8d9254fc8a
From-SVN: r279813
3367 lines
95 KiB
C
3367 lines
95 KiB
C
/* Control flow optimization code for GNU compiler.
|
||
Copyright (C) 1987-2020 Free Software Foundation, Inc.
|
||
|
||
This file is part of GCC.
|
||
|
||
GCC is free software; you can redistribute it and/or modify it under
|
||
the terms of the GNU General Public License as published by the Free
|
||
Software Foundation; either version 3, or (at your option) any later
|
||
version.
|
||
|
||
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
||
WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
||
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
||
for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with GCC; see the file COPYING3. If not see
|
||
<http://www.gnu.org/licenses/>. */
|
||
|
||
/* This file contains optimizer of the control flow. The main entry point is
|
||
cleanup_cfg. Following optimizations are performed:
|
||
|
||
- Unreachable blocks removal
|
||
- Edge forwarding (edge to the forwarder block is forwarded to its
|
||
successor. Simplification of the branch instruction is performed by
|
||
underlying infrastructure so branch can be converted to simplejump or
|
||
eliminated).
|
||
- Cross jumping (tail merging)
|
||
- Conditional jump-around-simplejump simplification
|
||
- Basic block merging. */
|
||
|
||
#include "config.h"
|
||
#include "system.h"
|
||
#include "coretypes.h"
|
||
#include "backend.h"
|
||
#include "target.h"
|
||
#include "rtl.h"
|
||
#include "tree.h"
|
||
#include "cfghooks.h"
|
||
#include "df.h"
|
||
#include "memmodel.h"
|
||
#include "tm_p.h"
|
||
#include "insn-config.h"
|
||
#include "emit-rtl.h"
|
||
#include "cselib.h"
|
||
#include "tree-pass.h"
|
||
#include "cfgloop.h"
|
||
#include "cfgrtl.h"
|
||
#include "cfganal.h"
|
||
#include "cfgbuild.h"
|
||
#include "cfgcleanup.h"
|
||
#include "dce.h"
|
||
#include "dbgcnt.h"
|
||
#include "rtl-iter.h"
|
||
#include "regs.h"
|
||
#include "function-abi.h"
|
||
|
||
#define FORWARDER_BLOCK_P(BB) ((BB)->flags & BB_FORWARDER_BLOCK)
|
||
|
||
/* Set to true when we are running first pass of try_optimize_cfg loop. */
|
||
static bool first_pass;
|
||
|
||
/* Set to true if crossjumps occurred in the latest run of try_optimize_cfg. */
|
||
static bool crossjumps_occurred;
|
||
|
||
/* Set to true if we couldn't run an optimization due to stale liveness
|
||
information; we should run df_analyze to enable more opportunities. */
|
||
static bool block_was_dirty;
|
||
|
||
static bool try_crossjump_to_edge (int, edge, edge, enum replace_direction);
|
||
static bool try_crossjump_bb (int, basic_block);
|
||
static bool outgoing_edges_match (int, basic_block, basic_block);
|
||
static enum replace_direction old_insns_match_p (int, rtx_insn *, rtx_insn *);
|
||
|
||
static void merge_blocks_move_predecessor_nojumps (basic_block, basic_block);
|
||
static void merge_blocks_move_successor_nojumps (basic_block, basic_block);
|
||
static bool try_optimize_cfg (int);
|
||
static bool try_simplify_condjump (basic_block);
|
||
static bool try_forward_edges (int, basic_block);
|
||
static edge thread_jump (edge, basic_block);
|
||
static bool mark_effect (rtx, bitmap);
|
||
static void notice_new_block (basic_block);
|
||
static void update_forwarder_flag (basic_block);
|
||
static void merge_memattrs (rtx, rtx);
|
||
|
||
/* Set flags for newly created block. */
|
||
|
||
static void
|
||
notice_new_block (basic_block bb)
|
||
{
|
||
if (!bb)
|
||
return;
|
||
|
||
if (forwarder_block_p (bb))
|
||
bb->flags |= BB_FORWARDER_BLOCK;
|
||
}
|
||
|
||
/* Recompute forwarder flag after block has been modified. */
|
||
|
||
static void
|
||
update_forwarder_flag (basic_block bb)
|
||
{
|
||
if (forwarder_block_p (bb))
|
||
bb->flags |= BB_FORWARDER_BLOCK;
|
||
else
|
||
bb->flags &= ~BB_FORWARDER_BLOCK;
|
||
}
|
||
|
||
/* Simplify a conditional jump around an unconditional jump.
|
||
Return true if something changed. */
|
||
|
||
static bool
|
||
try_simplify_condjump (basic_block cbranch_block)
|
||
{
|
||
basic_block jump_block, jump_dest_block, cbranch_dest_block;
|
||
edge cbranch_jump_edge, cbranch_fallthru_edge;
|
||
rtx_insn *cbranch_insn;
|
||
|
||
/* Verify that there are exactly two successors. */
|
||
if (EDGE_COUNT (cbranch_block->succs) != 2)
|
||
return false;
|
||
|
||
/* Verify that we've got a normal conditional branch at the end
|
||
of the block. */
|
||
cbranch_insn = BB_END (cbranch_block);
|
||
if (!any_condjump_p (cbranch_insn))
|
||
return false;
|
||
|
||
cbranch_fallthru_edge = FALLTHRU_EDGE (cbranch_block);
|
||
cbranch_jump_edge = BRANCH_EDGE (cbranch_block);
|
||
|
||
/* The next block must not have multiple predecessors, must not
|
||
be the last block in the function, and must contain just the
|
||
unconditional jump. */
|
||
jump_block = cbranch_fallthru_edge->dest;
|
||
if (!single_pred_p (jump_block)
|
||
|| jump_block->next_bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
|
||
|| !FORWARDER_BLOCK_P (jump_block))
|
||
return false;
|
||
jump_dest_block = single_succ (jump_block);
|
||
|
||
/* If we are partitioning hot/cold basic blocks, we don't want to
|
||
mess up unconditional or indirect jumps that cross between hot
|
||
and cold sections.
|
||
|
||
Basic block partitioning may result in some jumps that appear to
|
||
be optimizable (or blocks that appear to be mergeable), but which really
|
||
must be left untouched (they are required to make it safely across
|
||
partition boundaries). See the comments at the top of
|
||
bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
|
||
|
||
if (BB_PARTITION (jump_block) != BB_PARTITION (jump_dest_block)
|
||
|| (cbranch_jump_edge->flags & EDGE_CROSSING))
|
||
return false;
|
||
|
||
/* The conditional branch must target the block after the
|
||
unconditional branch. */
|
||
cbranch_dest_block = cbranch_jump_edge->dest;
|
||
|
||
if (cbranch_dest_block == EXIT_BLOCK_PTR_FOR_FN (cfun)
|
||
|| jump_dest_block == EXIT_BLOCK_PTR_FOR_FN (cfun)
|
||
|| !can_fallthru (jump_block, cbranch_dest_block))
|
||
return false;
|
||
|
||
/* Invert the conditional branch. */
|
||
if (!invert_jump (as_a <rtx_jump_insn *> (cbranch_insn),
|
||
block_label (jump_dest_block), 0))
|
||
return false;
|
||
|
||
if (dump_file)
|
||
fprintf (dump_file, "Simplifying condjump %i around jump %i\n",
|
||
INSN_UID (cbranch_insn), INSN_UID (BB_END (jump_block)));
|
||
|
||
/* Success. Update the CFG to match. Note that after this point
|
||
the edge variable names appear backwards; the redirection is done
|
||
this way to preserve edge profile data. */
|
||
cbranch_jump_edge = redirect_edge_succ_nodup (cbranch_jump_edge,
|
||
cbranch_dest_block);
|
||
cbranch_fallthru_edge = redirect_edge_succ_nodup (cbranch_fallthru_edge,
|
||
jump_dest_block);
|
||
cbranch_jump_edge->flags |= EDGE_FALLTHRU;
|
||
cbranch_fallthru_edge->flags &= ~EDGE_FALLTHRU;
|
||
update_br_prob_note (cbranch_block);
|
||
|
||
/* Delete the block with the unconditional jump, and clean up the mess. */
|
||
delete_basic_block (jump_block);
|
||
tidy_fallthru_edge (cbranch_jump_edge);
|
||
update_forwarder_flag (cbranch_block);
|
||
|
||
return true;
|
||
}
|
||
|
||
/* Attempt to prove that operation is NOOP using CSElib or mark the effect
|
||
on register. Used by jump threading. */
|
||
|
||
static bool
|
||
mark_effect (rtx exp, regset nonequal)
|
||
{
|
||
rtx dest;
|
||
switch (GET_CODE (exp))
|
||
{
|
||
/* In case we do clobber the register, mark it as equal, as we know the
|
||
value is dead so it don't have to match. */
|
||
case CLOBBER:
|
||
dest = XEXP (exp, 0);
|
||
if (REG_P (dest))
|
||
bitmap_clear_range (nonequal, REGNO (dest), REG_NREGS (dest));
|
||
return false;
|
||
|
||
case SET:
|
||
if (rtx_equal_for_cselib_p (SET_DEST (exp), SET_SRC (exp)))
|
||
return false;
|
||
dest = SET_DEST (exp);
|
||
if (dest == pc_rtx)
|
||
return false;
|
||
if (!REG_P (dest))
|
||
return true;
|
||
bitmap_set_range (nonequal, REGNO (dest), REG_NREGS (dest));
|
||
return false;
|
||
|
||
default:
|
||
return false;
|
||
}
|
||
}
|
||
|
||
/* Return true if X contains a register in NONEQUAL. */
|
||
static bool
|
||
mentions_nonequal_regs (const_rtx x, regset nonequal)
|
||
{
|
||
subrtx_iterator::array_type array;
|
||
FOR_EACH_SUBRTX (iter, array, x, NONCONST)
|
||
{
|
||
const_rtx x = *iter;
|
||
if (REG_P (x))
|
||
{
|
||
unsigned int end_regno = END_REGNO (x);
|
||
for (unsigned int regno = REGNO (x); regno < end_regno; ++regno)
|
||
if (REGNO_REG_SET_P (nonequal, regno))
|
||
return true;
|
||
}
|
||
}
|
||
return false;
|
||
}
|
||
|
||
/* Attempt to prove that the basic block B will have no side effects and
|
||
always continues in the same edge if reached via E. Return the edge
|
||
if exist, NULL otherwise. */
|
||
|
||
static edge
|
||
thread_jump (edge e, basic_block b)
|
||
{
|
||
rtx set1, set2, cond1, cond2;
|
||
rtx_insn *insn;
|
||
enum rtx_code code1, code2, reversed_code2;
|
||
bool reverse1 = false;
|
||
unsigned i;
|
||
regset nonequal;
|
||
bool failed = false;
|
||
reg_set_iterator rsi;
|
||
|
||
/* Jump threading may cause fixup_partitions to introduce new crossing edges,
|
||
which is not allowed after reload. */
|
||
gcc_checking_assert (!reload_completed || !crtl->has_bb_partition);
|
||
|
||
if (b->flags & BB_NONTHREADABLE_BLOCK)
|
||
return NULL;
|
||
|
||
/* At the moment, we do handle only conditional jumps, but later we may
|
||
want to extend this code to tablejumps and others. */
|
||
if (EDGE_COUNT (e->src->succs) != 2)
|
||
return NULL;
|
||
if (EDGE_COUNT (b->succs) != 2)
|
||
{
|
||
b->flags |= BB_NONTHREADABLE_BLOCK;
|
||
return NULL;
|
||
}
|
||
|
||
/* Second branch must end with onlyjump, as we will eliminate the jump. */
|
||
if (!any_condjump_p (BB_END (e->src)))
|
||
return NULL;
|
||
|
||
if (!any_condjump_p (BB_END (b)) || !onlyjump_p (BB_END (b)))
|
||
{
|
||
b->flags |= BB_NONTHREADABLE_BLOCK;
|
||
return NULL;
|
||
}
|
||
|
||
set1 = pc_set (BB_END (e->src));
|
||
set2 = pc_set (BB_END (b));
|
||
if (((e->flags & EDGE_FALLTHRU) != 0)
|
||
!= (XEXP (SET_SRC (set1), 1) == pc_rtx))
|
||
reverse1 = true;
|
||
|
||
cond1 = XEXP (SET_SRC (set1), 0);
|
||
cond2 = XEXP (SET_SRC (set2), 0);
|
||
if (reverse1)
|
||
code1 = reversed_comparison_code (cond1, BB_END (e->src));
|
||
else
|
||
code1 = GET_CODE (cond1);
|
||
|
||
code2 = GET_CODE (cond2);
|
||
reversed_code2 = reversed_comparison_code (cond2, BB_END (b));
|
||
|
||
if (!comparison_dominates_p (code1, code2)
|
||
&& !comparison_dominates_p (code1, reversed_code2))
|
||
return NULL;
|
||
|
||
/* Ensure that the comparison operators are equivalent.
|
||
??? This is far too pessimistic. We should allow swapped operands,
|
||
different CCmodes, or for example comparisons for interval, that
|
||
dominate even when operands are not equivalent. */
|
||
if (!rtx_equal_p (XEXP (cond1, 0), XEXP (cond2, 0))
|
||
|| !rtx_equal_p (XEXP (cond1, 1), XEXP (cond2, 1)))
|
||
return NULL;
|
||
|
||
/* Punt if BB_END (e->src) is doloop-like conditional jump that modifies
|
||
the registers used in cond1. */
|
||
if (modified_in_p (cond1, BB_END (e->src)))
|
||
return NULL;
|
||
|
||
/* Short circuit cases where block B contains some side effects, as we can't
|
||
safely bypass it. */
|
||
for (insn = NEXT_INSN (BB_HEAD (b)); insn != NEXT_INSN (BB_END (b));
|
||
insn = NEXT_INSN (insn))
|
||
if (INSN_P (insn) && side_effects_p (PATTERN (insn)))
|
||
{
|
||
b->flags |= BB_NONTHREADABLE_BLOCK;
|
||
return NULL;
|
||
}
|
||
|
||
cselib_init (0);
|
||
|
||
/* First process all values computed in the source basic block. */
|
||
for (insn = NEXT_INSN (BB_HEAD (e->src));
|
||
insn != NEXT_INSN (BB_END (e->src));
|
||
insn = NEXT_INSN (insn))
|
||
if (INSN_P (insn))
|
||
cselib_process_insn (insn);
|
||
|
||
nonequal = BITMAP_ALLOC (NULL);
|
||
CLEAR_REG_SET (nonequal);
|
||
|
||
/* Now assume that we've continued by the edge E to B and continue
|
||
processing as if it were same basic block.
|
||
Our goal is to prove that whole block is an NOOP. */
|
||
|
||
for (insn = NEXT_INSN (BB_HEAD (b));
|
||
insn != NEXT_INSN (BB_END (b)) && !failed;
|
||
insn = NEXT_INSN (insn))
|
||
{
|
||
/* cond2 must not mention any register that is not equal to the
|
||
former block. Check this before processing that instruction,
|
||
as BB_END (b) could contain also clobbers. */
|
||
if (insn == BB_END (b)
|
||
&& mentions_nonequal_regs (cond2, nonequal))
|
||
goto failed_exit;
|
||
|
||
if (INSN_P (insn))
|
||
{
|
||
rtx pat = PATTERN (insn);
|
||
|
||
if (GET_CODE (pat) == PARALLEL)
|
||
{
|
||
for (i = 0; i < (unsigned)XVECLEN (pat, 0); i++)
|
||
failed |= mark_effect (XVECEXP (pat, 0, i), nonequal);
|
||
}
|
||
else
|
||
failed |= mark_effect (pat, nonequal);
|
||
}
|
||
|
||
cselib_process_insn (insn);
|
||
}
|
||
|
||
/* Later we should clear nonequal of dead registers. So far we don't
|
||
have life information in cfg_cleanup. */
|
||
if (failed)
|
||
{
|
||
b->flags |= BB_NONTHREADABLE_BLOCK;
|
||
goto failed_exit;
|
||
}
|
||
|
||
EXECUTE_IF_SET_IN_REG_SET (nonequal, 0, i, rsi)
|
||
goto failed_exit;
|
||
|
||
BITMAP_FREE (nonequal);
|
||
cselib_finish ();
|
||
if ((comparison_dominates_p (code1, code2) != 0)
|
||
!= (XEXP (SET_SRC (set2), 1) == pc_rtx))
|
||
return BRANCH_EDGE (b);
|
||
else
|
||
return FALLTHRU_EDGE (b);
|
||
|
||
failed_exit:
|
||
BITMAP_FREE (nonequal);
|
||
cselib_finish ();
|
||
return NULL;
|
||
}
|
||
|
||
/* Attempt to forward edges leaving basic block B.
