bcea76b65d
* 1aexcept.adb, 1aexcept.ads, 1ic.ads, 1ssecsta.adb, 1ssecsta.ads, 31soccon.ads, 31soliop.ads, 3asoccon.ads, 3bsoccon.ads, 3gsoccon.ads, 3hsoccon.ads, 3ssoccon.ads, 3ssoliop.ads, 3wsoccon.ads, 3wsocthi.adb, 3wsocthi.ads, 3wsoliop.ads, 41intnam.ads, 42intnam.ads, 4aintnam.ads, 4cintnam.ads, 4dintnam.ads, 4gintnam.ads, 4hexcpol.adb, 4hintnam.ads, 4lintnam.ads, 4mintnam.ads, 4nintnam.ads, 4ointnam.ads, 4onumaux.ads, 4pintnam.ads, 4rintnam.ads, 4sintnam.ads, 4uintnam.ads, 4vcaldel.adb, 4vcalend.adb, 4vcalend.ads, 4vintnam.ads, 4wcalend.adb, 4wexcpol.adb, 4wintnam.ads, 4zintnam.ads, 4znumaux.ads, 4zsytaco.adb, 4zsytaco.ads, 51osinte.adb, 51osinte.ads, 52osinte.adb, 52osinte.ads, 52system.ads, 53osinte.ads, 54osinte.ads, 5amastop.adb, 5aosinte.adb, 5aosinte.ads, 5asystem.ads, 5ataprop.adb, 5atasinf.ads, 5ataspri.ads, 5atpopsp.adb, 5avxwork.ads, 5bosinte.adb, 5bosinte.ads, 5bsystem.ads, 5cosinte.ads, 5dosinte.ads, 5esystem.ads, 5etpopse.adb, 5fintman.adb, 5fosinte.ads, 5fsystem.ads, 5ftaprop.adb, 5ftasinf.ads, 5ginterr.adb, 5gintman.adb, 5gmastop.adb, 5gosinte.ads, 5gproinf.adb, 5gproinf.ads, 5gsystem.ads, 5gtaprop.adb, 5gtasinf.adb, 5gtasinf.ads, 5gtpgetc.adb, 5hosinte.adb, 5hosinte.ads, 5hparame.ads, 5hsystem.ads, 5htaprop.adb, 5htaspri.ads, 5htraceb.adb, 5iosinte.adb, 5iosinte.ads, 5itaprop.adb, 5itaspri.ads, 5ksystem.ads, 5kvxwork.ads, 5lintman.adb, 5lml-tgt.adb, 5losinte.ads, 5lsystem.ads, 5mosinte.ads, 5mvxwork.ads, 5ninmaop.adb, 5nintman.adb, 5nosinte.ads, 5ntaprop.adb, 5ntaspri.ads, 5ointerr.adb, 5omastop.adb, 5oosinte.adb, 5oosinte.ads, 5oosprim.adb, 5oparame.adb, 5osystem.ads, 5otaprop.adb, 5otaspri.ads, 5posinte.ads, 5posprim.adb, 5pvxwork.ads, 5qosinte.adb, 5qosinte.ads, 5qstache.adb, 5qtaprop.adb, 5qtaspri.ads, 5rosinte.adb, 5rosinte.ads, 5rparame.adb, 5sintman.adb, 5sosinte.adb, 5sosinte.ads, 5sparame.adb, 5ssystem.ads, 5staprop.adb, 5stasinf.adb, 5stasinf.ads, 5staspri.ads, 5stpopse.adb, 5svxwork.ads, 5tosinte.ads, 5uintman.adb, 5uosinte.ads, 5vasthan.adb, 5vinmaop.adb, 5vinterr.adb, 5vintman.adb, 5vintman.ads, 5vmastop.adb, 5vosinte.adb, 5vosinte.ads, 5vosprim.adb, 5vosprim.ads, 5vparame.ads, 5vsystem.ads, 5vtaprop.adb, 5vtaspri.ads, 5vtpopde.adb, 5vtpopde.ads, 5vvaflop.adb, 5wgloloc.adb, 5wintman.adb, 5wmemory.adb, 5wosinte.ads, 5wosprim.adb, 5wsystem.ads, 5wtaprop.adb, 5wtaspri.ads, 5ysystem.ads, 5zinterr.adb, 5zintman.adb, 5zosinte.adb, 5zosinte.ads, 5zosprim.adb, 5zsystem.ads, 5ztaprop.adb, 6vcpp.adb, 6vcstrea.adb, 