) < max_jump_chain)
|
||
{
|
||
jump_chain[INSN_UID (insn)] = jump_chain[INSN_UID (label)];
|
||
jump_chain[INSN_UID (label)] = insn;
|
||
}
|
||
}
|
||
else
|
||
redirect_jump (insn, label);
|
||
|
||
/* Delete the matching insns before the jump. Also, remove any REG_EQUAL
|
||
or REG_EQUIV note in the NEWLPOS stream that isn't also present in
|
||
the NEWJPOS stream. */
|
||
|
||
while (newjpos != insn)
|
||
{
|
||
rtx lnote;
|
||
|
||
for (lnote = REG_NOTES (newlpos); lnote; lnote = XEXP (lnote, 1))
|
||
if ((REG_NOTE_KIND (lnote) == REG_EQUAL
|
||
|| REG_NOTE_KIND (lnote) == REG_EQUIV)
|
||
&& ! find_reg_note (newjpos, REG_EQUAL, XEXP (lnote, 0))
|
||
&& ! find_reg_note (newjpos, REG_EQUIV, XEXP (lnote, 0)))
|
||
remove_note (newlpos, lnote);
|
||
|
||
delete_insn (newjpos);
|
||
newjpos = next_real_insn (newjpos);
|
||
newlpos = next_real_insn (newlpos);
|
||
}
|
||
}
|
||
|
||
/* Return the label before INSN, or put a new label there. */
|
||
|
||
rtx
|
||
get_label_before (insn)
|
||
rtx insn;
|
||
{
|
||
rtx label;
|
||
|
||
/* Find an existing label at this point
|
||
or make a new one if there is none. */
|
||
label = prev_nonnote_insn (insn);
|
||
|
||
if (label == 0 || GET_CODE (label) != CODE_LABEL)
|
||
{
|
||
rtx prev = PREV_INSN (insn);
|
||
|
||
/* Don't put a label between a CALL_INSN and USE insns that preceed
|
||
it. */
|
||
|
||
if (GET_CODE (insn) == CALL_INSN
|
||
|| (GET_CODE (insn) == INSN && GET_CODE (PATTERN (insn)) == SEQUENCE
|
||
&& GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == CALL_INSN))
|
||
while (GET_CODE (prev) == INSN && GET_CODE (PATTERN (prev)) == USE)
|
||
prev = PREV_INSN (prev);
|
||
|
||
label = gen_label_rtx ();
|
||
emit_label_after (label, prev);
|
||
LABEL_NUSES (label) = 0;
|
||
}
|
||
return label;
|
||
}
|
||
|
||
/* Return the label after INSN, or put a new label there. */
|
||
|
||
rtx
|
||
get_label_after (insn)
|
||
rtx insn;
|
||
{
|
||
rtx label;
|
||
|
||
/* Find an existing label at this point
|
||
or make a new one if there is none. */
|
||
label = next_nonnote_insn (insn);
|
||
|
||
if (label == 0 || GET_CODE (label) != CODE_LABEL)
|
||
{
|
||
/* Don't put a label between a CALL_INSN and CLOBBER insns
|
||
following it. */
|
||
|
||
if (GET_CODE (insn) == CALL_INSN
|
||
|| (GET_CODE (insn) == INSN && GET_CODE (PATTERN (insn)) == SEQUENCE
|
||
&& GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == CALL_INSN))
|
||
while (GET_CODE (NEXT_INSN (insn)) == INSN
|
||
&& GET_CODE (PATTERN (NEXT_INSN (insn))) == CLOBBER)
|
||
insn = NEXT_INSN (insn);
|
||
|
||
label = gen_label_rtx ();
|
||
emit_label_after (label, insn);
|
||
LABEL_NUSES (label) = 0;
|
||
}
|
||
return label;
|
||
}
|
||
|
||
/* Return 1 if INSN is a jump that jumps to right after TARGET
|
||
only on the condition that TARGET itself would drop through.
|
||
Assumes that TARGET is a conditional jump. */
|
||
|
||
static int
|
||
jump_back_p (insn, target)
|
||
rtx insn, target;
|
||
{
|
||
rtx cinsn, ctarget;
|
||
enum rtx_code codei, codet;
|
||
|
||
if (simplejump_p (insn) || ! condjump_p (insn)
|
||
|| simplejump_p (target)
|
||
|| target != prev_real_insn (JUMP_LABEL (insn)))
|
||
return 0;
|
||
|
||
cinsn = XEXP (SET_SRC (PATTERN (insn)), 0);
|
||
ctarget = XEXP (SET_SRC (PATTERN (target)), 0);
|
||
|
||
codei = GET_CODE (cinsn);
|
||
codet = GET_CODE (ctarget);
|
||
|
||
if (XEXP (SET_SRC (PATTERN (insn)), 1) == pc_rtx)
|
||
{
|
||
if (! can_reverse_comparison_p (cinsn, insn))
|
||
return 0;
|
||
codei = reverse_condition (codei);
|
||
}
|
||
|
||
if (XEXP (SET_SRC (PATTERN (target)), 2) == pc_rtx)
|
||
{
|
||
if (! can_reverse_comparison_p (ctarget, target))
|
||
return 0;
|
||
codet = reverse_condition (codet);
|
||
}
|
||
|
||
return (codei == codet
|
||
&& rtx_renumbered_equal_p (XEXP (cinsn, 0), XEXP (ctarget, 0))
|
||
&& rtx_renumbered_equal_p (XEXP (cinsn, 1), XEXP (ctarget, 1)));
|
||
}
|
||
|
||
/* Given a comparison, COMPARISON, inside a conditional jump insn, INSN,
|
||
return non-zero if it is safe to reverse this comparison. It is if our
|
||
floating-point is not IEEE, if this is an NE or EQ comparison, or if
|
||
this is known to be an integer comparison. */
|
||
|
||
int
|
||
can_reverse_comparison_p (comparison, insn)
|
||
rtx comparison;
|
||
rtx insn;
|
||
{
|
||
rtx arg0;
|
||
|
||
/* If this is not actually a comparison, we can't reverse it. */
|
||
if (GET_RTX_CLASS (GET_CODE (comparison)) != '<')
|
||
return 0;
|
||
|
||
if (TARGET_FLOAT_FORMAT != IEEE_FLOAT_FORMAT
|
||
/* If this is an NE comparison, it is safe to reverse it to an EQ
|
||
comparison and vice versa, even for floating point. If no operands
|
||
are NaNs, the reversal is valid. If some operand is a NaN, EQ is
|
||
always false and NE is always true, so the reversal is also valid. */
|
||
|| GET_CODE (comparison) == NE
|
||
|| GET_CODE (comparison) == EQ)
|
||
return 1;
|
||
|
||
arg0 = XEXP (comparison, 0);
|
||
|
||
/* Make sure ARG0 is one of the actual objects being compared. If we
|
||
can't do this, we can't be sure the comparison can be reversed.
|
||
|
||
Handle cc0 and a MODE_CC register. */
|
||
if ((GET_CODE (arg0) == REG && GET_MODE_CLASS (GET_MODE (arg0)) == MODE_CC)
|
||
#ifdef HAVE_cc0
|
||
|| arg0 == cc0_rtx
|
||
#endif
|
||
)
|
||
{
|
||
rtx prev = prev_nonnote_insn (insn);
|
||
rtx set = single_set (prev);
|
||
|
||
if (set == 0 || SET_DEST (set) != arg0)
|
||
return 0;
|
||
|
||
arg0 = SET_SRC (set);
|
||
|
||
if (GET_CODE (arg0) == COMPARE)
|
||
arg0 = XEXP (arg0, 0);
|
||
}
|
||
|
||
/* We can reverse this if ARG0 is a CONST_INT or if its mode is
|
||
not VOIDmode and neither a MODE_CC nor MODE_FLOAT type. */
|
||
return (GET_CODE (arg0) == CONST_INT
|
||
|| (GET_MODE (arg0) != VOIDmode
|
||
&& GET_MODE_CLASS (GET_MODE (arg0)) != MODE_CC
|
||
&& GET_MODE_CLASS (GET_MODE (arg0)) != MODE_FLOAT));
|
||
}
|
||
|
||
/* Given an rtx-code for a comparison, return the code
|
||
for the negated comparison.