|
||
Return true if successful. */
|
||
|
||
static bool
|
||
try_forward_edges (int mode, basic_block b)
|
||
{
|
||
bool changed = false;
|
||
edge_iterator ei;
|
||
edge e, *threaded_edges = NULL;
|
||
|
||
for (ei = ei_start (b->succs); (e = ei_safe_edge (ei)); )
|
||
{
|
||
basic_block target, first;
|
||
location_t goto_locus;
|
||
int counter;
|
||
bool threaded = false;
|
||
int nthreaded_edges = 0;
|
||
bool may_thread = first_pass || (b->flags & BB_MODIFIED) != 0;
|
||
bool new_target_threaded = false;
|
||
|
||
/* Skip complex edges because we don't know how to update them.
|
||
|
||
Still handle fallthru edges, as we can succeed to forward fallthru
|
||
edge to the same place as the branch edge of conditional branch
|
||
and turn conditional branch to an unconditional branch. */
|
||
if (e->flags & EDGE_COMPLEX)
|
||
{
|
||
ei_next (&ei);
|
||
continue;
|
||
}
|
||
|
||
target = first = e->dest;
|
||
counter = NUM_FIXED_BLOCKS;
|
||
goto_locus = e->goto_locus;
|
||
|
||
while (counter < n_basic_blocks_for_fn (cfun))
|
||
{
|
||
basic_block new_target = NULL;
|
||
may_thread |= (target->flags & BB_MODIFIED) != 0;
|
||
|
||
if (FORWARDER_BLOCK_P (target)
|
||
&& single_succ (target) != EXIT_BLOCK_PTR_FOR_FN (cfun))
|
||
{
|
||
/* Bypass trivial infinite loops. */
|
||
new_target = single_succ (target);
|
||
if (target == new_target)
|
||
counter = n_basic_blocks_for_fn (cfun);
|
||
else if (!optimize)
|
||
{
|
||
/* When not optimizing, ensure that edges or forwarder
|
||
blocks with different locus are not optimized out. */
|
||
location_t new_locus = single_succ_edge (target)->goto_locus;
|
||
location_t locus = goto_locus;
|
||
|
||
if (LOCATION_LOCUS (new_locus) != UNKNOWN_LOCATION
|
||
&& LOCATION_LOCUS (locus) != UNKNOWN_LOCATION
|
||
&& new_locus != locus)
|
||
new_target = NULL;
|
||
else
|
||
{
|
||
if (LOCATION_LOCUS (new_locus) != UNKNOWN_LOCATION)
|
||
locus = new_locus;
|
||
|
||
rtx_insn *last = BB_END (target);
|
||
if (DEBUG_INSN_P (last))
|
||
last = prev_nondebug_insn (last);
|
||
if (last && INSN_P (last))
|
||
new_locus = INSN_LOCATION (last);
|
||
else
|
||
new_locus = UNKNOWN_LOCATION;
|
||
|
||
if (LOCATION_LOCUS (new_locus) != UNKNOWN_LOCATION
|
||
&& LOCATION_LOCUS (locus) != UNKNOWN_LOCATION
|
||
&& new_locus != locus)
|
||
new_target = NULL;
|
||
else
|
||
{
|
||
if (LOCATION_LOCUS (new_locus) != UNKNOWN_LOCATION)
|
||
locus = new_locus;
|
||
|
||
goto_locus = locus;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Allow to thread only over one edge at time to simplify updating
|
||
of probabilities. */
|
||
else if ((mode & CLEANUP_THREADING) && may_thread)
|
||
{
|
||
edge t = thread_jump (e, target);
|
||
if (t)
|
||
{
|
||
if (!threaded_edges)
|
||
threaded_edges = XNEWVEC (edge,
|
||
n_basic_blocks_for_fn (cfun));
|
||
else
|
||
{
|
||
int i;
|
||
|
||
/* Detect an infinite loop across blocks not
|
||
including the start block. */
|
||
for (i = 0; i < nthreaded_edges; ++i)
|
||
if (threaded_edges[i] == t)
|
||
break;
|
||
if (i < nthreaded_edges)
|
||
{
|
||
counter = n_basic_blocks_for_fn (cfun);
|
||
break;
|
||
}
|
||
}
|
||
|
||
/* Detect an infinite loop across the start block. */
|
||
if (t->dest == b)
|
||
break;
|
||
|
||
gcc_assert (nthreaded_edges
|
||
< (n_basic_blocks_for_fn (cfun)
|
||
- NUM_FIXED_BLOCKS));
|
||
threaded_edges[nthreaded_edges++] = t;
|
||
|
||
new_target = t->dest;
|
||
new_target_threaded = true;
|
||
}
|
||
}
|
||
|
||
if (!new_target)
|
||
break;
|
||
|
||
counter++;
|
||
/* Do not turn non-crossing jump to crossing. Depending on target
|
||
it may require different instruction pattern. */
|
||
if ((e->flags & EDGE_CROSSING)
|
||
|| BB_PARTITION (first) == BB_PARTITION (new_target))
|
||
{
|
||
target = new_target;
|
||
threaded |= new_target_threaded;
|
||
}
|
||
}
|
||
|
||
if (counter >= n_basic_blocks_for_fn (cfun))
|
||
{
|
||
if (dump_file)
|
||
fprintf (dump_file, "Infinite loop in BB %i.\n",
|
||
target->index);
|
||
}
|
||
else if (target == first)
|
||
; /* We didn't do anything. */
|
||
else
|
||
{
|
||
/* Save the values now, as the edge may get removed. */
|
||
profile_count edge_count = e->count ();
|
||
int n = 0;
|
||
|
||
e->goto_locus = goto_locus;
|
||
|
||
/* Don't force if target is exit block. */
|
||
if (threaded && target != EXIT_BLOCK_PTR_FOR_FN (cfun))
|
||
{
|
||
notice_new_block (redirect_edge_and_branch_force (e, target));
|
||
if (dump_file)
|
||
fprintf (dump_file, "Conditionals threaded.\n");
|
||
}
|
||
else if (!redirect_edge_and_branch (e, target))
|
||
{
|
||
if (dump_file)
|
||
fprintf (dump_file,
|
||
"Forwarding edge %i->%i to %i failed.\n",
|
||
b->index, e->dest->index, target->index);
|
||
ei_next (&ei);
|
||
continue;
|
||
}
|
||
|
||
/* We successfully forwarded the edge. Now update profile
|
||
data: for each edge we traversed in the chain, remove
|
||
the original edge's execution count. */
|
||
do
|
||
{
|
||
edge t;
|
||
|
||
if (!single_succ_p (first))
|
||
{
|
||
gcc_assert (n < nthreaded_edges);
|
||
t = threaded_edges [n++];
|
||
gcc_assert (t->src == first);
|
||
update_bb_profile_for_threading (first, edge_count, t);
|
||
update_br_prob_note (first);
|
||
}
|
||
else
|
||
{
|
||
first->count -= edge_count;
|
||
/* It is possible that as the result of
|
||
threading we've removed edge as it is
|
||
threaded to the fallthru edge. Avoid
|
||
getting out of sync. */
|
||
if (n < nthreaded_edges
|
||
&& first == threaded_edges [n]->src)
|
||
n++;
|
||
t = single_succ_edge (first);
|
||
}
|
||
|
||
first = t->dest;
|
||
}
|
||
while (first != target);
|
||
|
||
changed = true;
|
||
continue;
|
||
}
|
||
ei_next (&ei);
|
||
}
|
||
|
||
free (threaded_edges);
|
||
return changed;
|
||
}
|
||
|
||
|
||
/* Blocks A and B are to be merged into a single block. A has no incoming
|
||
fallthru edge, so it can be moved before B without adding or modifying
|
||
any jumps (aside from the jump from A to B). */
|
||
|
||
static void
|
||
merge_blocks_move_predecessor_nojumps (basic_block a, basic_block b)
|
||
{
|
||
rtx_insn *barrier;
|
||
|
||
/* If we are partitioning hot/cold basic blocks, we don't want to
|
||
mess up unconditional or indirect jumps that cross between hot
|
||
and cold sections.
|
||
|
||
Basic block partitioning may result in some jumps that appear to
|
||
be optimizable (or blocks that appear to be mergeable), but which really
|
||
must be left untouched (they are required to make it safely across
|
||
partition boundaries). See the comments at the top of
|
||
bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
|
||
|
||
if (BB_PARTITION (a) != BB_PARTITION (b))
|
||
return;
|
||
|
||
barrier = next_nonnote_insn (BB_END (a));
|
||
gcc_assert (BARRIER_P (barrier));
|
||
delete_insn (barrier);
|
||
|
||
/* Scramble the insn chain. */
|
||
if (BB_END (a) != PREV_INSN (BB_HEAD (b)))
|
||
reorder_insns_nobb (BB_HEAD (a), BB_END (a), PREV_INSN (BB_HEAD (b)));
|
||
df_set_bb_dirty (a);
|
||
|
||
if (dump_file)
|
||
fprintf (dump_file, "Moved block %d before %d and merged.\n",
|
||
a->index, b->index);
|
||
|
||
/* Swap the records for the two blocks around. */
|
||
|
||
unlink_block (a);
|
||
link_block (a, b->prev_bb);
|
||
|
||
/* Now blocks A and B are contiguous. Merge them. */
|
||
merge_blocks (a, b);
|
||
}
|
||
|
||
/* Blocks A and B are to be merged into a single block. B has no outgoing
|
||
fallthru edge, so it can be moved after A without adding or modifying
|
||
any jumps (aside from the jump from A to B). */
|
||
|
||
static void
|
||
merge_blocks_move_successor_nojumps (basic_block a, basic_block b)
|
||
{
|
||
rtx_insn *barrier, *real_b_end;
|
||
rtx_insn *label;
|
||
rtx_jump_table_data *table;
|
||
|
||
/* If we are partitioning hot/cold basic blocks, we don't want to
|
||
mess up unconditional or indirect jumps that cross between hot
|
||
and cold sections.
|
||
|
||
Basic block partitioning may result in some jumps that appear to
|
||
be optimizable (or blocks that appear to be mergeable), but which really
|
||
must be left untouched (they are required to make it safely across
|
||
partition boundaries). See the comments at the top of
|
||
bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
|
||
|
||
if (BB_PARTITION (a) != BB_PARTITION (b))
|
||
return;
|
||
|
||
real_b_end = BB_END (b);
|
||
|
||
/* If there is a jump table following block B temporarily add the jump table
|
||
to block B so that it will also be moved to the correct location. */
|
||
if (tablejump_p (BB_END (b), &label, &table)
|
||
&& prev_active_insn (label) == BB_END (b))
|
||
{
|
||
BB_END (b) = table;
|
||
}
|
||
|
||
/* There had better have been a barrier there. Delete it. */
|
||
barrier = NEXT_INSN (BB_END (b));
|
||
if (barrier && BARRIER_P (barrier))
|
||
delete_insn (barrier);
|
||
|
||
|
||
/* Scramble the insn chain. */
|
||
reorder_insns_nobb (BB_HEAD (b), BB_END (b), BB_END (a));
|
||
|
||
/* Restore the real end of b. */
|
||
BB_END (b) = real_b_end;
|
||
|
||
if (dump_file)
|
||
fprintf (dump_file, "Moved block %d after %d and merged.\n",
|
||
b->index, a->index);
|
||
|
||
/* Now blocks A and B are contiguous. Merge them. */
|
||
merge_blocks (a, b);
|
||
}
|
||
|
||
/* Attempt to merge basic blocks that are potentially non-adjacent.
|
||
Return NULL iff the attempt failed, otherwise return basic block
|
||
where cleanup_cfg should continue. Because the merging commonly
|
||
moves basic block away or introduces another optimization
|
||
possibility, return basic block just before B so cleanup_cfg don't
|
||
need to iterate.
|
||
|
||
It may be good idea to return basic block before C in the case
|
||
C has been moved after B and originally appeared earlier in the
|
||
insn sequence, but we have no information available about the
|
||
relative ordering of these two. Hopefully it is not too common. */
|
||
|
||
static basic_block
|
||
merge_blocks_move (edge e, basic_block b, basic_block c, int mode)
|
||
{
|
||
basic_block next;
|
||
|
||
/* If we are partitioning hot/cold basic blocks, we don't want to
|
||
mess up unconditional or indirect jumps that cross between hot
|
||
and cold sections.
|
||
|
||
Basic block partitioning may result in some jumps that appear to
|
||
be optimizable (or blocks that appear to be mergeable), but which really
|
||
must be left untouched (they are required to make it safely across
|
||
partition boundaries). See the comments at the top of
|
||
bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
|
||
|
||
if (BB_PARTITION (b) != BB_PARTITION (c))
|
||
return NULL;
|
||
|
||
/* If B has a fallthru edge to C, no need to move anything. */
|
||
if (e->flags & EDGE_FALLTHRU)
|
||
{
|
||
int b_index = b->index, c_index = c->index;
|
||
|
||
/* Protect the loop latches. */
|
||
if (current_loops && c->loop_father->latch == c)
|
||
return NULL;
|
||
|
||
merge_blocks (b, c);
|
||
update_forwarder_flag (b);
|
||
|
||
if (dump_file)
|
||
fprintf (dump_file, "Merged %d and %d without moving.\n",
|
||
b_index, c_index);
|
||
|
||
return b->prev_bb == ENTRY_BLOCK_PTR_FOR_FN (cfun) ? b : b->prev_bb;
|
||
}
|
||
|
||
/* Otherwise we will need to move code around. Do that only if expensive
|
||
transformations are allowed. */
|
||
else if (mode & CLEANUP_EXPENSIVE)
|
||
{
|
||
edge tmp_edge, b_fallthru_edge;
|
||
bool c_has_outgoing_fallthru;
|
||
bool b_has_incoming_fallthru;
|
||
|
||
/* Avoid overactive code motion, as the forwarder blocks should be
|
||
eliminated by edge redirection instead. One exception might have
|
||
been if B is a forwarder block and C has no fallthru edge, but
|
||
that should be cleaned up by bb-reorder instead. */
|
||
if (FORWARDER_BLOCK_P (b) || FORWARDER_BLOCK_P (c))
|
||
return NULL;
|
||
|
||
/* We must make sure to not munge nesting of lexical blocks,
|
||
and loop notes. This is done by squeezing out all the notes
|
||
and leaving them there to lie. Not ideal, but functional. */
|
||
|
||
tmp_edge = find_fallthru_edge (c->succs);
|
||
c_has_outgoing_fallthru = (tmp_edge != NULL);
|
||
|
||
tmp_edge = find_fallthru_edge (b->preds);
|
||
b_has_incoming_fallthru = (tmp_edge != NULL);
|
||
b_fallthru_edge = tmp_edge;
|
||
next = b->prev_bb;
|
||
if (next == c)
|
||
next = next->prev_bb;
|
||
|
||
/* Otherwise, we're going to try to move C after B. If C does
|
||
not have an outgoing fallthru, then it can be moved
|
||
immediately after B without introducing or modifying jumps. */
|
||
if (! c_has_outgoing_fallthru)
|
||
{
|
||
merge_blocks_move_successor_nojumps (b, c);
|
||
return next == ENTRY_BLOCK_PTR_FOR_FN (cfun) ? next->next_bb : next;
|
||
}
|
||
|
||
/* If B does not have an incoming fallthru, then it can be moved
|
||
immediately before C without introducing or modifying jumps.