6vinterf.ads, 7sinmaop.adb, 7sintman.adb, 7sosinte.adb, 7sosprim.adb, 7staprop.adb, 7staspri.ads, 7stpopsp.adb, 7straceb.adb, 86numaux.adb, 86numaux.ads, 9drpc.adb, a-astaco.adb, a-astaco.ads, a-caldel.adb, a-caldel.ads, a-calend.adb, a-calend.ads, a-chahan.adb, a-chahan.ads, a-charac.ads, a-chlat1.ads, a-chlat9.ads, a-colien.adb, a-colien.ads, a-colire.adb, a-colire.ads, a-comlin.adb, a-comlin.ads, a-cwila1.ads, a-cwila9.ads, a-decima.adb, a-decima.ads, a-diocst.adb, a-diocst.ads, a-direio.adb, a-direio.ads, a-dynpri.adb, a-dynpri.ads, a-einuoc.adb, a-einuoc.ads, a-except.adb, a-except.ads, a-excpol.adb, a-exctra.adb, a-exctra.ads, a-filico.adb, a-filico.ads, a-finali.adb, a-finali.ads, a-flteio.ads, a-fwteio.ads, a-inteio.ads, a-interr.adb, a-interr.ads, a-intnam.ads, a-intsig.adb, a-intsig.ads, a-ioexce.ads, a-iwteio.ads, a-lfteio.ads, a-lfwtio.ads, a-liteio.ads, a-liwtio.ads, a-llftio.ads, a-llfwti.ads, a-llitio.ads, a-lliwti.ads, a-ncelfu.ads, a-ngcefu.adb, a-ngcefu.ads, a-ngcoty.adb, a-ngcoty.ads, a-ngelfu.adb, a-ngelfu.ads, a-nlcefu.ads, a-nlcoty.ads, a-nlelfu.ads, a-nllcef.ads, a-nllcty.ads, a-nllefu.ads, a-nscefu.ads, a-nscoty.ads, a-nselfu.ads, a-nucoty.ads, a-nudira.adb, a-nudira.ads, a-nuelfu.ads, a-nuflra.adb, a-nuflra.ads, a-numaux.ads, a-numeri.ads, a-reatim.adb, a-reatim.ads, a-retide.adb, a-retide.ads, a-sequio.adb, a-sequio.ads, a-sfteio.ads, a-sfwtio.ads, a-siocst.adb, a-siocst.ads, a-siteio.ads, a-siwtio.ads, a-ssicst.adb, a-ssicst.ads, a-ssitio.ads, a-ssiwti.ads, a-stmaco.ads, a-storio.adb, a-storio.ads, a-strbou.adb, a-strbou.ads, a-stream.ads, a-strfix.adb, a-strfix.ads, a-string.ads, a-strmap.adb, a-strmap.ads, a-strsea.adb, a-strsea.ads, a-strunb.adb, a-strunb.ads, a-ststio.adb, a-ststio.ads, a-stunau.adb, a-stunau.ads, a-stwibo.adb, a-stwibo.ads, a-stwifi.adb, a-stwifi.ads, a-stwima.adb, a-stwima.ads, a-stwise.adb, a-stwise.ads, a-stwiun.adb, a-stwiun.ads, a-suteio.adb, a-suteio.ads, a-swmwco.ads, a-swuwti.adb, a-swuwti.ads, a-sytaco.adb, a-sytaco.ads, a-tags.adb, a-tags.ads, a-tasatt.adb, a-tasatt.ads, a-taside.adb, a-taside.ads, a-teioed.adb, a-teioed.ads, a-textio.adb, a-textio.ads, a-ticoau.adb, a-ticoau.ads, a-ticoio.adb, a-ticoio.ads, a-tideau.adb, a-tideau.ads, a-tideio.adb, a-tideio.ads, a-tienau.adb, a-tienau.ads, a-tienio.adb, a-tienio.ads, a-tifiio.adb, a-tifiio.ads, a-tiflau.adb, a-tiflau.ads, a-tiflio.adb, a-tiflio.ads, a-tigeau.adb, a-tigeau.ads, a-tiinau.adb, a-tiinau.ads, a-tiinio.adb, a-tiinio.ads, a-timoau.adb, a-timoau.ads, a-timoio.adb, a-timoio.ads, a-tiocst.adb, a-tiocst.ads, a-titest.adb, a-titest.ads, a-unccon.ads, a-uncdea.ads, a-witeio.adb, a-witeio.ads, a-wtcoau.adb, a-wtcoau.ads, a-wtcoio.adb, a-wtcoio.ads, a-wtcstr.adb, a-wtcstr.ads, a-wtdeau.adb, a-wtdeau.ads, a-wtdeio.adb, a-wtdeio.ads, a-wtedit.adb, a-wtedit.ads, a-wtenau.adb, a-wtenau.ads, a-wtenio.adb, a-wtenio.ads, a-wtfiio.adb, a-wtfiio.ads, a-wtflau.adb, a-wtflau.ads, a-wtflio.adb, a-wtflio.ads, a-wtgeau.adb, a-wtgeau.ads, a-wtinau.adb, a-wtinau.ads, a-wtinio.adb, a-wtinio.ads, a-wtmoau.adb, a-wtmoau.ads, a-wtmoio.adb, a-wtmoio.ads, a-wttest.adb, a-wttest.ads, ada-tree.h, ada.ads, ada.h, adadecode.c, adadecode.h, ali-util.adb, ali-util.ads, ali.adb, ali.ads, alloc.ads, argv.c, atree.adb, atree.ads, atree.h, aux-io.c, back_end.adb, back_end.ads, bcheck.adb, bcheck.ads, binde.adb, binde.ads, binderr.adb, binderr.ads, bindgen.adb, bindgen.ads, bindusg.adb, bindusg.ads, butil.adb, butil.ads, cal.c, calendar.ads, casing.adb, casing.ads, ceinfo.adb, checks.adb, checks.ads, cio.c, comperr.adb, comperr.ads, config-lang.in, csets.adb, csets.ads, csinfo.adb, cstand.adb, cstand.ads, cuintp.c, debug.adb, debug.ads, debug_a.adb, debug_a.ads, dec-io.adb, dec-io.ads, dec.ads, deftarg.c, directio.ads, einfo.adb, einfo.ads, elists.adb, elists.ads, elists.h, errno.c, errout.adb, errout.ads, eval_fat.adb, eval_fat.ads, exit.c, exp_aggr.adb, exp_aggr.ads, exp_attr.adb, exp_attr.ads, exp_ch10.ads, exp_ch11.adb, exp_ch11.ads, exp_ch12.adb, exp_ch12.ads, exp_ch13.adb, exp_ch13.ads, exp_ch2.adb, exp_ch2.ads, exp_ch3.adb, exp_ch3.ads, exp_ch4.adb, exp_ch4.ads, exp_ch5.adb, exp_ch5.ads, exp_ch6.adb, exp_ch6.ads, exp_ch7.adb, exp_ch7.ads, exp_ch8.adb, exp_ch8.ads, exp_ch9.adb, exp_ch9.ads, exp_code.adb, exp_code.ads, exp_dbug.adb, exp_dbug.ads, exp_disp.adb, exp_disp.ads, exp_dist.adb, exp_dist.ads, exp_fixd.adb, exp_fixd.ads, exp_imgv.adb, exp_imgv.ads, exp_intr.adb, exp_intr.ads, exp_pakd.adb, exp_pakd.ads, exp_prag.adb, exp_prag.ads, exp_smem.adb, exp_smem.ads, exp_strm.adb, exp_strm.ads, exp_tss.adb, exp_tss.ads, exp_util.adb, exp_util.ads, exp_vfpt.adb, exp_vfpt.ads, expander.adb, expander.ads, fmap.adb, fmap.ads, fname-sf.adb, fname-sf.ads, fname-uf.adb, fname-uf.ads, fname.adb, fname.ads, freeze.adb, freeze.ads, frontend.adb, frontend.ads, g-awk.adb, g-awk.ads, g-busora.adb, g-busora.ads, g-busorg.adb, g-busorg.ads, g-calend.adb, g-calend.ads, g-casuti.adb, g-casuti.ads, g-catiio.adb