|
||
WATCH OUT! reverse_condition is not safe to use on a jump
|
||
that might be acting on the results of an IEEE floating point comparison,
|
||
because of the special treatment of non-signaling nans in comparisons.
|
||
Use can_reverse_comparison_p to be sure. */
|
||
|
||
enum rtx_code
|
||
reverse_condition (code)
|
||
enum rtx_code code;
|
||
{
|
||
switch (code)
|
||
{
|
||
case EQ:
|
||
return NE;
|
||
|
||
case NE:
|
||
return EQ;
|
||
|
||
case GT:
|
||
return LE;
|
||
|
||
case GE:
|
||
return LT;
|
||
|
||
case LT:
|
||
return GE;
|
||
|
||
case LE:
|
||
return GT;
|
||
|
||
case GTU:
|
||
return LEU;
|
||
|
||
case GEU:
|
||
return LTU;
|
||
|
||
case LTU:
|
||
return GEU;
|
||
|
||
case LEU:
|
||
return GTU;
|
||
|
||
default:
|
||
abort ();
|
||
return UNKNOWN;
|
||
}
|
||
}
|
||
|
||
/* Similar, but return the code when two operands of a comparison are swapped.
|
||
This IS safe for IEEE floating-point. */
|
||
|
||
enum rtx_code
|
||
swap_condition (code)
|
||
enum rtx_code code;
|
||
{
|
||
switch (code)
|
||
{
|
||
case EQ:
|
||
case NE:
|
||
return code;
|
||
|
||
case GT:
|
||
return LT;
|
||
|
||
case GE:
|
||
return LE;
|
||
|
||
case LT:
|
||
return GT;
|
||
|
||
case LE:
|
||
return GE;
|
||
|
||
case GTU:
|
||
return LTU;
|
||
|
||
case GEU:
|
||
return LEU;
|
||
|
||
case LTU:
|
||
return GTU;
|
||
|
||
case LEU:
|
||
return GEU;
|
||
|
||
default:
|
||
abort ();
|
||
return UNKNOWN;
|
||
}
|
||
}
|
||
|
||
/* Given a comparison CODE, return the corresponding unsigned comparison.
|
||
If CODE is an equality comparison or already an unsigned comparison,
|
||
CODE is returned. */
|
||
|
||
enum rtx_code
|
||
unsigned_condition (code)
|
||
enum rtx_code code;
|
||
{
|
||
switch (code)
|
||
{
|
||
case EQ:
|
||
case NE:
|
||
case GTU:
|
||
case GEU:
|
||
case LTU:
|
||
case LEU:
|
||
return code;
|
||
|
||
case GT:
|
||
return GTU;
|
||
|
||
case GE:
|
||
return GEU;
|
||
|
||
case LT:
|
||
return LTU;
|
||
|
||
case LE:
|
||
return LEU;
|
||
|
||
default:
|
||
abort ();
|
||
}
|
||
}
|
||
|
||
/* Similarly, return the signed version of a comparison. */
|
||
|
||
enum rtx_code
|
||
signed_condition (code)
|
||
enum rtx_code code;
|
||
{
|
||
switch (code)
|
||
{
|
||
case EQ:
|
||
case NE:
|
||
case GT:
|
||
case GE:
|
||
case LT:
|
||
case LE:
|
||
return code;
|
||
|
||
case GTU:
|
||
return GT;
|
||
|
||
case GEU:
|
||
return GE;
|
||
|
||
case LTU:
|
||
return LT;
|
||
|
||
case LEU:
|
||
return LE;
|
||
|
||
default:
|
||
abort ();
|
||
}
|
||
}
|
||
|
||
/* Return non-zero if CODE1 is more strict than CODE2, i.e., if the
|
||
truth of CODE1 implies the truth of CODE2. */
|
||
|
||
int
|
||
comparison_dominates_p (code1, code2)
|
||
enum rtx_code code1, code2;
|
||
{
|
||
if (code1 == code2)
|
||
return 1;
|
||
|
||
switch (code1)
|
||
{
|
||
case EQ:
|
||
if (code2 == LE || code2 == LEU || code2 == GE || code2 == GEU)
|
||
return 1;
|
||
break;
|
||
|
||
case LT:
|
||
if (code2 == LE)
|
||
return 1;
|
||
break;
|
||
|
||
case GT:
|
||
if (code2 == GE)
|
||
return 1;
|
||
break;
|
||
|
||
case LTU:
|
||
if (code2 == LEU)
|
||
return 1;
|
||
break;
|
||
|
||
case GTU:
|
||
if (code2 == GEU)
|
||
return 1;
|
||
break;
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Return 1 if INSN is an unconditional jump and nothing else. */
|
||
|
||
int
|
||
simplejump_p (insn)
|
||
rtx insn;
|
||
{
|
||
return (GET_CODE (insn) == JUMP_INSN
|
||
&& GET_CODE (PATTERN (insn)) == SET
|
||
&& GET_CODE (SET_DEST (PATTERN (insn))) == PC
|
||
&& GET_CODE (SET_SRC (PATTERN (insn))) == LABEL_REF);
|
||
}
|
||
|
||
/* Return nonzero if INSN is a (possibly) conditional jump
|
||
and nothing more. */
|
||
|
||
int
|
||
condjump_p (insn)
|
||
rtx insn;
|
||
{
|
||
register rtx x = PATTERN (insn);
|
||
if (GET_CODE (x) != SET)
|
||
return 0;
|
||
if (GET_CODE (SET_DEST (x)) != PC)
|
||
return 0;
|
||
if (GET_CODE (SET_SRC (x)) == LABEL_REF)
|
||
return 1;
|
||
if (GET_CODE (SET_SRC (x)) != IF_THEN_ELSE)
|
||
return 0;
|
||
if (XEXP (SET_SRC (x), 2) == pc_rtx
|
||
&& (GET_CODE (XEXP (SET_SRC (x), 1)) == LABEL_REF
|
||
|| GET_CODE (XEXP (SET_SRC (x), 1)) == RETURN))
|
||
return 1;
|
||
if (XEXP (SET_SRC (x), 1) == pc_rtx
|
||
&& (GET_CODE (XEXP (SET_SRC (x), 2)) == LABEL_REF
|
||
|| GET_CODE (XEXP (SET_SRC (x), 2)) == RETURN))
|
||
return 1;
|
||
return 0;
|
||
}
|
||
|
||
/* Return 1 if X is an RTX that does nothing but set the condition codes
|
||
and CLOBBER or USE registers.
|
||
Return -1 if X does explicitly set the condition codes,
|
||
but also does other things. */
|
||
|
||
int
|
||
sets_cc0_p (x)
|
||
rtx x;
|
||
{
|
||
#ifdef HAVE_cc0
|
||
if (GET_CODE (x) == SET && SET_DEST (x) == cc0_rtx)
|
||
return 1;
|
||
if (GET_CODE (x) == PARALLEL)
|
||
{
|
||
int i;
|
||
int sets_cc0 = 0;
|
||
int other_things = 0;
|
||
for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
|
||
{
|
||
if (GET_CODE (XVECEXP (x, 0, i)) == SET
|
||
&& SET_DEST (XVECEXP (x, 0, i)) == cc0_rtx)
|
||
sets_cc0 = 1;
|
||
else if (GET_CODE (XVECEXP (x, 0, i)) == SET)
|
||
other_things = 1;
|
||
}
|
||
return ! sets_cc0 ? 0 : other_things ? -1 : 1;
|
||
}
|
||
return 0;
|
||
#else
|
||
abort ();
|
||
#endif
|
||
}
|
||
|
||
/* Follow any unconditional jump at LABEL;
|
||
return the ultimate label reached by any such chain of jumps.
|
||
If LABEL is not followed by a jump, return LABEL.