|
||
C cannot be the first block, so we do not have to worry about
|
||
accessing a non-existent block. */
|
||
|
||
if (b_has_incoming_fallthru)
|
||
{
|
||
basic_block bb;
|
||
|
||
if (b_fallthru_edge->src == ENTRY_BLOCK_PTR_FOR_FN (cfun))
|
||
return NULL;
|
||
bb = force_nonfallthru (b_fallthru_edge);
|
||
if (bb)
|
||
notice_new_block (bb);
|
||
}
|
||
|
||
merge_blocks_move_predecessor_nojumps (b, c);
|
||
return next == ENTRY_BLOCK_PTR_FOR_FN (cfun) ? next->next_bb : next;
|
||
}
|
||
|
||
return NULL;
|
||
}
|
||
|
||
|
||
/* Removes the memory attributes of MEM expression
|
||
if they are not equal. */
|
||
|
||
static void
|
||
merge_memattrs (rtx x, rtx y)
|
||
{
|
||
int i;
|
||
int j;
|
||
enum rtx_code code;
|
||
const char *fmt;
|
||
|
||
if (x == y)
|
||
return;
|
||
if (x == 0 || y == 0)
|
||
return;
|
||
|
||
code = GET_CODE (x);
|
||
|
||
if (code != GET_CODE (y))
|
||
return;
|
||
|
||
if (GET_MODE (x) != GET_MODE (y))
|
||
return;
|
||
|
||
if (code == MEM && !mem_attrs_eq_p (MEM_ATTRS (x), MEM_ATTRS (y)))
|
||
{
|
||
if (! MEM_ATTRS (x))
|
||
MEM_ATTRS (y) = 0;
|
||
else if (! MEM_ATTRS (y))
|
||
MEM_ATTRS (x) = 0;
|
||
else
|
||
{
|
||
if (MEM_ALIAS_SET (x) != MEM_ALIAS_SET (y))
|
||
{
|
||
set_mem_alias_set (x, 0);
|
||
set_mem_alias_set (y, 0);
|
||
}
|
||
|
||
if (! mem_expr_equal_p (MEM_EXPR (x), MEM_EXPR (y)))
|
||
{
|
||
set_mem_expr (x, 0);
|
||
set_mem_expr (y, 0);
|
||
clear_mem_offset (x);
|
||
clear_mem_offset (y);
|
||
}
|
||
else if (MEM_OFFSET_KNOWN_P (x) != MEM_OFFSET_KNOWN_P (y)
|
||
|| (MEM_OFFSET_KNOWN_P (x)
|
||
&& maybe_ne (MEM_OFFSET (x), MEM_OFFSET (y))))
|
||
{
|
||
clear_mem_offset (x);
|
||
clear_mem_offset (y);
|
||
}
|
||
|
||
if (!MEM_SIZE_KNOWN_P (x))
|
||
clear_mem_size (y);
|
||
else if (!MEM_SIZE_KNOWN_P (y))
|
||
clear_mem_size (x);
|
||
else if (known_le (MEM_SIZE (x), MEM_SIZE (y)))
|
||
set_mem_size (x, MEM_SIZE (y));
|
||
else if (known_le (MEM_SIZE (y), MEM_SIZE (x)))
|
||
set_mem_size (y, MEM_SIZE (x));
|
||
else
|
||
{
|
||
/* The sizes aren't ordered, so we can't merge them. */
|
||
clear_mem_size (x);
|
||
clear_mem_size (y);
|
||
}
|
||
|
||
set_mem_align (x, MIN (MEM_ALIGN (x), MEM_ALIGN (y)));
|
||
set_mem_align (y, MEM_ALIGN (x));
|
||
}
|
||
}
|
||
if (code == MEM)
|
||
{
|
||
if (MEM_READONLY_P (x) != MEM_READONLY_P (y))
|
||
{
|
||
MEM_READONLY_P (x) = 0;
|
||
MEM_READONLY_P (y) = 0;
|
||
}
|
||
if (MEM_NOTRAP_P (x) != MEM_NOTRAP_P (y))
|
||
{
|
||
MEM_NOTRAP_P (x) = 0;
|
||
MEM_NOTRAP_P (y) = 0;
|
||
}
|
||
if (MEM_VOLATILE_P (x) != MEM_VOLATILE_P (y))
|
||
{
|
||
MEM_VOLATILE_P (x) = 1;
|
||
MEM_VOLATILE_P (y) = 1;
|
||
}
|
||
}
|
||
|
||
fmt = GET_RTX_FORMAT (code);
|
||
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
|
||
{
|
||
switch (fmt[i])
|
||
{
|
||
case 'E':
|
||
/* Two vectors must have the same length. */
|
||
if (XVECLEN (x, i) != XVECLEN (y, i))
|
||
return;
|
||
|
||
for (j = 0; j < XVECLEN (x, i); j++)
|
||
merge_memattrs (XVECEXP (x, i, j), XVECEXP (y, i, j));
|
||
|
||
break;
|
||
|
||
case 'e':
|
||
merge_memattrs (XEXP (x, i), XEXP (y, i));
|
||
}
|
||
}
|
||
return;
|
||
}
|
||
|
||
|
||
/* Checks if patterns P1 and P2 are equivalent, apart from the possibly
|
||
different single sets S1 and S2. */
|
||
|
||
static bool
|
||
equal_different_set_p (rtx p1, rtx s1, rtx p2, rtx s2)
|
||
{
|
||
int i;
|
||
rtx e1, e2;
|
||
|
||
if (p1 == s1 && p2 == s2)
|
||
return true;
|
||
|
||
if (GET_CODE (p1) != PARALLEL || GET_CODE (p2) != PARALLEL)
|
||
return false;
|
||
|
||
if (XVECLEN (p1, 0) != XVECLEN (p2, 0))
|
||
return false;
|
||
|
||
for (i = 0; i < XVECLEN (p1, 0); i++)
|
||
{
|
||
e1 = XVECEXP (p1, 0, i);
|
||
e2 = XVECEXP (p2, 0, i);
|
||
if (e1 == s1 && e2 == s2)
|
||
continue;
|
||
if (reload_completed
|
||
? rtx_renumbered_equal_p (e1, e2) : rtx_equal_p (e1, e2))
|
||
continue;
|
||
|
||
return false;
|
||
}
|
||
|
||
return true;
|
||
}
|
||
|
||
|
||
/* NOTE1 is the REG_EQUAL note, if any, attached to an insn
|
||
that is a single_set with a SET_SRC of SRC1. Similarly
|
||
for NOTE2/SRC2.
|
||
|
||
So effectively NOTE1/NOTE2 are an alternate form of
|
||
SRC1/SRC2 respectively.
|
||
|
||
Return nonzero if SRC1 or NOTE1 has the same constant
|
||
integer value as SRC2 or NOTE2. Else return zero. */
|
||
static int
|
||
values_equal_p (rtx note1, rtx note2, rtx src1, rtx src2)
|
||
{
|
||
if (note1
|
||
&& note2
|
||
&& CONST_INT_P (XEXP (note1, 0))
|
||
&& rtx_equal_p (XEXP (note1, 0), XEXP (note2, 0)))
|
||
return 1;
|
||
|
||
if (!note1
|
||
&& !note2
|
||
&& CONST_INT_P (src1)
|
||
&& CONST_INT_P (src2)
|
||
&& rtx_equal_p (src1, src2))
|
||
return 1;
|
||
|
||
if (note1
|
||
&& CONST_INT_P (src2)
|
||
&& rtx_equal_p (XEXP (note1, 0), src2))
|
||
return 1;
|
||
|
||
if (note2
|
||
&& CONST_INT_P (src1)
|
||
&& rtx_equal_p (XEXP (note2, 0), src1))
|
||
return 1;
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Examine register notes on I1 and I2 and return:
|
||
- dir_forward if I1 can be replaced by I2, or
|
||
- dir_backward if I2 can be replaced by I1, or
|
||
- dir_both if both are the case. */
|
||
|
||
static enum replace_direction
|
||
can_replace_by (rtx_insn *i1, rtx_insn *i2)
|
||
{
|
||
rtx s1, s2, d1, d2, src1, src2, note1, note2;
|
||
bool c1, c2;
|
||
|
||
/* Check for 2 sets. */
|
||
s1 = single_set (i1);
|
||
s2 = single_set (i2);
|
||
if (s1 == NULL_RTX || s2 == NULL_RTX)
|
||
return dir_none;
|
||
|
||
/* Check that the 2 sets set the same dest. */
|
||
d1 = SET_DEST (s1);
|
||
d2 = SET_DEST (s2);
|
||
if (!(reload_completed
|
||
? rtx_renumbered_equal_p (d1, d2) : rtx_equal_p (d1, d2)))
|
||
return dir_none;
|
||
|
||
/* Find identical req_equiv or reg_equal note, which implies that the 2 sets
|
||
set dest to the same value. */
|
||
note1 = find_reg_equal_equiv_note (i1);
|
||
note2 = find_reg_equal_equiv_note (i2);
|
||
|
||
src1 = SET_SRC (s1);
|
||
src2 = SET_SRC (s2);
|
||
|
||
if (!values_equal_p (note1, note2, src1, src2))
|
||
return dir_none;
|
||
|
||
if (!equal_different_set_p (PATTERN (i1), s1, PATTERN (i2), s2))
|
||
return dir_none;
|
||
|
||
/* Although the 2 sets set dest to the same value, we cannot replace
|
||
(set (dest) (const_int))
|
||
by
|
||
(set (dest) (reg))
|
||
because we don't know if the reg is live and has the same value at the
|
||
location of replacement. */
|
||
c1 = CONST_INT_P (src1);
|
||
c2 = CONST_INT_P (src2);
|
||
if (c1 && c2)
|
||
return dir_both;
|
||
else if (c2)
|
||
return dir_forward;
|
||
else if (c1)
|
||
return dir_backward;
|
||
|
||
return dir_none;
|
||
}
|
||
|
||
/* Merges directions A and B. */
|
||
|
||
static enum replace_direction
|
||
merge_dir (enum replace_direction a, enum replace_direction b)
|
||
{
|
||
/* Implements the following table:
|
||
|bo fw bw no
|
||
---+-----------
|
||
bo |bo fw bw no
|
||
fw |-- fw no no
|
||
bw |-- -- bw no
|
||
no |-- -- -- no. */
|
||
|
||
if (a == b)
|
||
return a;
|
||
|
||
if (a == dir_both)
|
||
return b;
|
||
if (b == dir_both)
|
||
return a;
|
||
|
||
return dir_none;
|
||
}
|
||
|
||
/* Array of flags indexed by reg note kind, true if the given
|
||
reg note is CFA related. */
|
||
static const bool reg_note_cfa_p[] = {
|
||
#undef REG_CFA_NOTE
|
||
#define DEF_REG_NOTE(NAME) false,
|
||
#define REG_CFA_NOTE(NAME) true,
|
||
#include "reg-notes.def"
|
||
#undef REG_CFA_NOTE
|
||
#undef DEF_REG_NOTE
|
||
false
|
||
};
|
||
|
||
/* Return true if I1 and I2 have identical CFA notes (the same order
|
||
and equivalent content). */
|
||
|
||
static bool
|
||
insns_have_identical_cfa_notes (rtx_insn *i1, rtx_insn *i2)
|
||
{
|
||
rtx n1, n2;
|
||
for (n1 = REG_NOTES (i1), n2 = REG_NOTES (i2); ;
|
||
n1 = XEXP (n1, 1), n2 = XEXP (n2, 1))
|
||
{
|
||
/* Skip over reg notes not related to CFI information. */
|
||
while (n1 && !reg_note_cfa_p[REG_NOTE_KIND (n1)])
|
||
n1 = XEXP (n1, 1);
|
||
while (n2 && !reg_note_cfa_p[REG_NOTE_KIND (n2)])
|
||
n2 = XEXP (n2, 1);
|
||
if (n1 == NULL_RTX && n2 == NULL_RTX)
|
||
return true;
|
||
if (n1 == NULL_RTX || n2 == NULL_RTX)
|
||
return false;
|
||
if (XEXP (n1, 0) == XEXP (n2, 0))
|
||
;
|
||
else if (XEXP (n1, 0) == NULL_RTX || XEXP (n2, 0) == NULL_RTX)
|
||
return false;
|
||
else if (!(reload_completed
|
||
? rtx_renumbered_equal_p (XEXP (n1, 0), XEXP (n2, 0))
|
||
: rtx_equal_p (XEXP (n1, 0), XEXP (n2, 0))))
|
||
return false;
|
||
}
|
||
}
|
||
|
||
/* Examine I1 and I2 and return:
|
||
- dir_forward if I1 can be replaced by I2, or
|
||
- dir_backward if I2 can be replaced by I1, or
|
||
- dir_both if both are the case. */
|
||
|
||
static enum replace_direction
|
||
old_insns_match_p (int mode ATTRIBUTE_UNUSED, rtx_insn *i1, rtx_insn *i2)
|
||
{
|
||
rtx p1, p2;
|
||
|
||
/* Verify that I1 and I2 are equivalent. */
|
||
if (GET_CODE (i1) != GET_CODE (i2))
|
||
return dir_none;
|
||
|
||
/* __builtin_unreachable() may lead to empty blocks (ending with
|
||
NOTE_INSN_BASIC_BLOCK). They may be crossjumped. */
|
||
if (NOTE_INSN_BASIC_BLOCK_P (i1) && NOTE_INSN_BASIC_BLOCK_P (i2))
|
||
return dir_both;
|
||
|
||
/* ??? Do not allow cross-jumping between different stack levels. */
|
||
p1 = find_reg_note (i1, REG_ARGS_SIZE, NULL);
|
||
p2 = find_reg_note (i2, REG_ARGS_SIZE, NULL);
|
||
if (p1 && p2)
|
||
{
|
||
p1 = XEXP (p1, 0);
|
||
p2 = XEXP (p2, 0);
|
||
if (!rtx_equal_p (p1, p2))
|
||
return dir_none;
|
||
|
||
/* ??? Worse, this adjustment had better be constant lest we
|
||
have differing incoming stack levels. */
|
||
if (!frame_pointer_needed
|
||
&& known_eq (find_args_size_adjust (i1), HOST_WIDE_INT_MIN))
|
||
return dir_none;
|
||
}
|
||
else if (p1 || p2)
|
||
return dir_none;
|
||
|
||
/* Do not allow cross-jumping between frame related insns and other
|
||
insns. */
|
||
if (RTX_FRAME_RELATED_P (i1) != RTX_FRAME_RELATED_P (i2))
|
||
return dir_none;
|
||
|
||
p1 = PATTERN (i1);
|
||
p2 = PATTERN (i2);
|
||
|
||
if (GET_CODE (p1) != GET_CODE (p2))
|
||
return dir_none;
|
||
|
||
/* If this is a CALL_INSN, compare register usage information.
|
||
If we don't check this on stack register machines, the two
|
||
CALL_INSNs might be merged leaving reg-stack.c with mismatching
|
||
numbers of stack registers in the same basic block.
|
||
If we don't check this on machines with delay slots, a delay slot may
|
||
be filled that clobbers a parameter expected by the subroutine.
|
||
|
||
??? We take the simple route for now and assume that if they're
|
||
equal, they were constructed identically.
|
||
|
||
Also check for identical exception regions. */
|
||
|
||
if (CALL_P (i1))
|
||
{
|
||
/* Ensure the same EH region. */
|
||
rtx n1 = find_reg_note (i1, REG_EH_REGION, 0);
|
||
rtx n2 = find_reg_note (i2, REG_EH_REGION, 0);
|
||
|
||
if (!n1 && n2)
|
||
return dir_none;
|
||
|
||
if (n1 && (!n2 || XEXP (n1, 0) != XEXP (n2, 0)))
|
||
return dir_none;
|
||
|
||
if (!rtx_equal_p (CALL_INSN_FUNCTION_USAGE (i1),
|
||
CALL_INSN_FUNCTION_USAGE (i2))
|
||
|| SIBLING_CALL_P (i1) != SIBLING_CALL_P (i2))
|
||
return dir_none;
|
||
|
||
/* For address sanitizer, never crossjump __asan_report_* builtins,
|
||
otherwise errors might be reported on incorrect lines. */
|
||
if (flag_sanitize & SANITIZE_ADDRESS)
|
||
{
|
||
rtx call = get_call_rtx_from (i1);
|
||
if (call && GET_CODE (XEXP (XEXP (call, 0), 0)) == SYMBOL_REF)
|
||
{
|
||
rtx symbol = XEXP (XEXP (call, 0), 0);
|
||
if (SYMBOL_REF_DECL (symbol)
|
||
&& TREE_CODE (SYMBOL_REF_DECL (symbol)) == FUNCTION_DECL)
|
||
{
|
||
if ((DECL_BUILT_IN_CLASS (SYMBOL_REF_DECL (symbol))
|
||
== BUILT_IN_NORMAL)
|
||
&& DECL_FUNCTION_CODE (SYMBOL_REF_DECL (symbol))
|
||
>= BUILT_IN_ASAN_REPORT_LOAD1
|
||
&& DECL_FUNCTION_CODE (SYMBOL_REF_DECL (symbol))
|
||
<= BUILT_IN_ASAN_STOREN)
|
||
return dir_none;
|
||
}
|
||
}
|
||
}
|
||
|
||
if (insn_callee_abi (i1) != insn_callee_abi (i2))
|
||
return dir_none;
|
||
}
|
||
|
||
/* If both i1 and i2 are frame related, verify all the CFA notes
|
||
in the same order and with the same content. */
|
||
if (RTX_FRAME_RELATED_P (i1) && !insns_have_identical_cfa_notes (i1, i2))
|
||
return dir_none;
|
||
|
||
#ifdef STACK_REGS
|
||
/* If cross_jump_death_matters is not 0, the insn's mode
|
||
indicates whether or not the insn contains any stack-like
|
||
regs. */
|
||
|
||
if ((mode & CLEANUP_POST_REGSTACK) && stack_regs_mentioned (i1))
|
||
{
|
||
/* If register stack conversion has already been done, then
|
||
death notes must also be compared before it is certain that
|
||
the two instruction streams match. */
|
||
|
||
rtx note;
|
||
HARD_REG_SET i1_regset, i2_regset;
|
||
|
||
CLEAR_HARD_REG_SET (i1_regset);
|
||
CLEAR_HARD_REG_SET (i2_regset);
|
||
|
||
for (note = REG_NOTES (i1); note; note = XEXP (note, 1))
|
||
if (REG_NOTE_KIND (note) == REG_DEAD && STACK_REG_P (XEXP (note, 0)))
|
||
SET_HARD_REG_BIT (i1_regset, REGNO (XEXP (note, 0)));
|
||
|
||
for (note = REG_NOTES (i2); note; note = XEXP (note, 1))
|
||
if (REG_NOTE_KIND (note) == REG_DEAD && STACK_REG_P (XEXP (note, 0)))
|
||
SET_HARD_REG_BIT (i2_regset, REGNO (XEXP (note, 0)));
|
||
|
||
if (i1_regset != i2_regset)
|
||
return dir_none;
|
||
}
|
||
#endif
|
||
|
||
if (reload_completed
|
||
? rtx_renumbered_equal_p (p1, p2) : rtx_equal_p (p1, p2))
|
||
return dir_both;
|
||
|
||
return can_replace_by (i1, i2);
|
||
}
|
||
|
||
/* When comparing insns I1 and I2 in flow_find_cross_jump or
|
||
flow_find_head_matching_sequence, ensure the notes match. */
|
||
|
||
static void
|
||
merge_notes (rtx_insn *i1, rtx_insn *i2)
|
||
{
|
||
/* If the merged insns have different REG_EQUAL notes, then
|
||
remove them. */
|
||
rtx equiv1 = find_reg_equal_equiv_note (i1);
|
||
rtx equiv2 = find_reg_equal_equiv_note (i2);
|
||
|
||
if (equiv1 && !equiv2)
|
||
remove_note (i1, equiv1);
|
||
else if (!equiv1 && equiv2)
|
||
remove_note (i2, equiv2);
|
||
else if (equiv1 && equiv2
|
||
&& !rtx_equal_p (XEXP (equiv1, 0), XEXP (equiv2, 0)))
|
||
{
|
||
remove_note (i1, equiv1);
|
||
remove_note (i2, equiv2);
|
||
}
|
||
}
|
||
|
||
/* Walks from I1 in BB1 backward till the next non-debug insn, and returns the
|
||
resulting insn in I1, and the corresponding bb in BB1. At the head of a
|
||
bb, if there is a predecessor bb that reaches this bb via fallthru, and
|
||
FOLLOW_FALLTHRU, walks further in the predecessor bb and registers this in
|
||
DID_FALLTHRU. Otherwise, stops at the head of the bb. */
|
||
|
||
static void
|
||
walk_to_nondebug_insn (rtx_insn **i1, basic_block *bb1, bool follow_fallthru,
|
||
bool *did_fallthru)
|
||
{
|
||
edge fallthru;
|
||
|
||
*did_fallthru = false;
|
||
|
||
/* Ignore notes. */
|
||
while (!NONDEBUG_INSN_P (*i1))
|
||
{
|
||
if (*i1 != BB_HEAD (*bb1))
|
||
{
|
||
*i1 = PREV_INSN (*i1);
|
||
continue;
|
||
}
|
||
|
||
if (!follow_fallthru)
|
||
return;
|
||
|
||
fallthru = find_fallthru_edge ((*bb1)->preds);
|
||
if (!fallthru || fallthru->src == ENTRY_BLOCK_PTR_FOR_FN (cfun)
|
||
|| !single_succ_p (fallthru->src))
|
||
return;
|
||
|
||
*bb1 = fallthru->src;
|
||
*i1 = BB_END (*bb1);
|
||
*did_fallthru = true;
|
||
}
|
||
}
|
||
|
||
/* Look through the insns at the end of BB1 and BB2 and find the longest
|
||
sequence that are either equivalent, or allow forward or backward
|
||
replacement. Store the first insns for that sequence in *F1 and *F2 and
|
||
return the sequence length.
|
||
|
||
DIR_P indicates the allowed replacement direction on function entry, and
|
||
the actual replacement direction on function exit. If NULL, only equivalent
|
||
sequences are allowed.
|
||
|
||
To simplify callers of this function, if the blocks match exactly,
|
||
store the head of the blocks in *F1 and *F2. */
|
||
|
||
int
|
||
flow_find_cross_jump (basic_block bb1, basic_block bb2, rtx_insn **f1,
|
||
rtx_insn **f2, enum replace_direction *dir_p)
|
||
{
|
||
rtx_insn *i1, *i2, *last1, *last2, *afterlast1, *afterlast2;
|
||
int ninsns = 0;
|
||
enum replace_direction dir, last_dir, afterlast_dir;
|
||
bool follow_fallthru, did_fallthru;
|
||
|
||
if (dir_p)
|
||
dir = *dir_p;
|
||
else
|
||
dir = dir_both;
|
||
afterlast_dir = dir;
|
||
last_dir = afterlast_dir;
|
||
|
||
/* Skip simple jumps at the end of the blocks. Complex jumps still
|
||
need to be compared for equivalence, which we'll do below. */
|
||
|
||
i1 = BB_END (bb1);
|
||
last1 = afterlast1 = last2 = afterlast2 = NULL;
|
||
if (onlyjump_p (i1)
|
||
|| (returnjump_p (i1) && !side_effects_p (PATTERN (i1))))
|
||
{
|
||
last1 = i1;
|
||
i1 = PREV_INSN (i1);
|
||
}
|
||
|
||
i2 = BB_END (bb2);
|
||
if (onlyjump_p (i2)
|
||
|| (returnjump_p (i2) && !side_effects_p (PATTERN (i2))))
|
||
{
|
||
last2 = i2;
|
||
/* Count everything except for unconditional jump as insn.
|
||
Don't count any jumps if dir_p is NULL. */
|
||
if (!simplejump_p (i2) && !returnjump_p (i2) && last1 && dir_p)
|
||
ninsns++;
|
||
i2 = PREV_INSN (i2);
|
||
}
|
||
|
||
while (true)
|
||
{
|
||
/* In the following example, we can replace all jumps to C by jumps to A.
|
||
|
||
This removes 4 duplicate insns.
|
||
[bb A] insn1 [bb C] insn1
|
||
insn2 insn2
|
||
[bb B] insn3 insn3
|
||
insn4 insn4
|
||
jump_insn jump_insn
|
||
|
||
We could also replace all jumps to A by jumps to C, but that leaves B
|
||
alive, and removes only 2 duplicate insns. In a subsequent crossjump
|
||
step, all jumps to B would be replaced with jumps to the middle of C,
|
||
achieving the same result with more effort.
|
||
So we allow only the first possibility, which means that we don't allow
|
||
fallthru in the block that's being replaced. */
|
||
|
||
follow_fallthru = dir_p && dir != dir_forward;
|
||
walk_to_nondebug_insn (&i1, &bb1, follow_fallthru, &did_fallthru);
|
||
if (did_fallthru)
|
||
dir = dir_backward;
|
||
|
||
follow_fallthru = dir_p && dir != dir_backward;
|
||
walk_to_nondebug_insn (&i2, &bb2, follow_fallthru, &did_fallthru);
|
||
if (did_fallthru)
|
||
dir = dir_forward;
|
||
|
||
if (i1 == BB_HEAD (bb1) || i2 == BB_HEAD (bb2))
|
||
break;
|
||
|
||
/* Do not turn corssing edge to non-crossing or vice versa after
|
||
reload. */
|
||
if (BB_PARTITION (BLOCK_FOR_INSN (i1))
|
||
!= BB_PARTITION (BLOCK_FOR_INSN (i2))
|
||
&& reload_completed)
|
||
break;
|
||
|
||
dir = merge_dir (dir, old_insns_match_p (0, i1, i2));
|
||
if (dir == dir_none || (!dir_p && dir != dir_both))
|
||
break;
|
||
|
||
merge_memattrs (i1, i2);
|
||
|
||
/* Don't begin a cross-jump with a NOTE insn. */
|
||
if (INSN_P (i1))
|
||
{
|
||
merge_notes (i1, i2);
|
||
|
||
afterlast1 = last1, afterlast2 = last2;
|
||
last1 = i1, last2 = i2;
|
||
afterlast_dir = last_dir;
|
||
last_dir = dir;
|
||
if (active_insn_p (i1))
|
||
ninsns++;
|
||
}
|
||
|
||
i1 = PREV_INSN (i1);
|
||
i2 = PREV_INSN (i2);
|
||
}
|
||
|
||
/* Don't allow the insn after a compare to be shared by
|
||
cross-jumping unless the compare is also shared. */
|
||
if (HAVE_cc0 && ninsns && reg_mentioned_p (cc0_rtx, last1)
|
||
&& ! sets_cc0_p (last1))
|
||
last1 = afterlast1, last2 = afterlast2, last_dir = afterlast_dir, ninsns--;
|
||
|
||
/* Include preceding notes and labels in the cross-jump. One,
|
||
this may bring us to the head of the blocks as requested above.
|
||
Two, it keeps line number notes as matched as may be. */
|
||
if (ninsns)
|
||
{
|
||
bb1 = BLOCK_FOR_INSN (last1);
|
||
while (last1 != BB_HEAD (bb1) && !NONDEBUG_INSN_P (PREV_INSN (last1)))
|
||
last1 = PREV_INSN (last1);
|
||
|
||
if (last1 != BB_HEAD (bb1) && LABEL_P (PREV_INSN (last1)))
|
||
last1 = PREV_INSN (last1);
|
||
|
||
bb2 = BLOCK_FOR_INSN (last2);
|
||
while (last2 != BB_HEAD (bb2) && !NONDEBUG_INSN_P (PREV_INSN (last2)))
|
||
last2 = PREV_INSN (last2);
|
||
|
||
if (last2 != BB_HEAD (bb2) && LABEL_P (PREV_INSN (last2)))
|
||
last2 = PREV_INSN (last2);
|
||
|
||
*f1 = last1;
|
||
*f2 = last2;
|
||
}
|
||
|
||
if (dir_p)
|
||
*dir_p = last_dir;
|
||
return ninsns;
|
||
}
|
||
|
||
/* Like flow_find_cross_jump, except start looking for a matching sequence from
|
||
the head of the two blocks. Do not include jumps at the end.
|
||
If STOP_AFTER is nonzero, stop after finding that many matching
|
||
instructions. If STOP_AFTER is zero, count all INSN_P insns, if it is
|
||
non-zero, only count active insns. */
|
||
|
||
int
|
||
flow_find_head_matching_sequence (basic_block bb1, basic_block bb2, rtx_insn **f1,
|
||
rtx_insn **f2, int stop_after)
|
||
{
|
||
rtx_insn *i1, *i2, *last1, *last2, *beforelast1, *beforelast2;
|
||
int ninsns = 0;
|
||
edge e;
|
||
edge_iterator ei;
|
||
int nehedges1 = 0, nehedges2 = 0;
|
||
|
||
FOR_EACH_EDGE (e, ei, bb1->succs)
|
||
if (e->flags & EDGE_EH)
|
||
nehedges1++;
|
||
FOR_EACH_EDGE (e, ei, bb2->succs)
|
||
if (e->flags & EDGE_EH)
|
||
nehedges2++;
|
||
|
||
i1 = BB_HEAD (bb1);
|
||
i2 = BB_HEAD (bb2);
|
||
last1 = beforelast1 = last2 = beforelast2 = NULL;
|
||
|
||
while (true)
|
||
{
|
||
/* Ignore notes, except NOTE_INSN_EPILOGUE_BEG. */
|
||
while (!NONDEBUG_INSN_P (i1) && i1 != BB_END (bb1))
|
||
{
|
||
if (NOTE_P (i1) && NOTE_KIND (i1) == NOTE_INSN_EPILOGUE_BEG)
|
||
break;
|
||
i1 = NEXT_INSN (i1);
|
||
}
|
||
|
||
while (!NONDEBUG_INSN_P (i2) && i2 != BB_END (bb2))
|
||
{
|
||
if (NOTE_P (i2) && NOTE_KIND (i2) == NOTE_INSN_EPILOGUE_BEG)
|
||
break;
|
||
i2 = NEXT_INSN (i2);
|
||
}
|
||
|
||
if ((i1 == BB_END (bb1) && !NONDEBUG_INSN_P (i1))
|
||
|| (i2 == BB_END (bb2) && !NONDEBUG_INSN_P (i2)))
|
||
break;
|
||
|
||
if (NOTE_P (i1) || NOTE_P (i2)
|
||
|| JUMP_P (i1) || JUMP_P (i2))
|
||
break;
|
||
|
||
/* A sanity check to make sure we're not merging insns with different
|
||
effects on EH. If only one of them ends a basic block, it shouldn't
|
||
have an EH edge; if both end a basic block, there should be the same
|
||
number of EH edges. */
|
||
if ((i1 == BB_END (bb1) && i2 != BB_END (bb2)
|
||
&& nehedges1 > 0)
|
||
|| (i2 == BB_END (bb2) && i1 != BB_END (bb1)
|
||
&& nehedges2 > 0)
|
||
|| (i1 == BB_END (bb1) && i2 == BB_END (bb2)
|
||
&& nehedges1 != nehedges2))
|
||
break;
|
||
|
||
if (old_insns_match_p (0, i1, i2) != dir_both)
|
||
break;
|
||
|
||
merge_memattrs (i1, i2);
|
||
|
||
/* Don't begin a cross-jump with a NOTE insn. */
|
||
if (INSN_P (i1))
|
||
{
|
||
merge_notes (i1, i2);
|
||
|
||
beforelast1 = last1, beforelast2 = last2;
|
||
last1 = i1, last2 = i2;
|
||
if (!stop_after || active_insn_p (i1))
|
||
ninsns++;
|
||
}
|
||
|
||
if (i1 == BB_END (bb1) || i2 == BB_END (bb2)
|
||
|| (stop_after > 0 && ninsns == stop_after))
|
||
break;
|
||
|
||
i1 = NEXT_INSN (i1);
|
||
i2 = NEXT_INSN (i2);
|
||
}
|
||
|
||
/* Don't allow a compare to be shared by cross-jumping unless the insn
|
||
after the compare is also shared. */
|
||
if (HAVE_cc0 && ninsns && reg_mentioned_p (cc0_rtx, last1)
|
||
&& sets_cc0_p (last1))
|
||
last1 = beforelast1, last2 = beforelast2, ninsns--;
|
||
|
||
if (ninsns)
|
||
{
|
||
*f1 = last1;
|
||
*f2 = last2;
|
||
}
|
||
|
||
return ninsns;
|
||
}
|
||
|
||
/* Return true iff outgoing edges of BB1 and BB2 match, together with
|
||
the branch instruction. This means that if we commonize the control
|
||
flow before end of the basic block, the semantic remains unchanged.
|
||
|
||
We may assume that there exists one edge with a common destination. */
|
||
|
||
static bool
|
||
outgoing_edges_match (int mode, basic_block bb1, basic_block bb2)
|
||
{
|
||
int nehedges1 = 0, nehedges2 = 0;
|
||
edge fallthru1 = 0, fallthru2 = 0;
|
||
edge e1, e2;
|
||
edge_iterator ei;
|
||
|
||
/* If we performed shrink-wrapping, edges to the exit block can
|
||
only be distinguished for JUMP_INSNs. The two paths may differ in
|
||
whether they went through the prologue. Sibcalls are fine, we know
|
||
that we either didn't need or inserted an epilogue before them. */
|
||
if (crtl->shrink_wrapped
|
||
&& single_succ_p (bb1)
|
||
&& single_succ (bb1) == EXIT_BLOCK_PTR_FOR_FN (cfun)
|
||
&& (!JUMP_P (BB_END (bb1))
|
||
/* Punt if the only successor is a fake edge to exit, the jump
|
||
must be some weird one. */
|
||
|| (single_succ_edge (bb1)->flags & EDGE_FAKE) != 0)
|
||
&& !(CALL_P (BB_END (bb1)) && SIBLING_CALL_P (BB_END (bb1))))
|
||
return false;
|
||
|
||
/* If BB1 has only one successor, we may be looking at either an
|
||
unconditional jump, or a fake edge to exit. */
|
||
if (single_succ_p (bb1)
|
||
&& (single_succ_edge (bb1)->flags & (EDGE_COMPLEX | EDGE_FAKE)) == 0
|
||
&& (!JUMP_P (BB_END (bb1)) || simplejump_p (BB_END (bb1))))
|
||
return (single_succ_p (bb2)
|
||
&& (single_succ_edge (bb2)->flags
|
||
& (EDGE_COMPLEX | EDGE_FAKE)) == 0
|
||
&& (!JUMP_P (BB_END (bb2)) || simplejump_p (BB_END (bb2))));
|
||
|
||
/* Match conditional jumps - this may get tricky when fallthru and branch
|
||
edges are crossed. */
|
||
if (EDGE_COUNT (bb1->succs) == 2
|
||
&& any_condjump_p (BB_END (bb1))
|
||
&& onlyjump_p (BB_END (bb1)))
|
||
{
|
||
edge b1, f1, b2, f2;
|
||
bool reverse, match;
|
||
rtx set1, set2, cond1, cond2;
|
||
enum rtx_code code1, code2;
|
||
|
||
if (EDGE_COUNT (bb2->succs) != 2
|
||
|| !any_condjump_p (BB_END (bb2))
|
||
|| !onlyjump_p (BB_END (bb2)))
|
||
return false;
|
||
|
||
b1 = BRANCH_EDGE (bb1);
|
||
b2 = BRANCH_EDGE (bb2);
|
||
f1 = FALLTHRU_EDGE (bb1);
|
||
f2 = FALLTHRU_EDGE (bb2);
|
||
|
||
/* Get around possible forwarders on fallthru edges. Other cases
|
||
should be optimized out already. */
|
||
if (FORWARDER_BLOCK_P (f1->dest))
|
||
f1 = single_succ_edge (f1->dest);
|
||
|
||
if (FORWARDER_BLOCK_P (f2->dest))
|
||
f2 = single_succ_edge (f2->dest);
|
||
|
||
/* To simplify use of this function, return false if there are
|
||
unneeded forwarder blocks. These will get eliminated later
|
||
during cleanup_cfg. */
|
||
if (FORWARDER_BLOCK_P (f1->dest)
|
||
|| FORWARDER_BLOCK_P (f2->dest)
|
||
|| FORWARDER_BLOCK_P (b1->dest)
|
||
|| FORWARDER_BLOCK_P (b2->dest))
|
||
return false;
|
||
|
||
if (f1->dest == f2->dest && b1->dest == b2->dest)
|
||
reverse = false;
|
||
else if (f1->dest == b2->dest && b1->dest == f2->dest)
|
||
reverse = true;
|
||
else
|
||
return false;
|
||
|
||
set1 = pc_set (BB_END (bb1));
|
||
set2 = pc_set (BB_END (bb2));
|
||
if ((XEXP (SET_SRC (set1), 1) == pc_rtx)
|
||
!= (XEXP (SET_SRC (set2), 1) == pc_rtx))
|
||
reverse = !reverse;
|
||
|
||
cond1 = XEXP (SET_SRC (set1), 0);
|
||
cond2 = XEXP (SET_SRC (set2), 0);
|
||
code1 = GET_CODE (cond1);
|
||
if (reverse)
|
||
code2 = reversed_comparison_code (cond2, BB_END (bb2));
|
||
else
|
||
code2 = GET_CODE (cond2);
|
||
|
||
if (code2 == UNKNOWN)
|
||
return false;
|
||
|
||
/* Verify codes and operands match. */
|
||
match = ((code1 == code2
|
||
&& rtx_renumbered_equal_p (XEXP (cond1, 0), XEXP (cond2, 0))
|
||
&& rtx_renumbered_equal_p (XEXP (cond1, 1), XEXP (cond2, 1)))
|
||
|| (code1 == swap_condition (code2)
|
||
&& rtx_renumbered_equal_p (XEXP (cond1, 1),
|
||
XEXP (cond2, 0))
|
||
&& rtx_renumbered_equal_p (XEXP (cond1, 0),
|
||
XEXP (cond2, 1))));
|
||
|
||
/* If we return true, we will join the blocks. Which means that
|
||
we will only have one branch prediction bit to work with. Thus
|
||
we require the existing branches to have probabilities that are
|
||
roughly similar. */
|
||
if (match
|
||
&& optimize_bb_for_speed_p (bb1)
|
||
&& optimize_bb_for_speed_p (bb2))
|
||
{
|
||
profile_probability prob2;
|
||
|
||
if (b1->dest == b2->dest)
|
||
prob2 = b2->probability;
|
||
else
|
||
/* Do not use f2 probability as f2 may be forwarded. */
|
||
prob2 = b2->probability.invert ();
|
||
|
||
/* Fail if the difference in probabilities is greater than 50%.