|
||
|
||
If RELOAD_COMPLETED is 0, we do not chain across a NOTE_INSN_LOOP_BEG or
|
||
a USE or CLOBBER. */
|
||
|
||
rtx
|
||
follow_jumps (label)
|
||
rtx label;
|
||
{
|
||
register rtx insn;
|
||
register rtx next;
|
||
register rtx value = label;
|
||
register int depth;
|
||
|
||
for (depth = 0;
|
||
(depth < 10
|
||
&& (insn = next_active_insn (value)) != 0
|
||
&& GET_CODE (insn) == JUMP_INSN
|
||
&& (JUMP_LABEL (insn) != 0 || GET_CODE (PATTERN (insn)) == RETURN)
|
||
&& (next = NEXT_INSN (insn))
|
||
&& GET_CODE (next) == BARRIER);
|
||
depth++)
|
||
{
|
||
/* Don't chain through the insn that jumps into a loop
|
||
from outside the loop,
|
||
since that would create multiple loop entry jumps
|
||
and prevent loop optimization. */
|
||
rtx tem;
|
||
if (!reload_completed)
|
||
for (tem = value; tem != insn; tem = NEXT_INSN (tem))
|
||
if (GET_CODE (tem) == NOTE
|
||
&& NOTE_LINE_NUMBER (tem) == NOTE_INSN_LOOP_BEG)
|
||
return value;
|
||
|
||
/* If we have found a cycle, make the insn jump to itself. */
|
||
if (JUMP_LABEL (insn) == label)
|
||
break;
|
||
value = JUMP_LABEL (insn);
|
||
}
|
||
return value;
|
||
}
|
||
|
||
/* Assuming that field IDX of X is a vector of label_refs,
|
||
replace each of them by the ultimate label reached by it.
|
||
Return nonzero if a change is made.
|
||
If IGNORE_LOOPS is 0, we do not chain across a NOTE_INSN_LOOP_BEG. */
|
||
|
||
static int
|
||
tension_vector_labels (x, idx)
|
||
register rtx x;
|
||
register int idx;
|
||
{
|
||
int changed = 0;
|
||
register int i;
|
||
for (i = XVECLEN (x, idx) - 1; i >= 0; i--)
|
||
{
|
||
register rtx olabel = XEXP (XVECEXP (x, idx, i), 0);
|
||
register rtx nlabel = follow_jumps (olabel);
|
||
if (nlabel && nlabel != olabel)
|
||
{
|
||
XEXP (XVECEXP (x, idx, i), 0) = nlabel;
|
||
++LABEL_NUSES (nlabel);
|
||
if (--LABEL_NUSES (olabel) == 0)
|
||
delete_insn (olabel);
|
||
changed = 1;
|
||
}
|
||
}
|
||
return changed;
|
||
}
|
||
|
||
/* Find all CODE_LABELs referred to in X, and increment their use counts.
|
||
If INSN is a JUMP_INSN and there is at least one CODE_LABEL referenced
|
||
in INSN, then store one of them in JUMP_LABEL (INSN).
|
||
If INSN is an INSN or a CALL_INSN and there is at least one CODE_LABEL
|
||
referenced in INSN, add a REG_LABEL note containing that label to INSN.
|
||
Also, when there are consecutive labels, canonicalize on the last of them.
|
||
|
||
Note that two labels separated by a loop-beginning note
|
||
must be kept distinct if we have not yet done loop-optimization,
|
||
because the gap between them is where loop-optimize
|
||
will want to move invariant code to. CROSS_JUMP tells us
|
||
that loop-optimization is done with.
|
||
|
||
Once reload has completed (CROSS_JUMP non-zero), we need not consider
|
||
two labels distinct if they are separated by only USE or CLOBBER insns. */
|
||
|
||
static void
|
||
mark_jump_label (x, insn, cross_jump)
|
||
register rtx x;
|
||
rtx insn;
|
||
int cross_jump;
|
||
{
|
||
register RTX_CODE code = GET_CODE (x);
|
||
register int i;
|
||
register char *fmt;
|
||
|
||
switch (code)
|
||
{
|
||
case PC:
|
||
case CC0:
|
||
case REG:
|
||
case SUBREG:
|
||
case CONST_INT:
|
||
case SYMBOL_REF:
|
||
case CONST_DOUBLE:
|
||
case CLOBBER:
|
||
case CALL:
|
||
return;
|
||
|
||
case LABEL_REF:
|
||
{
|
||
register rtx label = XEXP (x, 0);
|
||
register rtx next;
|
||
if (GET_CODE (label) != CODE_LABEL)
|
||
abort ();
|
||
/* If there are other labels following this one,
|
||
replace it with the last of the consecutive labels. */
|
||
for (next = NEXT_INSN (label); next; next = NEXT_INSN (next))
|
||
{
|
||
if (GET_CODE (next) == CODE_LABEL)
|
||
label = next;
|
||
else if (cross_jump && GET_CODE (next) == INSN
|
||
&& (GET_CODE (PATTERN (next)) == USE
|
||
|| GET_CODE (PATTERN (next)) == CLOBBER))
|
||
continue;
|
||
else if (GET_CODE (next) != NOTE)
|
||
break;
|
||
else if (! cross_jump
|
||
&& (NOTE_LINE_NUMBER (next) == NOTE_INSN_LOOP_BEG
|
||
|| NOTE_LINE_NUMBER (next) == NOTE_INSN_FUNCTION_END))
|
||
break;
|
||
}
|
||
XEXP (x, 0) = label;
|
||
++LABEL_NUSES (label);
|
||
if (insn)
|
||
{
|
||
if (GET_CODE (insn) == JUMP_INSN)
|
||
JUMP_LABEL (insn) = label;
|
||
else if (! find_reg_note (insn, REG_LABEL, 0))
|
||
{
|
||
rtx next = next_real_insn (label);
|
||
/* Don't record labels that refer to dispatch tables.
|
||
This is not necessary, since the tablejump
|
||
references the same label.
|
||
And if we did record them, flow.c would make worse code. */
|
||
if (next == 0
|
||
|| ! (GET_CODE (next) == JUMP_INSN
|
||
&& (GET_CODE (PATTERN (next)) == ADDR_VEC
|
||
|| GET_CODE (PATTERN (next)) == ADDR_DIFF_VEC)))
|
||
REG_NOTES (insn) = gen_rtx (EXPR_LIST, REG_LABEL, label,
|
||
REG_NOTES (insn));
|
||
}
|
||
}
|
||
return;
|
||
}
|
||
|
||
/* Do walk the labels in a vector, but not the first operand of an
|
||
ADDR_DIFF_VEC. Don't set the JUMP_LABEL of a vector. */
|
||
case ADDR_VEC:
|
||
case ADDR_DIFF_VEC:
|
||
{
|
||
int eltnum = code == ADDR_DIFF_VEC ? 1 : 0;
|
||
|
||
for (i = 0; i < XVECLEN (x, eltnum); i++)
|
||
mark_jump_label (XVECEXP (x, eltnum, i), 0, cross_jump);
|
||
return;
|
||
}
|
||
}
|
||
|
||
fmt = GET_RTX_FORMAT (code);
|
||
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
|
||
{
|
||
if (fmt[i] == 'e')
|
||
mark_jump_label (XEXP (x, i), insn, cross_jump);
|
||
else if (fmt[i] == 'E')
|
||
{
|
||
register int j;
|
||
for (j = 0; j < XVECLEN (x, i); j++)
|
||
mark_jump_label (XVECEXP (x, i, j), insn, cross_jump);
|
||
}
|
||
}
|
||
}
|
||
|
||
/* If all INSN does is set the pc, delete it,
|
||
and delete the insn that set the condition codes for it
|
||
if that's what the previous thing was. */
|
||
|
||
void
|
||
delete_jump (insn)
|
||
rtx insn;
|
||
{
|
||
register rtx x = PATTERN (insn);
|
||
register rtx prev;
|
||
|
||
if (GET_CODE (x) == SET
|
||
&& GET_CODE (SET_DEST (x)) == PC)
|
||
{
|
||
prev = prev_nonnote_insn (insn);
|
||
#ifdef HAVE_cc0
|
||
/* We assume that at this stage
|
||
CC's are always set explicitly
|
||
and always immediately before the jump that
|
||
will use them. So if the previous insn
|
||
exists to set the CC's, delete it
|
||
(unless it performs auto-increments, etc.). */
|
||
if (prev && GET_CODE (prev) == INSN
|
||
&& sets_cc0_p (PATTERN (prev)))
|
||
{
|
||
if (sets_cc0_p (PATTERN (prev)) > 0
|
||
&& !FIND_REG_INC_NOTE (prev, 0))
|
||
delete_insn (prev);
|
||
else
|
||
/* Otherwise, show that cc0 won't be used. */
|
||
REG_NOTES (prev) = gen_rtx (EXPR_LIST, REG_UNUSED,
|
||
cc0_rtx, REG_NOTES (prev));
|
||
}
|
||
#else
|
||
{
|
||
rtx note;
|
||
|
||
/* If we are running before flow.c, we need do nothing since flow.c
|
||
will delete the set of the condition code if it is dead. We also
|
||
can't know if the register being used as the condition code is
|
||
dead or not at this point.