|
||
This rules out two well-predicted branches with opposite
|
||
outcomes. */
|
||
if (b1->probability.differs_lot_from_p (prob2))
|
||
{
|
||
if (dump_file)
|
||
{
|
||
fprintf (dump_file,
|
||
"Outcomes of branch in bb %i and %i differ too"
|
||
" much (", bb1->index, bb2->index);
|
||
b1->probability.dump (dump_file);
|
||
prob2.dump (dump_file);
|
||
fprintf (dump_file, ")\n");
|
||
}
|
||
return false;
|
||
}
|
||
}
|
||
|
||
if (dump_file && match)
|
||
fprintf (dump_file, "Conditionals in bb %i and %i match.\n",
|
||
bb1->index, bb2->index);
|
||
|
||
return match;
|
||
}
|
||
|
||
/* Generic case - we are seeing a computed jump, table jump or trapping
|
||
instruction. */
|
||
|
||
/* Check whether there are tablejumps in the end of BB1 and BB2.
|
||
Return true if they are identical. */
|
||
{
|
||
rtx_insn *label1, *label2;
|
||
rtx_jump_table_data *table1, *table2;
|
||
|
||
if (tablejump_p (BB_END (bb1), &label1, &table1)
|
||
&& tablejump_p (BB_END (bb2), &label2, &table2)
|
||
&& GET_CODE (PATTERN (table1)) == GET_CODE (PATTERN (table2)))
|
||
{
|
||
/* The labels should never be the same rtx. If they really are same
|
||
the jump tables are same too. So disable crossjumping of blocks BB1
|
||
and BB2 because when deleting the common insns in the end of BB1
|
||
by delete_basic_block () the jump table would be deleted too. */
|
||
/* If LABEL2 is referenced in BB1->END do not do anything
|
||
because we would loose information when replacing
|
||
LABEL1 by LABEL2 and then LABEL2 by LABEL1 in BB1->END. */
|
||
if (label1 != label2 && !rtx_referenced_p (label2, BB_END (bb1)))
|
||
{
|
||
/* Set IDENTICAL to true when the tables are identical. */
|
||
bool identical = false;
|
||
rtx p1, p2;
|
||
|
||
p1 = PATTERN (table1);
|
||
p2 = PATTERN (table2);
|
||
if (GET_CODE (p1) == ADDR_VEC && rtx_equal_p (p1, p2))
|
||
{
|
||
identical = true;
|
||
}
|
||
else if (GET_CODE (p1) == ADDR_DIFF_VEC
|
||
&& (XVECLEN (p1, 1) == XVECLEN (p2, 1))
|
||
&& rtx_equal_p (XEXP (p1, 2), XEXP (p2, 2))
|
||
&& rtx_equal_p (XEXP (p1, 3), XEXP (p2, 3)))
|
||
{
|
||
int i;
|
||
|
||
identical = true;
|
||
for (i = XVECLEN (p1, 1) - 1; i >= 0 && identical; i--)
|
||
if (!rtx_equal_p (XVECEXP (p1, 1, i), XVECEXP (p2, 1, i)))
|
||
identical = false;
|
||
}
|
||
|
||
if (identical)
|
||
{
|
||
bool match;
|
||
|
||
/* Temporarily replace references to LABEL1 with LABEL2
|
||
in BB1->END so that we could compare the instructions. */
|
||
replace_label_in_insn (BB_END (bb1), label1, label2, false);
|
||
|
||
match = (old_insns_match_p (mode, BB_END (bb1), BB_END (bb2))
|
||
== dir_both);
|
||
if (dump_file && match)
|
||
fprintf (dump_file,
|
||
"Tablejumps in bb %i and %i match.\n",
|
||
bb1->index, bb2->index);
|
||
|
||
/* Set the original label in BB1->END because when deleting
|
||
a block whose end is a tablejump, the tablejump referenced
|
||
from the instruction is deleted too. */
|
||
replace_label_in_insn (BB_END (bb1), label2, label1, false);
|
||
|
||
return match;
|
||
}
|
||
}
|
||
return false;
|
||
}
|
||
}
|
||
|
||
/* Find the last non-debug non-note instruction in each bb, except
|
||
stop when we see the NOTE_INSN_BASIC_BLOCK, as old_insns_match_p
|
||
handles that case specially. old_insns_match_p does not handle
|
||
other types of instruction notes. */
|
||
rtx_insn *last1 = BB_END (bb1);
|
||
rtx_insn *last2 = BB_END (bb2);
|
||
while (!NOTE_INSN_BASIC_BLOCK_P (last1) &&
|
||
(DEBUG_INSN_P (last1) || NOTE_P (last1)))
|
||
last1 = PREV_INSN (last1);
|
||
while (!NOTE_INSN_BASIC_BLOCK_P (last2) &&
|
||
(DEBUG_INSN_P (last2) || NOTE_P (last2)))
|
||
last2 = PREV_INSN (last2);
|
||
gcc_assert (last1 && last2);
|
||
|
||
/* First ensure that the instructions match. There may be many outgoing
|
||
edges so this test is generally cheaper. */
|
||
if (old_insns_match_p (mode, last1, last2) != dir_both)
|
||
return false;
|
||
|
||
/* Search the outgoing edges, ensure that the counts do match, find possible
|
||
fallthru and exception handling edges since these needs more
|
||
validation. */
|
||
if (EDGE_COUNT (bb1->succs) != EDGE_COUNT (bb2->succs))
|
||
return false;
|
||
|
||
bool nonfakeedges = false;
|
||
FOR_EACH_EDGE (e1, ei, bb1->succs)
|
||
{
|
||
e2 = EDGE_SUCC (bb2, ei.index);
|
||
|
||
if ((e1->flags & EDGE_FAKE) == 0)
|
||
nonfakeedges = true;
|
||
|
||
if (e1->flags & EDGE_EH)
|
||
nehedges1++;
|
||
|
||
if (e2->flags & EDGE_EH)
|
||
nehedges2++;
|
||
|
||
if (e1->flags & EDGE_FALLTHRU)
|
||
fallthru1 = e1;
|
||
if (e2->flags & EDGE_FALLTHRU)
|
||
fallthru2 = e2;
|
||
}
|
||
|
||
/* If number of edges of various types does not match, fail. */
|
||
if (nehedges1 != nehedges2
|
||
|| (fallthru1 != 0) != (fallthru2 != 0))
|
||
return false;
|
||
|
||
/* If !ACCUMULATE_OUTGOING_ARGS, bb1 (and bb2) have no successors
|
||
and the last real insn doesn't have REG_ARGS_SIZE note, don't
|
||
attempt to optimize, as the two basic blocks might have different
|
||
REG_ARGS_SIZE depths. For noreturn calls and unconditional
|
||
traps there should be REG_ARG_SIZE notes, they could be missing
|
||
for __builtin_unreachable () uses though. */
|
||
if (!nonfakeedges
|
||
&& !ACCUMULATE_OUTGOING_ARGS
|
||
&& (!INSN_P (last1)
|
||
|| !find_reg_note (last1, REG_ARGS_SIZE, NULL)))
|
||
return false;
|
||
|
||
/* fallthru edges must be forwarded to the same destination. */
|
||
if (fallthru1)
|
||
{
|
||
basic_block d1 = (forwarder_block_p (fallthru1->dest)
|
||
? single_succ (fallthru1->dest): fallthru1->dest);
|
||
basic_block d2 = (forwarder_block_p (fallthru2->dest)
|
||
? single_succ (fallthru2->dest): fallthru2->dest);
|
||
|
||
if (d1 != d2)
|
||
return false;
|
||
}
|
||
|
||
/* Ensure the same EH region. */
|
||
{
|
||
rtx n1 = find_reg_note (BB_END (bb1), REG_EH_REGION, 0);
|
||
rtx n2 = find_reg_note (BB_END (bb2), REG_EH_REGION, 0);
|
||
|
||
if (!n1 && n2)
|
||
return false;
|
||
|
||
if (n1 && (!n2 || XEXP (n1, 0) != XEXP (n2, 0)))
|
||
return false;
|
||
}
|
||
|
||
/* The same checks as in try_crossjump_to_edge. It is required for RTL
|
||
version of sequence abstraction. */
|
||
FOR_EACH_EDGE (e1, ei, bb2->succs)
|
||
{
|
||
edge e2;
|
||
edge_iterator ei;
|
||
basic_block d1 = e1->dest;
|
||
|
||
if (FORWARDER_BLOCK_P (d1))
|
||
d1 = EDGE_SUCC (d1, 0)->dest;
|
||
|
||
FOR_EACH_EDGE (e2, ei, bb1->succs)
|
||
{
|
||
basic_block d2 = e2->dest;
|
||
if (FORWARDER_BLOCK_P (d2))
|
||
d2 = EDGE_SUCC (d2, 0)->dest;
|
||
if (d1 == d2)
|
||
break;
|
||
}
|
||
|
||
if (!e2)
|
||
return false;
|
||
}
|
||
|
||
return true;
|
||
}
|
||
|
||
/* Returns true if BB basic block has a preserve label. */
|
||
|
||
static bool
|
||
block_has_preserve_label (basic_block bb)
|
||
{
|
||
return (bb
|
||
&& block_label (bb)
|
||
&& LABEL_PRESERVE_P (block_label (bb)));
|
||
}
|
||
|
||
/* E1 and E2 are edges with the same destination block. Search their
|
||
predecessors for common code. If found, redirect control flow from
|
||
(maybe the middle of) E1->SRC to (maybe the middle of) E2->SRC (dir_forward),
|
||
or the other way around (dir_backward). DIR specifies the allowed
|
||
replacement direction. */
|
||
|
||
static bool
|
||
try_crossjump_to_edge (int mode, edge e1, edge e2,
|
||
enum replace_direction dir)
|
||
{
|
||
int nmatch;
|
||
basic_block src1 = e1->src, src2 = e2->src;
|
||
basic_block redirect_to, redirect_from, to_remove;
|
||
basic_block osrc1, osrc2, redirect_edges_to, tmp;
|
||
rtx_insn *newpos1, *newpos2;
|
||
edge s;
|
||
edge_iterator ei;
|
||
|
||
newpos1 = newpos2 = NULL;
|
||
|
||
/* Search backward through forwarder blocks. We don't need to worry
|
||
about multiple entry or chained forwarders, as they will be optimized
|
||
away. We do this to look past the unconditional jump following a
|
||
conditional jump that is required due to the current CFG shape. */
|
||
if (single_pred_p (src1)
|
||
&& FORWARDER_BLOCK_P (src1))
|
||
e1 = single_pred_edge (src1), src1 = e1->src;
|
||
|
||
if (single_pred_p (src2)
|
||
&& FORWARDER_BLOCK_P (src2))
|
||
e2 = single_pred_edge (src2), src2 = e2->src;
|
||
|
||
/* Nothing to do if we reach ENTRY, or a common source block. */
|
||
if (src1 == ENTRY_BLOCK_PTR_FOR_FN (cfun) || src2
|
||
== ENTRY_BLOCK_PTR_FOR_FN (cfun))
|
||
return false;
|
||
if (src1 == src2)
|
||
return false;
|
||
|
||
/* Seeing more than 1 forwarder blocks would confuse us later... */
|
||
if (FORWARDER_BLOCK_P (e1->dest)
|
||
&& FORWARDER_BLOCK_P (single_succ (e1->dest)))
|
||
return false;
|
||
|
||
if (FORWARDER_BLOCK_P (e2->dest)
|
||
&& FORWARDER_BLOCK_P (single_succ (e2->dest)))
|
||
return false;
|
||
|
||
/* Likewise with dead code (possibly newly created by the other optimizations
|
||
of cfg_cleanup). */
|
||
if (EDGE_COUNT (src1->preds) == 0 || EDGE_COUNT (src2->preds) == 0)
|
||
return false;
|
||
|
||
/* Do not turn corssing edge to non-crossing or vice versa after reload. */
|
||
if (BB_PARTITION (src1) != BB_PARTITION (src2)
|
||
&& reload_completed)
|
||
return false;
|
||
|
||
/* Look for the common insn sequence, part the first ... */
|
||
if (!outgoing_edges_match (mode, src1, src2))
|
||
return false;
|
||
|
||
/* ... and part the second. */
|
||
nmatch = flow_find_cross_jump (src1, src2, &newpos1, &newpos2, &dir);
|
||
|
||
osrc1 = src1;
|
||
osrc2 = src2;
|
||
if (newpos1 != NULL_RTX)
|
||
src1 = BLOCK_FOR_INSN (newpos1);
|
||
if (newpos2 != NULL_RTX)
|
||
src2 = BLOCK_FOR_INSN (newpos2);
|
||
|
||
/* Check that SRC1 and SRC2 have preds again. They may have changed
|
||
above due to the call to flow_find_cross_jump. */
|
||
if (EDGE_COUNT (src1->preds) == 0 || EDGE_COUNT (src2->preds) == 0)
|
||
return false;
|
||
|
||
if (dir == dir_backward)
|
||
{
|
||
std::swap (osrc1, osrc2);
|
||
std::swap (src1, src2);
|
||
std::swap (e1, e2);
|
||
std::swap (newpos1, newpos2);
|
||
}
|
||
|
||
/* Don't proceed with the crossjump unless we found a sufficient number
|
||
of matching instructions or the 'from' block was totally matched
|
||
(such that its predecessors will hopefully be redirected and the
|
||
block removed). */
|
||
if ((nmatch < param_min_crossjump_insns)
|
||
&& (newpos1 != BB_HEAD (src1)))
|
||
return false;
|
||
|
||
/* Avoid deleting preserve label when redirecting ABNORMAL edges. */
|
||
if (block_has_preserve_label (e1->dest)
|
||
&& (e1->flags & EDGE_ABNORMAL))
|
||
return false;
|
||
|
||
/* Here we know that the insns in the end of SRC1 which are common with SRC2
|
||
will be deleted.