|
||
|
||
Otherwise, look at all our REG_DEAD notes. If a previous insn
|
||
does nothing other than set a register that dies in this jump,
|
||
we can delete the insn. */
|
||
|
||
for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
|
||
{
|
||
rtx our_prev;
|
||
|
||
if (REG_NOTE_KIND (note) != REG_DEAD
|
||
/* Verify that the REG_NOTE has a legal value. */
|
||
|| GET_CODE (XEXP (note, 0)) != REG)
|
||
continue;
|
||
|
||
for (our_prev = prev_nonnote_insn (insn);
|
||
our_prev && GET_CODE (our_prev) == INSN;
|
||
our_prev = prev_nonnote_insn (our_prev))
|
||
{
|
||
/* If we reach a SEQUENCE, it is too complex to try to
|
||
do anything with it, so give up. */
|
||
if (GET_CODE (PATTERN (our_prev)) == SEQUENCE)
|
||
break;
|
||
|
||
if (GET_CODE (PATTERN (our_prev)) == USE
|
||
&& GET_CODE (XEXP (PATTERN (our_prev), 0)) == INSN)
|
||
/* reorg creates USEs that look like this. We leave them
|
||
alone because reorg needs them for its own purposes. */
|
||
break;
|
||
|
||
if (reg_set_p (XEXP (note, 0), PATTERN (our_prev)))
|
||
{
|
||
if (FIND_REG_INC_NOTE (our_prev, 0))
|
||
break;
|
||
|
||
if (GET_CODE (PATTERN (our_prev)) == PARALLEL)
|
||
{
|
||
/* If we find a SET of something else, we can't
|
||
delete the insn. */
|
||
|
||
int i;
|
||
|
||
for (i = 0; i < XVECLEN (PATTERN (our_prev), 0); i++)
|
||
{
|
||
rtx part = XVECEXP (PATTERN (our_prev), 0, i);
|
||
|
||
if (GET_CODE (part) == SET
|
||
&& SET_DEST (part) != XEXP (note, 0))
|
||
break;
|
||
}
|
||
|
||
if (i == XVECLEN (PATTERN (our_prev), 0))
|
||
delete_insn (our_prev);
|
||
}
|
||
else if (GET_CODE (PATTERN (our_prev)) == SET
|
||
&& SET_DEST (PATTERN (our_prev)) == XEXP (note, 0))
|
||
delete_insn (our_prev);
|
||
|
||
break;
|
||
}
|
||
|
||
/* If OUR_PREV references the register that dies here,
|
||
it is an additional use. Hence any prior SET isn't
|
||
dead. */
|
||
if (reg_overlap_mentioned_p (XEXP (note, 0),
|
||
PATTERN (our_prev)))
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
#endif
|
||
/* Now delete the jump insn itself. */
|
||
delete_insn (insn);
|
||
}
|
||
}
|
||
|
||
/* Delete insn INSN from the chain of insns and update label ref counts.
|
||
May delete some following insns as a consequence; may even delete
|
||
a label elsewhere and insns that follow it.
|
||
|
||
Returns the first insn after INSN that was not deleted. */
|
||
|
||
rtx
|
||
delete_insn (insn)
|
||
register rtx insn;
|
||
{
|
||
register rtx next = NEXT_INSN (insn);
|
||
register rtx prev = PREV_INSN (insn);
|
||
|
||
while (next && INSN_DELETED_P (next))
|
||
next = NEXT_INSN (next);
|
||
|
||
/* This insn is already deleted => return first following nondeleted. */
|
||
if (INSN_DELETED_P (insn))
|
||
return next;
|
||
|
||
/* Mark this insn as deleted. */
|
||
|
||
INSN_DELETED_P (insn) = 1;
|
||
|
||
/* If this is an unconditional jump, delete it from the jump chain. */
|
||
if (simplejump_p (insn))
|
||
delete_from_jump_chain (insn);
|
||
|
||
/* If instruction is followed by a barrier,
|
||
delete the barrier too. */
|
||
|
||
if (next != 0 && GET_CODE (next) == BARRIER)
|
||
{
|
||
INSN_DELETED_P (next) = 1;
|
||
next = NEXT_INSN (next);
|
||
}
|
||
|
||
/* Patch out INSN (and the barrier if any) */
|
||
|
||
if (optimize)
|
||
{
|
||
if (prev)
|
||
{
|
||
NEXT_INSN (prev) = next;
|
||
if (GET_CODE (prev) == INSN && GET_CODE (PATTERN (prev)) == SEQUENCE)
|
||
NEXT_INSN (XVECEXP (PATTERN (prev), 0,
|
||
XVECLEN (PATTERN (prev), 0) - 1)) = next;
|
||
}
|
||
|
||
if (next)
|
||
{
|
||
PREV_INSN (next) = prev;
|
||
if (GET_CODE (next) == INSN && GET_CODE (PATTERN (next)) == SEQUENCE)
|
||
PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = prev;
|
||
}
|
||
|
||
if (prev && NEXT_INSN (prev) == 0)
|
||
set_last_insn (prev);
|
||
}
|
||
|
||
/* If deleting a jump, decrement the count of the label,
|
||
and delete the label if it is now unused. */
|
||
|
||
if (GET_CODE (insn) == JUMP_INSN && JUMP_LABEL (insn))
|
||
if (--LABEL_NUSES (JUMP_LABEL (insn)) == 0)
|
||
{
|
||
/* This can delete NEXT or PREV,
|
||
either directly if NEXT is JUMP_LABEL (INSN),
|
||
or indirectly through more levels of jumps. */
|
||
delete_insn (JUMP_LABEL (insn));
|
||
/* I feel a little doubtful about this loop,
|
||
but I see no clean and sure alternative way
|
||
to find the first insn after INSN that is not now deleted.
|
||
I hope this works. */
|
||
while (next && INSN_DELETED_P (next))
|
||
next = NEXT_INSN (next);
|
||
return next;
|
||
}
|
||
|
||
while (prev && (INSN_DELETED_P (prev) || GET_CODE (prev) == NOTE))
|
||
prev = PREV_INSN (prev);
|
||
|
||
/* If INSN was a label and a dispatch table follows it,
|
||
delete the dispatch table. The tablejump must have gone already.
|
||
It isn't useful to fall through into a table. */
|
||
|
||
if (GET_CODE (insn) == CODE_LABEL
|
||
&& NEXT_INSN (insn) != 0
|
||
&& GET_CODE (NEXT_INSN (insn)) == JUMP_INSN
|
||
&& (GET_CODE (PATTERN (NEXT_INSN (insn))) == ADDR_VEC
|
||
|| GET_CODE (PATTERN (NEXT_INSN (insn))) == ADDR_DIFF_VEC))
|
||
next = delete_insn (NEXT_INSN (insn));
|
||
|
||
/* If INSN was a label, delete insns following it if now unreachable. */
|
||
|
||
if (GET_CODE (insn) == CODE_LABEL && prev
|
||
&& GET_CODE (prev) == BARRIER)
|
||
{
|
||
register RTX_CODE code;
|
||
while (next != 0
|
||
&& ((code = GET_CODE (next)) == INSN
|
||
|| code == JUMP_INSN || code == CALL_INSN
|
||
|| code == NOTE))
|
||
{
|
||
if (code == NOTE
|
||
&& NOTE_LINE_NUMBER (next) != NOTE_INSN_FUNCTION_END)
|
||
next = NEXT_INSN (next);
|
||
else
|
||
/* Note: if this deletes a jump, it can cause more
|
||
deletion of unreachable code, after a different label.
|
||
As long as the value from this recursive call is correct,
|
||
this invocation functions correctly. */
|
||
next = delete_insn (next);
|
||
}
|
||
}
|
||
|
||
return next;
|
||
}
|
||
|
||
/* Advance from INSN till reaching something not deleted
|
||
then return that. May return INSN itself. */
|
||
|
||
rtx
|
||
next_nondeleted_insn (insn)
|
||
rtx insn;
|
||
{
|
||
while (INSN_DELETED_P (insn))
|
||
insn = NEXT_INSN (insn);
|
||
return insn;
|
||
}
|
||
|
||
/* Delete a range of insns from FROM to TO, inclusive.
|
||
This is for the sake of peephole optimization, so assume
|
||
that whatever these insns do will still be done by a new
|
||
peephole insn that will replace them. */
|
||
|
||
void
|
||
delete_for_peephole (from, to)
|
||
register rtx from, to;
|
||
{
|
||
register rtx insn = from;
|
||
|
||
while (1)
|
||
{
|
||
register rtx next = NEXT_INSN (insn);
|
||
register rtx prev = PREV_INSN (insn);
|
||
|
||
if (GET_CODE (insn) != NOTE)
|
||
{
|
||
INSN_DELETED_P (insn) = 1;
|
||
|
||
/* Patch this insn out of the chain. */
|
||
/* We don't do this all at once, because we
|
||
must preserve all NOTEs. */
|
||
if (prev)
|
||
NEXT_INSN (prev) = next;
|
||
|
||
if (next)
|
||
PREV_INSN (next) = prev;
|
||
}
|
||
|
||
if (insn == to)
|
||
break;
|
||
insn = next;
|
||
}
|
||
|
||
/* Note that if TO is an unconditional jump
|
||
we *do not* delete the BARRIER that follows,
|
||
since the peephole that replaces this sequence
|
||
is also an unconditional jump in that case. */
|
||
}
|
||
|
||
/* Invert the condition of the jump JUMP, and make it jump
|
||
to label NLABEL instead of where it jumps now. */
|
||
|
||
int
|
||
invert_jump (jump, nlabel)
|
||
rtx jump, nlabel;
|
||
{
|
||
register rtx olabel = JUMP_LABEL (jump);
|
||
|
||
/* We have to either invert the condition and change the label or
|
||
do neither. Either operation could fail. We first try to invert
|
||
the jump. If that succeeds, we try changing the label. If that fails,
|
||
we invert the jump back to what it was. */
|
||
|
||
if (! invert_exp (PATTERN (jump), jump))
|
||
return 0;
|
||
|
||
if (redirect_jump (jump, nlabel))
|
||
return 1;
|
||
|
||
if (! invert_exp (PATTERN (jump), jump))
|
||
/* This should just be putting it back the way it was. */
|
||
abort ();
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Invert the jump condition of rtx X contained in jump insn, INSN.
|
||
|
||
Return 1 if we can do so, 0 if we cannot find a way to do so that
|
||
matches a pattern. */
|
||
|
||
static int
|
||
invert_exp (x, insn)
|
||
rtx x;
|
||
rtx insn;
|
||
{
|
||
register RTX_CODE code;
|
||
register int i;
|
||
register char *fmt;
|
||
|
||
code = GET_CODE (x);
|
||
|
||
if (code == IF_THEN_ELSE)
|
||
{
|
||
register rtx comp = XEXP (x, 0);
|
||
register rtx tem;
|
||
|
||
/* We can do this in two ways: The preferable way, which can only
|
||
be done if this is not an integer comparison, is to reverse
|
||
the comparison code. Otherwise, swap the THEN-part and ELSE-part
|
||
of the IF_THEN_ELSE. If we can't do either, fail. */
|
||
|
||
if (can_reverse_comparison_p (comp, insn)
|
||
&& validate_change (insn, &XEXP (x, 0),
|
||
gen_rtx (reverse_condition (GET_CODE (comp)),
|
||
GET_MODE (comp), XEXP (comp, 0),
|
||
XEXP (comp, 1)), 0))
|
||
return 1;
|
||
|
||
tem = XEXP (x, 1);
|
||
validate_change (insn, &XEXP (x, 1), XEXP (x, 2), 1);
|
||
validate_change (insn, &XEXP (x, 2), tem, 1);
|
||
return apply_change_group ();
|
||
}
|
||
|
||
fmt = GET_RTX_FORMAT (code);
|
||
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
|
||
{
|
||
if (fmt[i] == 'e')
|
||
if (! invert_exp (XEXP (x, i), insn))
|
||
return 0;
|
||
if (fmt[i] == 'E')
|
||
{
|
||
register int j;
|
||
for (j = 0; j < XVECLEN (x, i); j++)
|
||
if (!invert_exp (XVECEXP (x, i, j), insn))
|
||
return 0;
|
||
}
|
||
}
|
||
|
||
return 1;
|
||
}
|
||
|
||
/* Make jump JUMP jump to label NLABEL instead of where it jumps now.
|
||
If the old jump target label is unused as a result,
|
||
it and the code following it may be deleted.
|
||
|
||
If NLABEL is zero, we are to turn the jump into a (possibly conditional)
|
||
RETURN insn.
|
||
|
||
The return value will be 1 if the change was made, 0 if it wasn't (this
|
||
can only occur for NLABEL == 0). */
|
||
|
||
int
|
||
redirect_jump (jump, nlabel)
|
||
rtx jump, nlabel;
|
||
{
|
||
register rtx olabel = JUMP_LABEL (jump);
|
||
|
||
if (nlabel == olabel)
|
||
return 1;
|
||
|
||
if (! redirect_exp (&PATTERN (jump), olabel, nlabel, jump))
|
||
return 0;
|
||
|
||
/* If this is an unconditional branch, delete it from the jump_chain of
|
||
OLABEL and add it to the jump_chain of NLABEL (assuming both labels
|
||
have UID's in range and JUMP_CHAIN is valid). */
|
||
if (jump_chain && (simplejump_p (jump)
|
||
|| GET_CODE (PATTERN (jump)) == RETURN))
|
||
{
|
||
int label_index = nlabel ? INSN_UID (nlabel) : 0;
|
||
|
||
delete_from_jump_chain (jump);
|
||
if (label_index < max_jump_chain)
|
||
{
|
||
jump_chain[INSN_UID (jump)] = jump_chain[label_index];
|
||
jump_chain[label_index] = jump;
|
||
}
|
||
}
|
||
|
||
JUMP_LABEL (jump) = nlabel;
|
||
if (nlabel)
|
||
++LABEL_NUSES (nlabel);
|
||
|
||
if (olabel && --LABEL_NUSES (olabel) == 0)
|
||
delete_insn (olabel);
|
||
|
||
return 1;
|
||
}
|
||
|
||
/* Delete the instruction JUMP from any jump chain it might be on. */
|
||
|
||
static void
|
||
delete_from_jump_chain (jump)
|
||
rtx jump;
|
||
{
|
||
int index;
|
||
rtx olabel = JUMP_LABEL (jump);
|
||
|
||
/* Handle unconditional jumps. */
|
||
if (jump_chain && olabel != 0
|
||
&& INSN_UID (olabel) < max_jump_chain
|
||
&& simplejump_p (jump))
|
||
index = INSN_UID (olabel);
|
||
/* Handle return insns. */
|
||
else if (jump_chain && GET_CODE (PATTERN (jump)) == RETURN)
|
||
index = 0;
|
||
else return;
|
||
|
||
if (jump_chain[index] == jump)
|
||
jump_chain[index] = jump_chain[INSN_UID (jump)];
|
||
else
|
||
{
|
||
rtx insn;
|
||
|
||
for (insn = jump_chain[index];
|
||
insn != 0;
|
||
insn = jump_chain[INSN_UID (insn)])
|
||
if (jump_chain[INSN_UID (insn)] == jump)
|
||
{
|
||
jump_chain[INSN_UID (insn)] = jump_chain[INSN_UID (jump)];
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* If NLABEL is nonzero, throughout the rtx at LOC,
|
||
alter (LABEL_REF OLABEL) to (LABEL_REF NLABEL). If OLABEL is
|
||
zero, alter (RETURN) to (LABEL_REF NLABEL).
|
||
|
||
If NLABEL is zero, alter (LABEL_REF OLABEL) to (RETURN) and check
|
||
validity with validate_change. Convert (set (pc) (label_ref olabel))
|
||
to (return).
|
||
|
||
Return 0 if we found a change we would like to make but it is invalid.