|
||
If we have tablejumps in the end of SRC1 and SRC2
|
||
they have been already compared for equivalence in outgoing_edges_match ()
|
||
so replace the references to TABLE1 by references to TABLE2. */
|
||
{
|
||
rtx_insn *label1, *label2;
|
||
rtx_jump_table_data *table1, *table2;
|
||
|
||
if (tablejump_p (BB_END (osrc1), &label1, &table1)
|
||
&& tablejump_p (BB_END (osrc2), &label2, &table2)
|
||
&& label1 != label2)
|
||
{
|
||
rtx_insn *insn;
|
||
|
||
/* Replace references to LABEL1 with LABEL2. */
|
||
for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
|
||
{
|
||
/* Do not replace the label in SRC1->END because when deleting
|
||
a block whose end is a tablejump, the tablejump referenced
|
||
from the instruction is deleted too. */
|
||
if (insn != BB_END (osrc1))
|
||
replace_label_in_insn (insn, label1, label2, true);
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Avoid splitting if possible. We must always split when SRC2 has
|
||
EH predecessor edges, or we may end up with basic blocks with both
|
||
normal and EH predecessor edges. */
|
||
if (newpos2 == BB_HEAD (src2)
|
||
&& !(EDGE_PRED (src2, 0)->flags & EDGE_EH))
|
||
redirect_to = src2;
|
||
else
|
||
{
|
||
if (newpos2 == BB_HEAD (src2))
|
||
{
|
||
/* Skip possible basic block header. */
|
||
if (LABEL_P (newpos2))
|
||
newpos2 = NEXT_INSN (newpos2);
|
||
while (DEBUG_INSN_P (newpos2))
|
||
newpos2 = NEXT_INSN (newpos2);
|
||
if (NOTE_P (newpos2))
|
||
newpos2 = NEXT_INSN (newpos2);
|
||
while (DEBUG_INSN_P (newpos2))
|
||
newpos2 = NEXT_INSN (newpos2);
|
||
}
|
||
|
||
if (dump_file)
|
||
fprintf (dump_file, "Splitting bb %i before %i insns\n",
|
||
src2->index, nmatch);
|
||
redirect_to = split_block (src2, PREV_INSN (newpos2))->dest;
|
||
}
|
||
|
||
if (dump_file)
|
||
fprintf (dump_file,
|
||
"Cross jumping from bb %i to bb %i; %i common insns\n",
|
||
src1->index, src2->index, nmatch);
|
||
|
||
/* We may have some registers visible through the block. */
|
||
df_set_bb_dirty (redirect_to);
|
||
|
||
if (osrc2 == src2)
|
||
redirect_edges_to = redirect_to;
|
||
else
|
||
redirect_edges_to = osrc2;
|
||
|
||
/* Recompute the counts of destinations of outgoing edges. */
|
||
FOR_EACH_EDGE (s, ei, redirect_edges_to->succs)
|
||
{
|
||
edge s2;
|
||
edge_iterator ei;
|
||
basic_block d = s->dest;
|
||
|
||
if (FORWARDER_BLOCK_P (d))
|
||
d = single_succ (d);
|
||
|
||
FOR_EACH_EDGE (s2, ei, src1->succs)
|
||
{
|
||
basic_block d2 = s2->dest;
|
||
if (FORWARDER_BLOCK_P (d2))
|
||
d2 = single_succ (d2);
|
||
if (d == d2)
|
||
break;
|
||
}
|
||
|
||
/* Take care to update possible forwarder blocks. We verified
|
||
that there is no more than one in the chain, so we can't run
|
||
into infinite loop. */
|
||
if (FORWARDER_BLOCK_P (s->dest))
|
||
s->dest->count += s->count ();
|
||
|
||
if (FORWARDER_BLOCK_P (s2->dest))
|
||
s2->dest->count -= s->count ();
|
||
|
||
s->probability = s->probability.combine_with_count
|
||
(redirect_edges_to->count,
|
||
s2->probability, src1->count);
|
||
}
|
||
|
||
/* Adjust count for the block. An earlier jump
|
||
threading pass may have left the profile in an inconsistent
|
||
state (see update_bb_profile_for_threading) so we must be
|
||
prepared for overflows. */
|
||
tmp = redirect_to;
|
||
do
|
||
{
|
||
tmp->count += src1->count;
|
||
if (tmp == redirect_edges_to)
|
||
break;
|
||
tmp = find_fallthru_edge (tmp->succs)->dest;
|
||
}
|
||
while (true);
|
||
update_br_prob_note (redirect_edges_to);
|
||
|
||
/* Edit SRC1 to go to REDIRECT_TO at NEWPOS1. */
|
||
|
||
/* Skip possible basic block header. */
|
||
if (LABEL_P (newpos1))
|
||
newpos1 = NEXT_INSN (newpos1);
|
||
|
||
while (DEBUG_INSN_P (newpos1))
|
||
newpos1 = NEXT_INSN (newpos1);
|
||
|
||
if (NOTE_INSN_BASIC_BLOCK_P (newpos1))
|
||
newpos1 = NEXT_INSN (newpos1);
|
||
|
||
while (DEBUG_INSN_P (newpos1))
|
||
newpos1 = NEXT_INSN (newpos1);
|
||
|
||
redirect_from = split_block (src1, PREV_INSN (newpos1))->src;
|
||
to_remove = single_succ (redirect_from);
|
||
|
||
redirect_edge_and_branch_force (single_succ_edge (redirect_from), redirect_to);
|
||
delete_basic_block (to_remove);
|
||
|
||
update_forwarder_flag (redirect_from);
|
||
if (redirect_to != src2)
|
||
update_forwarder_flag (src2);
|
||
|
||
return true;
|
||
}
|
||
|
||
/* Search the predecessors of BB for common insn sequences. When found,
|
||
share code between them by redirecting control flow. Return true if
|
||
any changes made. */
|
||
|
||
static bool
|
||
try_crossjump_bb (int mode, basic_block bb)
|
||
{
|
||
edge e, e2, fallthru;
|
||
bool changed;
|
||
unsigned max, ix, ix2;
|
||
|
||
/* Nothing to do if there is not at least two incoming edges. */
|
||
if (EDGE_COUNT (bb->preds) < 2)
|
||
return false;
|
||
|
||
/* Don't crossjump if this block ends in a computed jump,
|
||
unless we are optimizing for size. */
|
||
if (optimize_bb_for_size_p (bb)
|
||
&& bb != EXIT_BLOCK_PTR_FOR_FN (cfun)
|
||
&& computed_jump_p (BB_END (bb)))
|
||
return false;
|
||
|
||
/* If we are partitioning hot/cold basic blocks, we don't want to
|
||
mess up unconditional or indirect jumps that cross between hot
|
||
and cold sections.
|
||
|
||
Basic block partitioning may result in some jumps that appear to
|
||
be optimizable (or blocks that appear to be mergeable), but which really
|
||
must be left untouched (they are required to make it safely across
|
||
partition boundaries). See the comments at the top of
|
||
bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
|
||
|
||
if (BB_PARTITION (EDGE_PRED (bb, 0)->src) !=
|
||
BB_PARTITION (EDGE_PRED (bb, 1)->src)
|
||
|| (EDGE_PRED (bb, 0)->flags & EDGE_CROSSING))
|
||
return false;
|
||
|
||
/* It is always cheapest to redirect a block that ends in a branch to
|
||
a block that falls through into BB, as that adds no branches to the
|
||
program. We'll try that combination first. */
|
||
fallthru = NULL;
|
||
max = param_max_crossjump_edges;
|
||
|
||
if (EDGE_COUNT (bb->preds) > max)
|
||
return false;
|
||
|
||
fallthru = find_fallthru_edge (bb->preds);
|
||
|
||
changed = false;
|
||
for (ix = 0; ix < EDGE_COUNT (bb->preds);)
|
||
{
|
||
e = EDGE_PRED (bb, ix);
|
||
ix++;
|
||
|
||
/* As noted above, first try with the fallthru predecessor (or, a
|
||
fallthru predecessor if we are in cfglayout mode). */
|
||
if (fallthru)
|
||
{
|
||
/* Don't combine the fallthru edge into anything else.
|
||
If there is a match, we'll do it the other way around. */
|
||
if (e == fallthru)
|
||
continue;
|
||
/* If nothing changed since the last attempt, there is nothing
|
||
we can do. */
|
||
if (!first_pass
|
||
&& !((e->src->flags & BB_MODIFIED)
|
||
|| (fallthru->src->flags & BB_MODIFIED)))
|
||
continue;
|
||
|
||
if (try_crossjump_to_edge (mode, e, fallthru, dir_forward))
|
||
{
|
||
changed = true;
|
||
ix = 0;
|
||
continue;
|
||
}
|
||
}
|
||
|
||
/* Non-obvious work limiting check: Recognize that we're going
|
||
to call try_crossjump_bb on every basic block. So if we have
|
||
two blocks with lots of outgoing edges (a switch) and they
|
||
share lots of common destinations, then we would do the
|
||
cross-jump check once for each common destination.
|
||
|
||
Now, if the blocks actually are cross-jump candidates, then
|
||
all of their destinations will be shared. Which means that
|
||
we only need check them for cross-jump candidacy once. We
|
||
can eliminate redundant checks of crossjump(A,B) by arbitrarily
|
||
choosing to do the check from the block for which the edge
|
||
in question is the first successor of A. */
|
||
if (EDGE_SUCC (e->src, 0) != e)
|
||
continue;
|
||
|
||
for (ix2 = 0; ix2 < EDGE_COUNT (bb->preds); ix2++)
|
||
{
|
||
e2 = EDGE_PRED (bb, ix2);
|
||
|
||
if (e2 == e)
|
||
continue;
|
||
|
||
/* We've already checked the fallthru edge above. */
|
||
if (e2 == fallthru)
|
||
continue;
|
||
|
||
/* The "first successor" check above only prevents multiple
|
||
checks of crossjump(A,B). In order to prevent redundant
|
||
checks of crossjump(B,A), require that A be the block
|
||
with the lowest index. */
|
||
if (e->src->index > e2->src->index)
|
||
continue;
|
||
|
||
/* If nothing changed since the last attempt, there is nothing
|
||
we can do. */
|
||
if (!first_pass
|
||
&& !((e->src->flags & BB_MODIFIED)
|
||
|| (e2->src->flags & BB_MODIFIED)))
|
||
continue;
|
||
|
||
/* Both e and e2 are not fallthru edges, so we can crossjump in either
|
||
direction. */
|
||
if (try_crossjump_to_edge (mode, e, e2, dir_both))
|
||
{
|
||
changed = true;
|
||
ix = 0;
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
|
||
if (changed)
|
||
crossjumps_occurred = true;
|
||
|
||
return changed;
|
||
}
|
||
|
||
/* Search the successors of BB for common insn sequences. When found,
|
||
share code between them by moving it across the basic block
|
||
boundary. Return true if any changes made. */
|
||
|
||
static bool
|
||
try_head_merge_bb (basic_block bb)
|
||
{
|
||
basic_block final_dest_bb = NULL;
|
||
int max_match = INT_MAX;
|
||
edge e0;
|
||
rtx_insn **headptr, **currptr, **nextptr;
|
||
bool changed, moveall;
|
||
unsigned ix;
|
||
rtx_insn *e0_last_head;
|
||
rtx cond;
|
||
rtx_insn *move_before;
|
||
unsigned nedges = EDGE_COUNT (bb->succs);
|
||
rtx_insn *jump = BB_END (bb);
|
||
regset live, live_union;
|
||
|
||
/* Nothing to do if there is not at least two outgoing edges. */
|
||
if (nedges < 2)
|
||
return false;
|
||
|
||
/* Don't crossjump if this block ends in a computed jump,
|
||
unless we are optimizing for size. */
|
||
if (optimize_bb_for_size_p (bb)
|
||
&& bb != EXIT_BLOCK_PTR_FOR_FN (cfun)
|
||
&& computed_jump_p (BB_END (bb)))
|
||
return false;
|
||
|
||
cond = get_condition (jump, &move_before, true, false);
|
||
if (cond == NULL_RTX)
|
||
{
|
||
if (HAVE_cc0 && reg_mentioned_p (cc0_rtx, jump))
|
||
move_before = prev_nonnote_nondebug_insn (jump);
|
||
else
|
||
move_before = jump;
|
||
}
|
||
|
||
for (ix = 0; ix < nedges; ix++)
|
||
if (EDGE_SUCC (bb, ix)->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
|
||
return false;
|
||
|
||
for (ix = 0; ix < nedges; ix++)
|
||
{
|
||
edge e = EDGE_SUCC (bb, ix);
|
||
basic_block other_bb = e->dest;
|
||
|
||
if (df_get_bb_dirty (other_bb))
|
||
{
|
||
block_was_dirty = true;
|
||
return false;
|
||
}
|
||
|
||
if (e->flags & EDGE_ABNORMAL)
|
||
return false;
|
||
|
||
/* Normally, all destination blocks must only be reachable from this
|
||
block, i.e. they must have one incoming edge.
|
||
|
||
There is one special case we can handle, that of multiple consecutive
|
||
jumps where the first jumps to one of the targets of the second jump.
|
||
This happens frequently in switch statements for default labels.
|
||
The structure is as follows:
|
||
FINAL_DEST_BB
|
||
....
|
||
if (cond) jump A;
|
||
fall through
|
||
BB
|
||
jump with targets A, B, C, D...