|
||
Otherwise, return 1. */
|
||
|
||
static int
|
||
redirect_exp (loc, olabel, nlabel, insn)
|
||
rtx *loc;
|
||
rtx olabel, nlabel;
|
||
rtx insn;
|
||
{
|
||
register rtx x = *loc;
|
||
register RTX_CODE code = GET_CODE (x);
|
||
register int i;
|
||
register char *fmt;
|
||
|
||
if (code == LABEL_REF)
|
||
{
|
||
if (XEXP (x, 0) == olabel)
|
||
{
|
||
if (nlabel)
|
||
XEXP (x, 0) = nlabel;
|
||
else
|
||
return validate_change (insn, loc, gen_rtx (RETURN, VOIDmode), 0);
|
||
return 1;
|
||
}
|
||
}
|
||
else if (code == RETURN && olabel == 0)
|
||
{
|
||
x = gen_rtx (LABEL_REF, VOIDmode, nlabel);
|
||
if (loc == &PATTERN (insn))
|
||
x = gen_rtx (SET, VOIDmode, pc_rtx, x);
|
||
return validate_change (insn, loc, x, 0);
|
||
}
|
||
|
||
if (code == SET && nlabel == 0 && SET_DEST (x) == pc_rtx
|
||
&& GET_CODE (SET_SRC (x)) == LABEL_REF
|
||
&& XEXP (SET_SRC (x), 0) == olabel)
|
||
return validate_change (insn, loc, gen_rtx (RETURN, VOIDmode), 0);
|
||
|
||
fmt = GET_RTX_FORMAT (code);
|
||
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
|
||
{
|
||
if (fmt[i] == 'e')
|
||
if (! redirect_exp (&XEXP (x, i), olabel, nlabel, insn))
|
||
return 0;
|
||
if (fmt[i] == 'E')
|
||
{
|
||
register int j;
|
||
for (j = 0; j < XVECLEN (x, i); j++)
|
||
if (! redirect_exp (&XVECEXP (x, i, j), olabel, nlabel, insn))
|
||
return 0;
|
||
}
|
||
}
|
||
|
||
return 1;
|
||
}
|
||
|
||
/* Make jump JUMP jump to label NLABEL, assuming it used to be a tablejump.
|
||
|
||
If the old jump target label (before the dispatch table) becomes unused,
|
||
it and the dispatch table may be deleted. In that case, find the insn
|
||
before the jump references that label and delete it and logical sucessors
|
||
too. */
|
||
|
||
void
|
||
redirect_tablejump (jump, nlabel)
|
||
rtx jump, nlabel;
|
||
{
|
||
register rtx olabel = JUMP_LABEL (jump);
|
||
|
||
/* Add this jump to the jump_chain of NLABEL. */
|
||
if (jump_chain && INSN_UID (nlabel) < max_jump_chain
|
||
&& INSN_UID (jump) < max_jump_chain)
|
||
{
|
||
jump_chain[INSN_UID (jump)] = jump_chain[INSN_UID (nlabel)];
|
||
jump_chain[INSN_UID (nlabel)] = jump;
|
||
}
|
||
|
||
PATTERN (jump) = gen_jump (nlabel);
|
||
JUMP_LABEL (jump) = nlabel;
|
||
++LABEL_NUSES (nlabel);
|
||
INSN_CODE (jump) = -1;
|
||
|
||
if (--LABEL_NUSES (olabel) == 0)
|
||
{
|
||
delete_labelref_insn (jump, olabel, 0);
|
||
delete_insn (olabel);
|
||
}
|
||
}
|
||
|
||
/* Find the insn referencing LABEL that is a logical predecessor of INSN.
|
||
If we found one, delete it and then delete this insn if DELETE_THIS is
|
||
non-zero. Return non-zero if INSN or a predecessor references LABEL. */
|
||
|
||
static int
|
||
delete_labelref_insn (insn, label, delete_this)
|
||
rtx insn, label;
|
||
int delete_this;
|
||
{
|
||
int deleted = 0;
|
||
rtx link;
|
||
|
||
if (GET_CODE (insn) != NOTE
|
||
&& reg_mentioned_p (label, PATTERN (insn)))
|
||
{
|
||
if (delete_this)
|
||
{
|
||
delete_insn (insn);
|
||
deleted = 1;
|
||
}
|
||
else
|
||
return 1;
|
||
}
|
||
|
||
for (link = LOG_LINKS (insn); link; link = XEXP (link, 1))
|
||
if (delete_labelref_insn (XEXP (link, 0), label, 1))
|
||
{
|
||
if (delete_this)
|
||
{
|
||
delete_insn (insn);
|
||
deleted = 1;
|
||
}
|
||
else
|
||
return 1;
|
||
}
|
||
|
||
return deleted;
|
||
}
|
||
|
||
/* Like rtx_equal_p except that it considers two REGs as equal
|
||
if they renumber to the same value. */
|
||
|
||
int
|
||
rtx_renumbered_equal_p (x, y)
|
||
rtx x, y;
|
||
{
|
||
register int i;
|
||
register RTX_CODE code = GET_CODE (x);
|
||
register char *fmt;
|
||
|
||
if (x == y)
|
||
return 1;
|
||
if ((code == REG || (code == SUBREG && GET_CODE (SUBREG_REG (x)) == REG))
|
||
&& (GET_CODE (y) == REG || (GET_CODE (y) == SUBREG
|
||
&& GET_CODE (SUBREG_REG (y)) == REG)))
|
||
{
|
||
register int j;
|
||
|
||
if (GET_MODE (x) != GET_MODE (y))
|
||
return 0;
|
||
|
||
/* If we haven't done any renumbering, don't
|
||
make any assumptions. */
|
||
if (reg_renumber == 0)
|
||
return rtx_equal_p (x, y);
|
||
|
||
if (code == SUBREG)
|
||
{
|
||
i = REGNO (SUBREG_REG (x));
|
||
if (reg_renumber[i] >= 0)
|
||
i = reg_renumber[i];
|
||
i += SUBREG_WORD (x);
|
||
}
|
||
else
|
||
{
|
||
i = REGNO (x);
|
||
if (reg_renumber[i] >= 0)
|
||
i = reg_renumber[i];
|
||
}
|
||
if (GET_CODE (y) == SUBREG)
|
||
{
|
||
j = REGNO (SUBREG_REG (y));
|
||
if (reg_renumber[j] >= 0)
|
||
j = reg_renumber[j];
|
||
j += SUBREG_WORD (y);
|
||
}
|
||
else
|
||
{
|
||
j = REGNO (y);
|
||
if (reg_renumber[j] >= 0)
|
||
j = reg_renumber[j];
|
||
}
|
||
return i == j;
|
||
}
|
||
/* Now we have disposed of all the cases
|
||
in which different rtx codes can match. */
|
||
if (code != GET_CODE (y))
|
||
return 0;
|
||
switch (code)
|
||
{
|
||
case PC:
|
||
case CC0:
|
||
case ADDR_VEC:
|
||
case ADDR_DIFF_VEC:
|
||
return 0;
|
||
|
||
case CONST_INT:
|
||
return XINT (x, 0) == XINT (y, 0);
|
||
|
||
case LABEL_REF:
|
||
/* Two label-refs are equivalent if they point at labels
|
||
in the same position in the instruction stream. */
|
||
return (next_real_insn (XEXP (x, 0))
|
||
== next_real_insn (XEXP (y, 0)));
|
||
|
||
case SYMBOL_REF:
|
||
return XSTR (x, 0) == XSTR (y, 0);
|
||
}
|
||
|
||
/* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */
|
||
|
||
if (GET_MODE (x) != GET_MODE (y))
|
||
return 0;
|
||
|
||
/* Compare the elements. If any pair of corresponding elements
|
||
fail to match, return 0 for the whole things. */
|
||
|
||
fmt = GET_RTX_FORMAT (code);
|
||
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
|
||
{
|
||
register int j;
|
||
switch (fmt[i])
|
||
{
|
||
case 'i':
|
||
if (XINT (x, i) != XINT (y, i))
|
||
return 0;
|
||
break;
|
||
|
||
case 's':
|
||
if (strcmp (XSTR (x, i), XSTR (y, i)))
|
||
return 0;
|
||
break;
|
||
|
||
case 'e':
|
||
if (! rtx_renumbered_equal_p (XEXP (x, i), XEXP (y, i)))
|
||
return 0;
|
||
break;
|
||
|
||
case 'u':
|
||
if (XEXP (x, i) != XEXP (y, i))
|
||
return 0;
|
||
/* fall through. */
|
||
case '0':
|
||
break;
|
||
|
||
case 'E':
|
||
if (XVECLEN (x, i) != XVECLEN (y, i))
|
||
return 0;
|
||
for (j = XVECLEN (x, i) - 1; j >= 0; j--)
|
||
if (!rtx_renumbered_equal_p (XVECEXP (x, i, j), XVECEXP (y, i, j)))
|
||
return 0;
|
||
break;
|
||
|
||
default:
|
||
abort ();
|
||
}
|
||
}
|
||
return 1;
|
||
}
|
||
|
||
/* If X is a hard register or equivalent to one or a subregister of one,
|
||
return the hard register number. If X is a pseudo register that was not
|
||
assigned a hard register, return the pseudo register number. Otherwise,
|
||
return -1. Any rtx is valid for X. */
|
||
|
||
int
|
||
true_regnum (x)
|
||
rtx x;
|
||
{
|
||
if (GET_CODE (x) == REG)
|
||
{
|
||
if (REGNO (x) >= FIRST_PSEUDO_REGISTER && reg_renumber[REGNO (x)] >= 0)
|
||
return reg_renumber[REGNO (x)];
|
||
return REGNO (x);
|
||
}
|
||
if (GET_CODE (x) == SUBREG)
|
||
{
|
||
int base = true_regnum (SUBREG_REG (x));
|
||
if (base >= 0 && base < FIRST_PSEUDO_REGISTER)
|
||
return SUBREG_WORD (x) + base;
|
||
}
|
||
return -1;
|
||
}
|
||
|
||
/* Optimize code of the form:
|
||
|
||
for (x = a[i]; x; ...)
|
||
...
|
||
for (x = a[i]; x; ...)
|
||
...
|
||
foo:
|
||
|
||
Loop optimize will change the above code into
|
||
|
||
if (x = a[i])
|
||
for (;;)
|
||
{ ...; if (! (x = ...)) break; }
|
||
if (x = a[i])
|
||
for (;;)
|
||
{ ...; if (! (x = ...)) break; }
|
||
foo:
|
||
|
||
In general, if the first test fails, the program can branch
|
||
directly to `foo' and skip the second try which is doomed to fail.
|
||
We run this after loop optimization and before flow analysis. */
|
||
|
||
/* When comparing the insn patterns, we track the fact that different
|
||
pseudo-register numbers may have been used in each computation.
|
||
The following array stores an equivalence -- same_regs[I] == J means
|
||
that pseudo register I was used in the first set of tests in a context
|
||
where J was used in the second set. We also count the number of such
|
||
pending equivalences. If nonzero, the expressions really aren't the
|
||
same. */
|
||
|
||
static short *same_regs;
|
||
|
||
static int num_same_regs;
|
||
|
||
/* Track any registers modified between the target of the first jump and
|
||
the second jump. They never compare equal. */
|
||
|
||
static char *modified_regs;
|
||
|
||
/* Record if memory was modified. */
|
||
|
||
static int modified_mem;
|
||
|
||
/* Called via note_stores on each insn between the target of the first
|
||
branch and the second branch. It marks any changed registers. */
|
||
|
||
static void
|
||
mark_modified_reg (dest, x)
|
||
rtx dest;
|
||
rtx x;
|
||
{
|
||
int regno, i;
|
||
|
||
if (GET_CODE (dest) == SUBREG)
|
||
dest = SUBREG_REG (dest);
|
||
|
||
if (GET_CODE (dest) == MEM)
|
||
modified_mem = 1;
|
||
|
||
if (GET_CODE (dest) != REG)
|
||
return;
|
||
|
||
regno = REGNO (dest);
|
||
if (regno >= FIRST_PSEUDO_REGISTER)
|
||
modified_regs[regno] = 1;
|
||
else
|
||
for (i = 0; i < HARD_REGNO_NREGS (regno, GET_MODE (dest)); i++)
|
||
modified_regs[regno + i] = 1;
|
||
}
|
||
|
||
/* F is the first insn in the chain of insns. */
|
||
|
||
void
|
||
thread_jumps (f, max_reg, verbose)
|
||
rtx f;
|
||
int max_reg;
|
||
int verbose;
|
||
{
|
||
/* Basic algorithm is to find a conditional branch,
|
||
the label it may branch to, and the branch after
|
||
that label. If the two branches test the same condition,
|
||
walk back from both branch paths until the insn patterns
|
||
differ, or code labels are hit. If we make it back to
|
||
the target of the first branch, then we know that the first branch
|
||
will either always succeed or always fail depending on the relative
|
||
senses of the two branches. So adjust the first branch accordingly
|
||
in this case. */
|
||
|
||
rtx label, b1, b2, t1, t2;
|
||
enum rtx_code code1, code2;
|
||
rtx b1op0, b1op1, b2op0, b2op1;
|
||
int changed = 1;
|
||
int i;
|
||
short *all_reset;
|
||
|
||
/* Allocate register tables and quick-reset table. */
|
||
modified_regs = (char *) alloca (max_reg * sizeof (char));
|
||
same_regs = (short *) alloca (max_reg * sizeof (short));
|
||
all_reset = (short *) alloca (max_reg * sizeof (short));
|
||
for (i = 0; i < max_reg; i++)
|
||
all_reset[i] = -1;
|
||
|
||
while (changed)
|
||
{
|
||
changed = 0;
|
||
|
||
for (b1 = f; b1; b1 = NEXT_INSN (b1))
|
||
{
|
||
/* Get to a candidate branch insn. */
|
||
if (GET_CODE (b1) != JUMP_INSN
|
||
|| ! condjump_p (b1) || simplejump_p (b1)
|
||
|| JUMP_LABEL (b1) == 0)
|
||
continue;
|
||
|
||
bzero (modified_regs, max_reg * sizeof (char));
|
||
modified_mem = 0;
|
||
|
||
bcopy (all_reset, same_regs, max_reg * sizeof (short));
|
||
num_same_regs = 0;
|
||
|
||
label = JUMP_LABEL (b1);
|
||
|
||
/* Look for a branch after the target. Record any registers and
|
||
memory modified between the target and the branch. Stop when we
|
||
get to a label since we can't know what was changed there. */
|
||
for (b2 = NEXT_INSN (label); b2; b2 = NEXT_INSN (b2))
|
||
{
|
||
if (GET_CODE (b2) == CODE_LABEL)
|
||
break;
|
||
|
||
else if (GET_CODE (b2) == JUMP_INSN)
|
||
{
|
||
/* If this is an unconditional jump and is the only use of
|
||
its target label, we can follow it. */
|
||
if (simplejump_p (b2)
|
||
&& JUMP_LABEL (b2) != 0
|
||
&& LABEL_NUSES (JUMP_LABEL (b2)) == 1)
|
||
{
|
||
b2 = JUMP_LABEL (b2);
|
||
continue;
|
||
}
|
||
else
|
||
break;
|
||
}
|
||
|
||
if (GET_CODE (b2) != CALL_INSN && GET_CODE (b2) != INSN)
|
||
continue;
|
||
|
||
if (GET_CODE (b2) == CALL_INSN)
|
||
{
|
||
modified_mem = 1;
|
||
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
|
||
if (call_used_regs[i] && ! fixed_regs[i]
|
||
&& i != STACK_POINTER_REGNUM
|
||
&& i != FRAME_POINTER_REGNUM
|
||
&& i != ARG_POINTER_REGNUM)
|
||
modified_regs[i] = 1;
|
||
}
|
||
|
||
note_stores (PATTERN (b2), mark_modified_reg);
|
||
}
|
||
|
||
/* Check the next candidate branch insn from the label
|
||
of the first. */
|
||
if (b2 == 0
|
||
|| GET_CODE (b2) != JUMP_INSN
|
||
|| b2 == b1
|
||
|| ! condjump_p (b2)
|
||
|| simplejump_p (b2))
|
||
continue;
|
||
|
||
/* Get the comparison codes and operands, reversing the
|
||
codes if appropriate. If we don't have comparison codes,
|
||
we can't do anything. */
|
||
b1op0 = XEXP (XEXP (SET_SRC (PATTERN (b1)), 0), 0);
|
||
b1op1 = XEXP (XEXP (SET_SRC (PATTERN (b1)), 0), 1);
|
||
code1 = GET_CODE (XEXP (SET_SRC (PATTERN (b1)), 0));
|
||
if (XEXP (SET_SRC (PATTERN (b1)), 1) == pc_rtx)
|
||
code1 = reverse_condition (code1);
|
||
|
||
b2op0 = XEXP (XEXP (SET_SRC (PATTERN (b2)), 0), 0);
|
||
b2op1 = XEXP (XEXP (SET_SRC (PATTERN (b2)), 0), 1);
|
||
code2 = GET_CODE (XEXP (SET_SRC (PATTERN (b2)), 0));
|
||
if (XEXP (SET_SRC (PATTERN (b2)), 1) == pc_rtx)
|
||
code2 = reverse_condition (code2);
|
||
|
||
/* If they test the same things and knowing that B1 branches
|
||
tells us whether or not B2 branches, check if we
|
||
can thread the branch. */
|
||
if (rtx_equal_for_thread_p (b1op0, b2op0, b2)
|
||
&& rtx_equal_for_thread_p (b1op1, b2op1, b2)
|
||
&& (comparison_dominates_p (code1, code2)
|
||
|| comparison_dominates_p (code1, reverse_condition (code2))))
|
||
{
|
||
t1 = prev_nonnote_insn (b1);
|
||
t2 = prev_nonnote_insn (b2);
|
||
|
||
while (t1 != 0 && t2 != 0)
|
||
{
|
||
if (t1 == 0 || t2 == 0)
|
||
break;
|
||
|
||
if (t2 == label)
|
||
{
|
||
/* We have reached the target of the first branch.