|
||
A
|
||
has two incoming edges, from FINAL_DEST_BB and BB
|
||
|
||
In this case, we can try to move the insns through BB and into
|
||
FINAL_DEST_BB. */
|
||
if (EDGE_COUNT (other_bb->preds) != 1)
|
||
{
|
||
edge incoming_edge, incoming_bb_other_edge;
|
||
edge_iterator ei;
|
||
|
||
if (final_dest_bb != NULL
|
||
|| EDGE_COUNT (other_bb->preds) != 2)
|
||
return false;
|
||
|
||
/* We must be able to move the insns across the whole block. */
|
||
move_before = BB_HEAD (bb);
|
||
while (!NONDEBUG_INSN_P (move_before))
|
||
move_before = NEXT_INSN (move_before);
|
||
|
||
if (EDGE_COUNT (bb->preds) != 1)
|
||
return false;
|
||
incoming_edge = EDGE_PRED (bb, 0);
|
||
final_dest_bb = incoming_edge->src;
|
||
if (EDGE_COUNT (final_dest_bb->succs) != 2)
|
||
return false;
|
||
FOR_EACH_EDGE (incoming_bb_other_edge, ei, final_dest_bb->succs)
|
||
if (incoming_bb_other_edge != incoming_edge)
|
||
break;
|
||
if (incoming_bb_other_edge->dest != other_bb)
|
||
return false;
|
||
}
|
||
}
|
||
|
||
e0 = EDGE_SUCC (bb, 0);
|
||
e0_last_head = NULL;
|
||
changed = false;
|
||
|
||
for (ix = 1; ix < nedges; ix++)
|
||
{
|
||
edge e = EDGE_SUCC (bb, ix);
|
||
rtx_insn *e0_last, *e_last;
|
||
int nmatch;
|
||
|
||
nmatch = flow_find_head_matching_sequence (e0->dest, e->dest,
|
||
&e0_last, &e_last, 0);
|
||
if (nmatch == 0)
|
||
return false;
|
||
|
||
if (nmatch < max_match)
|
||
{
|
||
max_match = nmatch;
|
||
e0_last_head = e0_last;
|
||
}
|
||
}
|
||
|
||
/* If we matched an entire block, we probably have to avoid moving the
|
||
last insn. */
|
||
if (max_match > 0
|
||
&& e0_last_head == BB_END (e0->dest)
|
||
&& (find_reg_note (e0_last_head, REG_EH_REGION, 0)
|
||
|| control_flow_insn_p (e0_last_head)))
|
||
{
|
||
max_match--;
|
||
if (max_match == 0)
|
||
return false;
|
||
e0_last_head = prev_real_nondebug_insn (e0_last_head);
|
||
}
|
||
|
||
if (max_match == 0)
|
||
return false;
|
||
|
||
/* We must find a union of the live registers at each of the end points. */
|
||
live = BITMAP_ALLOC (NULL);
|
||
live_union = BITMAP_ALLOC (NULL);
|
||
|
||
currptr = XNEWVEC (rtx_insn *, nedges);
|
||
headptr = XNEWVEC (rtx_insn *, nedges);
|
||
nextptr = XNEWVEC (rtx_insn *, nedges);
|
||
|
||
for (ix = 0; ix < nedges; ix++)
|
||
{
|
||
int j;
|
||
basic_block merge_bb = EDGE_SUCC (bb, ix)->dest;
|
||
rtx_insn *head = BB_HEAD (merge_bb);
|
||
|
||
while (!NONDEBUG_INSN_P (head))
|
||
head = NEXT_INSN (head);
|
||
headptr[ix] = head;
|
||
currptr[ix] = head;
|
||
|
||
/* Compute the end point and live information */
|
||
for (j = 1; j < max_match; j++)
|
||
do
|
||
head = NEXT_INSN (head);
|
||
while (!NONDEBUG_INSN_P (head));
|
||
simulate_backwards_to_point (merge_bb, live, head);
|
||
IOR_REG_SET (live_union, live);
|
||
}
|
||
|
||
/* If we're moving across two blocks, verify the validity of the
|
||
first move, then adjust the target and let the loop below deal
|
||
with the final move. */
|
||
if (final_dest_bb != NULL)
|
||
{
|
||
rtx_insn *move_upto;
|
||
|
||
moveall = can_move_insns_across (currptr[0], e0_last_head, move_before,
|
||
jump, e0->dest, live_union,
|
||
NULL, &move_upto);
|
||
if (!moveall)
|
||
{
|
||
if (move_upto == NULL_RTX)
|
||
goto out;
|
||
|
||
while (e0_last_head != move_upto)
|
||
{
|
||
df_simulate_one_insn_backwards (e0->dest, e0_last_head,
|
||
live_union);
|
||
e0_last_head = PREV_INSN (e0_last_head);
|
||
}
|
||
}
|
||
if (e0_last_head == NULL_RTX)
|
||
goto out;
|
||
|
||
jump = BB_END (final_dest_bb);
|
||
cond = get_condition (jump, &move_before, true, false);
|
||
if (cond == NULL_RTX)
|
||
{
|
||
if (HAVE_cc0 && reg_mentioned_p (cc0_rtx, jump))
|
||
move_before = prev_nonnote_nondebug_insn (jump);
|
||
else
|
||
move_before = jump;
|
||
}
|
||
}
|
||
|
||
do
|
||
{
|
||
rtx_insn *move_upto;
|
||
moveall = can_move_insns_across (currptr[0], e0_last_head,
|
||
move_before, jump, e0->dest, live_union,
|
||
NULL, &move_upto);
|
||
if (!moveall && move_upto == NULL_RTX)
|
||
{
|
||
if (jump == move_before)
|
||
break;
|
||
|
||
/* Try again, using a different insertion point. */
|
||
move_before = jump;
|
||
|
||
/* Don't try moving before a cc0 user, as that may invalidate
|
||
the cc0. */
|
||
if (HAVE_cc0 && reg_mentioned_p (cc0_rtx, jump))
|
||
break;
|
||
|
||
continue;
|
||
}
|
||
|
||
if (final_dest_bb && !moveall)
|
||
/* We haven't checked whether a partial move would be OK for the first
|
||
move, so we have to fail this case. */
|
||
break;
|
||
|
||
changed = true;
|
||
for (;;)
|
||
{
|
||
if (currptr[0] == move_upto)
|
||
break;
|
||
for (ix = 0; ix < nedges; ix++)
|
||
{
|
||
rtx_insn *curr = currptr[ix];
|
||
do
|
||
curr = NEXT_INSN (curr);
|
||
while (!NONDEBUG_INSN_P (curr));
|
||
currptr[ix] = curr;
|
||
}
|
||
}
|
||
|
||
/* If we can't currently move all of the identical insns, remember
|
||
each insn after the range that we'll merge. */
|
||
if (!moveall)
|
||
for (ix = 0; ix < nedges; ix++)
|
||
{
|
||
rtx_insn *curr = currptr[ix];
|
||
do
|
||
curr = NEXT_INSN (curr);
|
||
while (!NONDEBUG_INSN_P (curr));
|
||
nextptr[ix] = curr;
|
||
}
|
||
|
||
reorder_insns (headptr[0], currptr[0], PREV_INSN (move_before));
|
||
df_set_bb_dirty (EDGE_SUCC (bb, 0)->dest);
|
||
if (final_dest_bb != NULL)
|
||
df_set_bb_dirty (final_dest_bb);
|
||
df_set_bb_dirty (bb);
|
||
for (ix = 1; ix < nedges; ix++)
|
||
{
|
||
df_set_bb_dirty (EDGE_SUCC (bb, ix)->dest);
|
||
delete_insn_chain (headptr[ix], currptr[ix], false);
|
||
}
|
||
if (!moveall)
|
||
{
|
||
if (jump == move_before)
|
||
break;
|
||
|
||
/* For the unmerged insns, try a different insertion point. */
|
||
move_before = jump;
|
||
|
||
/* Don't try moving before a cc0 user, as that may invalidate
|
||
the cc0. */
|
||
if (HAVE_cc0 && reg_mentioned_p (cc0_rtx, jump))
|
||
break;
|
||
|
||
for (ix = 0; ix < nedges; ix++)
|
||
currptr[ix] = headptr[ix] = nextptr[ix];
|
||
}
|
||
}
|
||
while (!moveall);
|
||
|
||
out:
|
||
free (currptr);
|
||
free (headptr);
|
||
free (nextptr);
|
||
|
||
crossjumps_occurred |= changed;
|
||
|
||
return changed;
|
||
}
|
||
|
||
/* Return true if BB contains just bb note, or bb note followed
|
||
by only DEBUG_INSNs. */
|
||
|
||
static bool
|
||
trivially_empty_bb_p (basic_block bb)
|
||
{
|
||
rtx_insn *insn = BB_END (bb);
|
||
|
||
while (1)
|
||
{
|
||
if (insn == BB_HEAD (bb))
|
||
return true;
|
||
if (!DEBUG_INSN_P (insn))
|
||
return false;
|
||
insn = PREV_INSN (insn);
|
||
}
|
||
}
|
||
|
||
/* Return true if BB contains just a return and possibly a USE of the
|
||
return value. Fill in *RET and *USE with the return and use insns
|
||
if any found, otherwise NULL. All CLOBBERs are ignored. */
|
||
|
||
static bool
|
||
bb_is_just_return (basic_block bb, rtx_insn **ret, rtx_insn **use)
|
||
{
|
||
*ret = *use = NULL;
|
||
rtx_insn *insn;
|
||
|
||
if (bb == EXIT_BLOCK_PTR_FOR_FN (cfun))
|
||
return false;
|
||
|
||
FOR_BB_INSNS (bb, insn)
|
||
if (NONDEBUG_INSN_P (insn))
|
||
{
|
||
rtx pat = PATTERN (insn);
|
||
|
||
if (!*ret && ANY_RETURN_P (pat))
|
||
*ret = insn;
|
||
else if (!*ret && !*use && GET_CODE (pat) == USE
|
||
&& REG_P (XEXP (pat, 0))
|
||
&& REG_FUNCTION_VALUE_P (XEXP (pat, 0)))
|
||
*use = insn;
|
||
else if (GET_CODE (pat) != CLOBBER)
|
||
return false;
|
||
}
|
||
|
||
return !!*ret;
|
||
}
|
||
|
||
/* Do simple CFG optimizations - basic block merging, simplifying of jump
|
||
instructions etc. Return nonzero if changes were made. */
|
||
|
||
static bool
|
||
try_optimize_cfg (int mode)
|
||
{
|
||
bool changed_overall = false;
|
||
bool changed;
|
||
int iterations = 0;
|
||
basic_block bb, b, next;
|
||
|
||
if (mode & (CLEANUP_CROSSJUMP | CLEANUP_THREADING))
|
||
clear_bb_flags ();
|
||
|
||
crossjumps_occurred = false;
|
||
|
||
FOR_EACH_BB_FN (bb, cfun)
|
||
update_forwarder_flag (bb);
|
||
|
||
if (! targetm.cannot_modify_jumps_p ())
|
||
{
|
||
first_pass = true;
|
||
/* Attempt to merge blocks as made possible by edge removal. If
|
||
a block has only one successor, and the successor has only
|
||
one predecessor, they may be combined. */
|
||
do
|
||
{
|
||
block_was_dirty = false;
|
||
changed = false;
|
||
iterations++;
|
||
|
||
if (dump_file)
|
||
fprintf (dump_file,
|
||
"\n\ntry_optimize_cfg iteration %i\n\n",
|
||
iterations);
|
||
|
||
for (b = ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb; b
|
||
!= EXIT_BLOCK_PTR_FOR_FN (cfun);)
|
||
{
|
||
basic_block c;
|
||
edge s;
|
||
bool changed_here = false;
|
||
|
||
/* Delete trivially dead basic blocks. This is either
|
||
blocks with no predecessors, or empty blocks with no
|
||
successors. However if the empty block with no
|
||
successors is the successor of the ENTRY_BLOCK, it is
|
||
kept. This ensures that the ENTRY_BLOCK will have a
|
||
successor which is a precondition for many RTL
|
||
passes. Empty blocks may result from expanding
|
||
__builtin_unreachable (). */
|
||
if (EDGE_COUNT (b->preds) == 0
|
||
|| (EDGE_COUNT (b->succs) == 0
|
||
&& trivially_empty_bb_p (b)
|
||
&& single_succ_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun))->dest
|
||
!= b))
|
||
{
|
||
c = b->prev_bb;
|
||
if (EDGE_COUNT (b->preds) > 0)
|
||
{
|
||
edge e;
|
||
edge_iterator ei;
|
||
|
||
if (current_ir_type () == IR_RTL_CFGLAYOUT)
|
||
{
|
||
rtx_insn *insn;
|
||
for (insn = BB_FOOTER (b);
|
||
insn; insn = NEXT_INSN (insn))
|
||
if (BARRIER_P (insn))
|
||
break;
|
||
if (insn)
|
||
FOR_EACH_EDGE (e, ei, b->preds)
|
||
if ((e->flags & EDGE_FALLTHRU))
|
||
{
|
||
if (BB_FOOTER (b)
|
||
&& BB_FOOTER (e->src) == NULL)
|
||
{
|
||
BB_FOOTER (e->src) = BB_FOOTER (b);
|
||
BB_FOOTER (b) = NULL;
|
||
}
|
||
else
|
||
emit_barrier_after_bb (e->src);
|
||
}
|
||
}
|
||
else
|
||
{
|
||
rtx_insn *last = get_last_bb_insn (b);
|
||
if (last && BARRIER_P (last))
|
||
FOR_EACH_EDGE (e, ei, b->preds)
|
||
if ((e->flags & EDGE_FALLTHRU))
|
||
emit_barrier_after (BB_END (e->src));
|
||
}
|
||
}
|
||
delete_basic_block (b);
|
||
changed = true;
|
||
/* Avoid trying to remove the exit block. */
|
||
b = (c == ENTRY_BLOCK_PTR_FOR_FN (cfun) ? c->next_bb : c);
|
||
continue;
|
||
}
|
||
|
||
/* Remove code labels no longer used. */
|
||
if (single_pred_p (b)
|
||
&& (single_pred_edge (b)->flags & EDGE_FALLTHRU)
|
||
&& !(single_pred_edge (b)->flags & EDGE_COMPLEX)
|
||
&& LABEL_P (BB_HEAD (b))
|
||
&& !LABEL_PRESERVE_P (BB_HEAD (b))
|
||
/* If the previous block ends with a branch to this
|
||
block, we can't delete the label. Normally this
|
||
is a condjump that is yet to be simplified, but
|
||
if CASE_DROPS_THRU, this can be a tablejump with
|
||
some element going to the same place as the
|
||
default (fallthru). */
|
||
&& (single_pred (b) == ENTRY_BLOCK_PTR_FOR_FN (cfun)
|
||
|| !JUMP_P (BB_END (single_pred (b)))
|
||
|| ! label_is_jump_target_p (BB_HEAD (b),
|
||
BB_END (single_pred (b)))))
|
||
{
|
||
delete_insn (BB_HEAD (b));
|
||
if (dump_file)
|
||
fprintf (dump_file, "Deleted label in block %i.\n",
|
||
b->index);
|
||
}
|
||
|
||
/* If we fall through an empty block, we can remove it. */
|
||
if (!(mode & (CLEANUP_CFGLAYOUT | CLEANUP_NO_INSN_DEL))
|
||
&& single_pred_p (b)
|
||
&& (single_pred_edge (b)->flags & EDGE_FALLTHRU)
|
||
&& !LABEL_P (BB_HEAD (b))
|
||
&& FORWARDER_BLOCK_P (b)
|
||
/* Note that forwarder_block_p true ensures that
|
||
there is a successor for this block. */
|
||
&& (single_succ_edge (b)->flags & EDGE_FALLTHRU)
|
||
&& n_basic_blocks_for_fn (cfun) > NUM_FIXED_BLOCKS + 1)
|
||
{
|
||
if (dump_file)
|
||
fprintf (dump_file,
|
||
"Deleting fallthru block %i.\n",
|
||
b->index);
|
||
|
||
c = ((b->prev_bb == ENTRY_BLOCK_PTR_FOR_FN (cfun))
|
||
? b->next_bb : b->prev_bb);
|
||
redirect_edge_succ_nodup (single_pred_edge (b),
|
||
single_succ (b));
|
||
delete_basic_block (b);
|
||
changed = true;
|
||
b = c;
|
||
continue;
|
||
}
|
||
|
||
/* Merge B with its single successor, if any. */
|
||
if (single_succ_p (b)
|
||
&& (s = single_succ_edge (b))
|
||
&& !(s->flags & EDGE_COMPLEX)
|
||
&& (c = s->dest) != EXIT_BLOCK_PTR_FOR_FN (cfun)
|
||
&& single_pred_p (c)
|
||
&& b != c)
|
||
{
|
||
/* When not in cfg_layout mode use code aware of reordering
|
||
INSN. This code possibly creates new basic blocks so it
|
||
does not fit merge_blocks interface and is kept here in
|
||
hope that it will become useless once more of compiler
|
||
is transformed to use cfg_layout mode. */
|
||
|
||
if ((mode & CLEANUP_CFGLAYOUT)
|
||
&& can_merge_blocks_p (b, c))
|
||
{
|
||
merge_blocks (b, c);
|
||
update_forwarder_flag (b);
|
||
changed_here = true;
|
||
}
|
||
else if (!(mode & CLEANUP_CFGLAYOUT)
|
||
/* If the jump insn has side effects,
|
||
we can't kill the edge. */
|
||
&& (!JUMP_P (BB_END (b))
|
||
|| (reload_completed
|
||
? simplejump_p (BB_END (b))
|
||
: (onlyjump_p (BB_END (b))
|
||
&& !tablejump_p (BB_END (b),
|
||
NULL, NULL))))
|
||
&& (next = merge_blocks_move (s, b, c, mode)))
|
||
{
|
||
b = next;
|
||
changed_here = true;
|
||
}
|
||
}
|
||
|
||
/* Try to change a branch to a return to just that return. */
|
||
rtx_insn *ret, *use;
|
||
if (single_succ_p (b)
|
||
&& onlyjump_p (BB_END (b))
|
||
&& bb_is_just_return (single_succ (b), &ret, &use))
|
||
{
|
||
if (redirect_jump (as_a <rtx_jump_insn *> (BB_END (b)),
|
||
PATTERN (ret), 0))
|
||
{
|
||
if (use)
|
||
emit_insn_before (copy_insn (PATTERN (use)),
|
||
BB_END (b));
|
||
if (dump_file)
|
||
fprintf (dump_file, "Changed jump %d->%d to return.\n",
|
||
b->index, single_succ (b)->index);
|
||
redirect_edge_succ (single_succ_edge (b),
|
||
EXIT_BLOCK_PTR_FOR_FN (cfun));
|
||
single_succ_edge (b)->flags &= ~EDGE_CROSSING;
|
||
changed_here = true;
|
||
}
|
||
}
|
||
|
||
/* Try to change a conditional branch to a return to the
|
||
respective conditional return. */
|
||
if (EDGE_COUNT (b->succs) == 2
|
||
&& any_condjump_p (BB_END (b))
|
||
&& bb_is_just_return (BRANCH_EDGE (b)->dest, &ret, &use))
|
||
{
|
||
if (redirect_jump (as_a <rtx_jump_insn *> (BB_END (b)),
|
||
PATTERN (ret), 0))
|
||
{
|
||
if (use)
|
||
emit_insn_before (copy_insn (PATTERN (use)),
|
||
BB_END (b));
|
||