|
||
If there are no pending register equivalents,
|
||
we know that this branch will either always
|
||
succeed (if the senses of the two branches are
|
||
the same) or always fail (if not). */
|
||
rtx new_label;
|
||
|
||
if (num_same_regs != 0)
|
||
break;
|
||
|
||
if (comparison_dominates_p (code1, code2))
|
||
new_label = JUMP_LABEL (b2);
|
||
else
|
||
new_label = get_label_after (b2);
|
||
|
||
if (JUMP_LABEL (b1) != new_label
|
||
&& redirect_jump (b1, new_label))
|
||
changed = 1;
|
||
break;
|
||
}
|
||
|
||
/* If either of these is not a normal insn (it might be
|
||
a JUMP_INSN, CALL_INSN, or CODE_LABEL) we fail. (NOTEs
|
||
have already been skipped above.) Similarly, fail
|
||
if the insns are different. */
|
||
if (GET_CODE (t1) != INSN || GET_CODE (t2) != INSN
|
||
|| recog_memoized (t1) != recog_memoized (t2)
|
||
|| ! rtx_equal_for_thread_p (PATTERN (t1),
|
||
PATTERN (t2), t2))
|
||
break;
|
||
|
||
t1 = prev_nonnote_insn (t1);
|
||
t2 = prev_nonnote_insn (t2);
|
||
}
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
/* This is like RTX_EQUAL_P except that it knows about our handling of
|
||
possibly equivalent registers and knows to consider volatile and
|
||
modified objects as not equal.
|
||
|
||
YINSN is the insn containing Y. */
|
||
|
||
int
|
||
rtx_equal_for_thread_p (x, y, yinsn)
|
||
rtx x, y;
|
||
rtx yinsn;
|
||
{
|
||
register int i;
|
||
register int j;
|
||
register enum rtx_code code;
|
||
register char *fmt;
|
||
|
||
code = GET_CODE (x);
|
||
/* Rtx's of different codes cannot be equal. */
|
||
if (code != GET_CODE (y))
|
||
return 0;
|
||
|
||
/* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent.
|
||
(REG:SI x) and (REG:HI x) are NOT equivalent. */
|
||
|
||
if (GET_MODE (x) != GET_MODE (y))
|
||
return 0;
|
||
|
||
/* Handle special-cases first. */
|
||
switch (code)
|
||
{
|
||
case REG:
|
||
if (REGNO (x) == REGNO (y) && ! modified_regs[REGNO (x)])
|
||
return 1;
|
||
|
||
/* If neither is user variable or hard register, check for possible
|
||
equivalence. */
|
||
if (REG_USERVAR_P (x) || REG_USERVAR_P (y)
|
||
|| REGNO (x) < FIRST_PSEUDO_REGISTER
|
||
|| REGNO (y) < FIRST_PSEUDO_REGISTER)
|
||
return 0;
|
||
|
||
if (same_regs[REGNO (x)] == -1)
|
||
{
|
||
same_regs[REGNO (x)] = REGNO (y);
|
||
num_same_regs++;
|
||
|
||
/* If this is the first time we are seeing a register on the `Y'
|
||
side, see if it is the last use. If not, we can't thread the
|
||
jump, so mark it as not equivalent. */
|
||
if (regno_last_uid[REGNO (y)] != INSN_UID (yinsn))
|
||
return 0;
|
||
|
||
return 1;
|
||
}
|
||
else
|
||
return (same_regs[REGNO (x)] == REGNO (y));
|
||
|
||
break;
|
||
|
||
case MEM:
|
||
/* If memory modified or either volatile, not eqivalent.
|
||
Else, check address. */
|
||
if (modified_mem || MEM_VOLATILE_P (x) || MEM_VOLATILE_P (y))
|
||
return 0;
|
||
|
||
return rtx_equal_for_thread_p (XEXP (x, 0), XEXP (y, 0), yinsn);
|
||
|
||
case ASM_INPUT:
|
||
if (MEM_VOLATILE_P (x) || MEM_VOLATILE_P (y))
|
||
return 0;
|
||
|
||
break;
|
||
|
||
case SET:
|
||
/* Cancel a pending `same_regs' if setting equivalenced registers.
|
||
Then process source. */
|
||
if (GET_CODE (SET_DEST (x)) == REG
|
||
&& GET_CODE (SET_DEST (y)) == REG)
|
||
{
|
||
if (same_regs[REGNO (SET_DEST (x))] == REGNO (SET_DEST (y)))
|
||
{
|
||
same_regs[REGNO (SET_DEST (x))] = -1;
|
||
num_same_regs--;
|
||
}
|
||
else if (REGNO (SET_DEST (x)) != REGNO (SET_DEST (y)))
|
||
return 0;
|
||
}
|
||
else
|
||
if (rtx_equal_for_thread_p (SET_DEST (x), SET_DEST (y), yinsn) == 0)
|
||
return 0;
|
||
|
||
return rtx_equal_for_thread_p (SET_SRC (x), SET_SRC (y), yinsn);
|
||
|
||
case LABEL_REF:
|
||
return XEXP (x, 0) == XEXP (y, 0);
|
||
|
||
case SYMBOL_REF:
|
||
return XSTR (x, 0) == XSTR (y, 0);
|
||
}
|
||
|
||
if (x == y)
|
||
return 1;
|
||
|
||
fmt = GET_RTX_FORMAT (code);
|
||
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
|
||
{
|
||
switch (fmt[i])
|
||
{
|
||
case 'n':
|
||
case 'i':
|
||
if (XINT (x, i) != XINT (y, i))
|
||
return 0;
|
||
break;
|
||
|
||
case 'V':
|
||
case 'E':
|
||
/* Two vectors must have the same length. */
|
||
if (XVECLEN (x, i) != XVECLEN (y, i))
|
||
return 0;
|
||
|
||
/* And the corresponding elements must match. */
|
||
for (j = 0; j < XVECLEN (x, i); j++)
|
||
if (rtx_equal_for_thread_p (XVECEXP (x, i, j),
|
||
XVECEXP (y, i, j), yinsn) == 0)
|
||
return 0;
|
||
break;
|
||
|
||
case 'e':
|
||
if (rtx_equal_for_thread_p (XEXP (x, i), XEXP (y, i), yinsn) == 0)
|
||
return 0;
|
||
break;
|
||
|
||
case 'S':
|
||
case 's':
|
||
if (strcmp (XSTR (x, i), XSTR (y, i)))
|
||
return 0;
|
||
break;
|
||
|
||
case 'u':
|
||
/* These are just backpointers, so they don't matter. */
|
||
break;
|
||
|
||
case '0':
|
||
break;
|
||
|
||
/* It is believed that rtx's at this level will never
|
||
contain anything but integers and other rtx's,
|
||
except for within LABEL_REFs and SYMBOL_REFs. */
|
||
default:
|
||
abort ();
|
||
}
|
||
}
|
||
return 1;
|
||
}
|