if (dump_file)
|
||
fprintf (dump_file, "Changed conditional jump %d->%d "
|
||
"to conditional return.\n",
|
||
b->index, BRANCH_EDGE (b)->dest->index);
|
||
redirect_edge_succ (BRANCH_EDGE (b),
|
||
EXIT_BLOCK_PTR_FOR_FN (cfun));
|
||
BRANCH_EDGE (b)->flags &= ~EDGE_CROSSING;
|
||
changed_here = true;
|
||
}
|
||
}
|
||
|
||
/* Try to flip a conditional branch that falls through to
|
||
a return so that it becomes a conditional return and a
|
||
new jump to the original branch target. */
|
||
if (EDGE_COUNT (b->succs) == 2
|
||
&& BRANCH_EDGE (b)->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
|
||
&& any_condjump_p (BB_END (b))
|
||
&& bb_is_just_return (FALLTHRU_EDGE (b)->dest, &ret, &use))
|
||
{
|
||
if (invert_jump (as_a <rtx_jump_insn *> (BB_END (b)),
|
||
JUMP_LABEL (BB_END (b)), 0))
|
||
{
|
||
basic_block new_ft = BRANCH_EDGE (b)->dest;
|
||
if (redirect_jump (as_a <rtx_jump_insn *> (BB_END (b)),
|
||
PATTERN (ret), 0))
|
||
{
|
||
if (use)
|
||
emit_insn_before (copy_insn (PATTERN (use)),
|
||
BB_END (b));
|
||
if (dump_file)
|
||
fprintf (dump_file, "Changed conditional jump "
|
||
"%d->%d to conditional return, adding "
|
||
"fall-through jump.\n",
|
||
b->index, BRANCH_EDGE (b)->dest->index);
|
||
redirect_edge_succ (BRANCH_EDGE (b),
|
||
EXIT_BLOCK_PTR_FOR_FN (cfun));
|
||
BRANCH_EDGE (b)->flags &= ~EDGE_CROSSING;
|
||
std::swap (BRANCH_EDGE (b)->probability,
|
||
FALLTHRU_EDGE (b)->probability);
|
||
update_br_prob_note (b);
|
||
basic_block jb = force_nonfallthru (FALLTHRU_EDGE (b));
|
||
notice_new_block (jb);
|
||
if (!redirect_jump (as_a <rtx_jump_insn *> (BB_END (jb)),
|
||
block_label (new_ft), 0))
|
||
gcc_unreachable ();
|
||
redirect_edge_succ (single_succ_edge (jb), new_ft);
|
||
changed_here = true;
|
||
}
|
||
else
|
||
{
|
||
/* Invert the jump back to what it was. This should
|
||
never fail. */
|
||
if (!invert_jump (as_a <rtx_jump_insn *> (BB_END (b)),
|
||
JUMP_LABEL (BB_END (b)), 0))
|
||
gcc_unreachable ();
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Simplify branch over branch. */
|
||
if ((mode & CLEANUP_EXPENSIVE)
|
||
&& !(mode & CLEANUP_CFGLAYOUT)
|
||
&& try_simplify_condjump (b))
|
||
changed_here = true;
|
||
|
||
/* If B has a single outgoing edge, but uses a
|
||
non-trivial jump instruction without side-effects, we
|
||
can either delete the jump entirely, or replace it
|
||
with a simple unconditional jump. */
|
||
if (single_succ_p (b)
|
||
&& single_succ (b) != EXIT_BLOCK_PTR_FOR_FN (cfun)
|
||
&& onlyjump_p (BB_END (b))
|
||
&& !CROSSING_JUMP_P (BB_END (b))
|
||
&& try_redirect_by_replacing_jump (single_succ_edge (b),
|
||
single_succ (b),
|
||
(mode & CLEANUP_CFGLAYOUT) != 0))
|
||
{
|
||
update_forwarder_flag (b);
|
||
changed_here = true;
|
||
}
|
||
|
||
/* Simplify branch to branch. */
|
||
if (try_forward_edges (mode, b))
|
||
{
|
||
update_forwarder_flag (b);
|
||
changed_here = true;
|
||
}
|
||
|
||
/* Look for shared code between blocks. */
|
||
if ((mode & CLEANUP_CROSSJUMP)
|
||
&& try_crossjump_bb (mode, b))
|
||
changed_here = true;
|
||
|
||
if ((mode & CLEANUP_CROSSJUMP)
|
||
/* This can lengthen register lifetimes. Do it only after
|
||
reload. */
|
||
&& reload_completed
|
||
&& try_head_merge_bb (b))
|
||
changed_here = true;
|
||
|
||
/* Don't get confused by the index shift caused by
|
||
deleting blocks. */
|
||
if (!changed_here)
|
||
b = b->next_bb;
|
||
else
|
||
changed = true;
|
||
}
|
||
|
||
if ((mode & CLEANUP_CROSSJUMP)
|
||
&& try_crossjump_bb (mode, EXIT_BLOCK_PTR_FOR_FN (cfun)))
|
||
changed = true;
|
||
|
||
if (block_was_dirty)
|
||
{
|
||
/* This should only be set by head-merging. */
|
||
gcc_assert (mode & CLEANUP_CROSSJUMP);
|
||
df_analyze ();
|
||
}
|
||
|
||
if (changed)
|
||
{
|
||
/* Edge forwarding in particular can cause hot blocks previously
|
||
reached by both hot and cold blocks to become dominated only
|
||
by cold blocks. This will cause the verification below to fail,
|
||
and lead to now cold code in the hot section. This is not easy
|
||
to detect and fix during edge forwarding, and in some cases
|
||
is only visible after newly unreachable blocks are deleted,
|
||
which will be done in fixup_partitions. */
|
||
if ((mode & CLEANUP_NO_PARTITIONING) == 0)
|
||
{
|
||
fixup_partitions ();
|
||
checking_verify_flow_info ();
|
||
}
|
||
}
|
||
|
||
changed_overall |= changed;
|
||
first_pass = false;
|
||
}
|
||
while (changed);
|
||
}
|
||
|
||
FOR_ALL_BB_FN (b, cfun)
|
||
b->flags &= ~(BB_FORWARDER_BLOCK | BB_NONTHREADABLE_BLOCK);
|
||
|
||
return changed_overall;
|
||
}
|
||
|
||
/* Delete all unreachable basic blocks. */
|
||
|
||
bool
|
||
delete_unreachable_blocks (void)
|
||
{
|
||
bool changed = false;
|
||
basic_block b, prev_bb;
|
||
|
||
find_unreachable_blocks ();
|
||
|
||
/* When we're in GIMPLE mode and there may be debug bind insns, we
|
||
should delete blocks in reverse dominator order, so as to get a
|
||
chance to substitute all released DEFs into debug bind stmts. If
|
||
we don't have dominators information, walking blocks backward
|
||
gets us a better chance of retaining most debug information than
|
||
otherwise. */
|
||
if (MAY_HAVE_DEBUG_BIND_INSNS && current_ir_type () == IR_GIMPLE
|
||
&& dom_info_available_p (CDI_DOMINATORS))
|
||
{
|
||
for (b = EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb;
|
||
b != ENTRY_BLOCK_PTR_FOR_FN (cfun); b = prev_bb)
|
||
{
|
||
prev_bb = b->prev_bb;
|
||
|
||
if (!(b->flags & BB_REACHABLE))
|
||
{
|
||
/* Speed up the removal of blocks that don't dominate
|
||
others. Walking backwards, this should be the common
|
||
case. */
|
||
if (!first_dom_son (CDI_DOMINATORS, b))
|
||
delete_basic_block (b);
|
||
else
|
||
{
|
||
vec<basic_block> h
|
||
= get_all_dominated_blocks (CDI_DOMINATORS, b);
|
||
|
||
while (h.length ())
|
||
{
|
||
b = h.pop ();
|
||
|
||
prev_bb = b->prev_bb;
|
||
|
||
gcc_assert (!(b->flags & BB_REACHABLE));
|
||
|
||
delete_basic_block (b);
|
||
}
|
||
|
||
h.release ();
|
||
}
|
||
|
||
changed = true;
|
||
}
|
||
}
|
||
}
|
||
else
|
||
{
|
||
for (b = EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb;
|
||
b != ENTRY_BLOCK_PTR_FOR_FN (cfun); b = prev_bb)
|
||
{
|
||
prev_bb = b->prev_bb;
|
||
|
||
if (!(b->flags & BB_REACHABLE))
|
||
{
|
||
delete_basic_block (b);
|
||
changed = true;
|
||
}
|
||
}
|
||
}
|
||
|
||
if (changed)
|
||
tidy_fallthru_edges ();
|
||
return changed;
|
||
}
|
||
|
||
/* Delete any jump tables never referenced. We can't delete them at the
|
||
time of removing tablejump insn as they are referenced by the preceding
|
||
insns computing the destination, so we delay deleting and garbagecollect
|
||
them once life information is computed. */
|
||
void
|
||
delete_dead_jumptables (void)
|
||
{
|
||
basic_block bb;
|
||
|
||
/* A dead jump table does not belong to any basic block. Scan insns
|
||
between two adjacent basic blocks. */
|
||
FOR_EACH_BB_FN (bb, cfun)
|
||
{
|
||
rtx_insn *insn, *next;
|
||
|
||
for (insn = NEXT_INSN (BB_END (bb));
|
||
insn && !NOTE_INSN_BASIC_BLOCK_P (insn);
|
||
insn = next)
|
||
{
|
||
next = NEXT_INSN (insn);
|
||
if (LABEL_P (insn)
|
||
&& LABEL_NUSES (insn) == LABEL_PRESERVE_P (insn)
|
||
&& JUMP_TABLE_DATA_P (next))
|
||
{
|
||
rtx_insn *label = insn, *jump = next;
|
||
|
||
if (dump_file)
|
||
fprintf (dump_file, "Dead jumptable %i removed\n",
|
||
INSN_UID (insn));
|
||
|
||
next = NEXT_INSN (next);
|
||
delete_insn (jump);
|
||
delete_insn (label);
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
|
||
/* Tidy the CFG by deleting unreachable code and whatnot. */
|
||
|
||
bool
|
||
cleanup_cfg (int mode)
|
||
{
|
||
bool changed = false;
|
||
|
||
/* Set the cfglayout mode flag here. We could update all the callers
|
||
but that is just inconvenient, especially given that we eventually
|
||
want to have cfglayout mode as the default. */
|
||
if (current_ir_type () == IR_RTL_CFGLAYOUT)
|
||
mode |= CLEANUP_CFGLAYOUT;
|
||
|
||
timevar_push (TV_CLEANUP_CFG);
|
||
if (delete_unreachable_blocks ())
|
||
{
|
||
changed = true;
|
||
/* We've possibly created trivially dead code. Cleanup it right
|
||
now to introduce more opportunities for try_optimize_cfg. */
|
||
if (!(mode & (CLEANUP_NO_INSN_DEL))
|
||
&& !reload_completed)
|
||
delete_trivially_dead_insns (get_insns (), max_reg_num ());
|
||
}
|
||
|
||
compact_blocks ();
|
||
|
||
/* To tail-merge blocks ending in the same noreturn function (e.g.
|
||
a call to abort) we have to insert fake edges to exit. Do this
|
||
here once. The fake edges do not interfere with any other CFG
|
||
cleanups. */
|
||
if (mode & CLEANUP_CROSSJUMP)
|
||
add_noreturn_fake_exit_edges ();
|
||
|
||
if (!dbg_cnt (cfg_cleanup))
|
||
return changed;
|
||
|
||
while (try_optimize_cfg (mode))
|
||
{
|
||
delete_unreachable_blocks (), changed = true;
|
||
if (!(mode & CLEANUP_NO_INSN_DEL))
|
||
{
|
||
/* Try to remove some trivially dead insns when doing an expensive
|
||
cleanup. But delete_trivially_dead_insns doesn't work after
|
||
reload (it only handles pseudos) and run_fast_dce is too costly
|
||
to run in every iteration.
|
||
|
||
For effective cross jumping, we really want to run a fast DCE to
|
||
clean up any dead conditions, or they get in the way of performing
|
||
useful tail merges.
|
||
|
||
Other transformations in cleanup_cfg are not so sensitive to dead
|
||
code, so delete_trivially_dead_insns or even doing nothing at all
|
||
is good enough. */
|
||
if ((mode & CLEANUP_EXPENSIVE) && !reload_completed
|
||
&& !delete_trivially_dead_insns (get_insns (), max_reg_num ()))
|
||
break;
|
||
if ((mode & CLEANUP_CROSSJUMP) && crossjumps_occurred)
|
||
{
|
||
run_fast_dce ();
|
||
mode &= ~CLEANUP_FORCE_FAST_DCE;
|
||
}
|
||
}
|
||
else
|
||
break;
|
||
}
|
||
|
||
if (mode & CLEANUP_CROSSJUMP)
|
||
remove_fake_exit_edges ();
|
||
|
||
if (mode & CLEANUP_FORCE_FAST_DCE)
|
||
run_fast_dce ();
|
||
|
||
/* Don't call delete_dead_jumptables in cfglayout mode, because
|
||
that function assumes that jump tables are in the insns stream.
|
||
But we also don't _have_ to delete dead jumptables in cfglayout
|
||
mode because we shouldn't even be looking at things that are
|
||
not in a basic block. Dead jumptables are cleaned up when
|
||
going out of cfglayout mode. */
|
||
if (!(mode & CLEANUP_CFGLAYOUT))
|
||
delete_dead_jumptables ();
|
||
|
||
/* ??? We probably do this way too often. */
|
||
if (current_loops
|
||
&& (changed
|
||
|| (mode & CLEANUP_CFG_CHANGED)))
|
||
{
|
||
timevar_push (TV_REPAIR_LOOPS);
|
||
/* The above doesn't preserve dominance info if available. */
|
||
gcc_assert (!dom_info_available_p (CDI_DOMINATORS));
|
||
calculate_dominance_info (CDI_DOMINATORS);
|
||
fix_loop_structure (NULL);
|
||
free_dominance_info (CDI_DOMINATORS);
|
||
timevar_pop (TV_REPAIR_LOOPS);
|
||
}
|
||
|
||
timevar_pop (TV_CLEANUP_CFG);
|
||
|
||
return changed;
|
||
}
|
||
|
||
namespace {
|
||
|
||
const pass_data pass_data_jump =
|
||
{
|
||
RTL_PASS, /* type */
|
||
"jump", /* name */
|
||
OPTGROUP_NONE, /* optinfo_flags */
|
||
TV_JUMP, /* tv_id */
|
||
0, /* properties_required */
|
||
0, /* properties_provided */
|
||
0, /* properties_destroyed */
|
||
0, /* todo_flags_start */
|
||
0, /* todo_flags_finish */
|
||
};
|
||
|
||
class pass_jump : public rtl_opt_pass
|
||
{
|
||
public:
|
||
pass_jump (gcc::context *ctxt)
|
||
: rtl_opt_pass (pass_data_jump, ctxt)
|
||
{}
|
||
|
||
/* opt_pass methods: */
|
||
virtual unsigned int execute (function *);
|
||
|
||
}; // class pass_jump
|
||
|
||
unsigned int
|
||
pass_jump::execute (function *)
|
||
{
|
||
delete_trivially_dead_insns (get_insns (), max_reg_num ());
|
||
if (dump_file)
|
||
dump_flow_info (dump_file, dump_flags);
|
||
cleanup_cfg ((optimize ? CLEANUP_EXPENSIVE : 0)
|
||
| (flag_thread_jumps ? CLEANUP_THREADING : 0));
|
||
return 0;
|
||
}
|
||
|
||
} // anon namespace
|
||
|
||
rtl_opt_pass *
|
||
make_pass_jump (gcc::context *ctxt)
|
||
{
|
||
return new pass_jump (ctxt);
|
||
}
|
||
|
||
namespace {
|
||
|
||
const pass_data pass_data_jump_after_combine =
|
||
{
|
||
RTL_PASS, /* type */
|
||
"jump_after_combine", /* name */
|
||
OPTGROUP_NONE, /* optinfo_flags */
|
||
TV_JUMP, /* tv_id */
|
||
0, /* properties_required */
|
||
0, /* properties_provided */
|
||
0, /* properties_destroyed */
|
||
0, /* todo_flags_start */
|
||
0, /* todo_flags_finish */
|
||
};
|
||
|
||
class pass_jump_after_combine : public rtl_opt_pass
|
||
{
|
||
public:
|
||
pass_jump_after_combine (gcc::context *ctxt)
|
||
: rtl_opt_pass (pass_data_jump_after_combine, ctxt)
|
||
{}
|
||
|
||
/* opt_pass methods: */
|
||
virtual bool gate (function *) { return flag_thread_jumps; }
|
||
virtual unsigned int execute (function *);
|
||
|
||
}; // class pass_jump_after_combine
|
||
|
||
unsigned int
|
||
pass_jump_after_combine::execute (function *)
|
||
{
|
||
/* Jump threading does not keep dominators up-to-date. */
|
||
free_dominance_info (CDI_DOMINATORS);
|
||
cleanup_cfg (CLEANUP_THREADING);
|
||
return 0;
|
||
}
|
||
|
||
} // anon namespace
|
||
|
||
rtl_opt_pass *
|
||
make_pass_jump_after_combine (gcc::context *ctxt)
|
||
{
|
||
return new pass_jump_after_combine (ctxt);
|
||
}
|
||
|
||
namespace {
|
||
|
||
const pass_data pass_data_jump2 =
|
||
{
|
||
RTL_PASS, /* type */
|
||
"jump2", /* name */
|
||
OPTGROUP_NONE, /* optinfo_flags */
|
||
TV_JUMP, /* tv_id */
|
||
0, /* properties_required */
|
||
0, /* properties_provided */
|
||
0, /* properties_destroyed */
|
||
0, /* todo_flags_start */
|
||
0, /* todo_flags_finish */
|
||
};
|
||
|
||
class pass_jump2 : public rtl_opt_pass
|
||
{
|
||
public:
|
||
pass_jump2 (gcc::context *ctxt)
|
||
: rtl_opt_pass (pass_data_jump2, ctxt)
|
||
{}
|
||
|
||
/* opt_pass methods: */
|
||
virtual unsigned int execute (function *)
|
||
{
|
||
cleanup_cfg (flag_crossjumping ? CLEANUP_CROSSJUMP : 0);
|
||
return 0;
|
||
}
|
||
|
||
}; // class pass_jump2
|
||
|
||
} // anon namespace
|
||
|
||
rtl_opt_pass *
|
||
make_pass_jump2 (gcc::context *ctxt)
|
||
{
|
||
return new pass_jump2 (ctxt);
|
||
}
|