, g-catiio.ads, g-cgi.adb, g-cgi.ads, g-cgicoo.adb, g-cgicoo.ads, g-cgideb.adb, g-cgideb.ads, g-comlin.adb, g-comlin.ads, g-crc32.adb, g-crc32.ads, g-curexc.ads, g-debpoo.adb, g-debpoo.ads, g-debuti.adb, g-debuti.ads, g-diopit.adb, g-diopit.ads, g-dirope.adb, g-dirope.ads, g-dyntab.adb, g-dyntab.ads, g-enblsp.adb, g-except.ads, g-exctra.adb, g-exctra.ads, g-expect.adb, g-expect.ads, g-flocon.ads, g-hesora.adb, g-hesora.ads, g-hesorg.adb, g-hesorg.ads, g-htable.adb, g-htable.ads, g-io.adb, g-io.ads, g-io_aux.adb, g-io_aux.ads, g-locfil.ads, g-md5.adb, g-md5.ads, g-moreex.adb, g-moreex.ads, g-os_lib.adb, g-os_lib.ads, g-regexp.adb, g-regexp.ads, g-regist.ads, g-regpat.adb, g-regpat.ads, g-soccon.ads, g-socket.adb, g-socket.ads, g-socthi.adb, g-socthi.ads, g-soliop.ads, g-souinf.ads, g-speche.adb, g-speche.ads, g-spipat.adb, g-spipat.ads, g-spitbo.adb, g-spitbo.ads, g-sptabo.ads, g-sptain.ads, g-sptavs.ads, g-table.adb, g-table.ads, g-tasloc.adb, g-tasloc.ads, g-thread.adb, g-thread.ads, g-traceb.adb, g-traceb.ads, g-trasym.adb, g-trasym.ads, get_targ.adb, get_targ.ads, gnat-style.texi, gnat.ads, gnat1drv.adb, gnat1drv.ads, gnatbind.adb, gnatbind.ads, gnatbl.c, gnatchop.adb, gnatcmd.adb, gnatcmd.ads, gnatdll.adb, gnatfind.adb, gnatkr.adb, gnatkr.ads, gnatlbr.adb, gnatlink.adb, gnatlink.ads, gnatls.adb, gnatls.ads, gnatmake.adb, gnatmake.ads, gnatmem.adb, gnatname.adb, gnatname.ads, gnatprep.adb, gnatprep.ads, gnatpsta.adb, gnatvsn.adb, gnatvsn.ads, gnatxref.adb, hlo.adb, hlo.ads, hostparm.ads, i-c.adb, i-c.ads, i-cexten.ads, i-cobol.adb, i-cobol.ads, i-cpoint.adb, i-cpoint.ads, i-cpp.adb, i-cpp.ads, i-cstrea.adb, i-cstrea.ads, i-cstrin.adb, i-cstrin.ads, i-fortra.adb, i-fortra.ads, i-os2err.ads, i-os2lib.adb, i-os2lib.ads, i-os2syn.ads, i-os2thr.ads, i-pacdec.adb, i-pacdec.ads, i-vxwork.ads, impunit.adb, impunit.ads, inline.adb, inline.ads, interfac.ads, ioexcept.ads, itypes.adb, itypes.ads, krunch.adb, krunch.ads, layout.adb, layout.ads, lib-list.adb, lib-load.adb, lib-load.ads, lib-sort.adb, lib-util.adb, lib-util.ads, lib-writ.adb, lib-writ.ads, lib-xref.adb, lib-xref.ads, lib.adb, lib.ads, live.adb, live.ads, machcode.ads, make.adb, make.ads, makeusg.adb, makeusg.ads, math_lib.adb, mdll-fil.adb, mdll-fil.ads, mdll-utl.adb, mdll-utl.ads, mdll.adb, mdll.ads, memroot.adb, memroot.ads, memtrack.adb, mlib-fil.adb, mlib-fil.ads, mlib-prj.adb, mlib-prj.ads, mlib-tgt.adb, mlib-tgt.ads, mlib-utl.adb, mlib-utl.ads, mlib.adb, mlib.ads, namet.adb, namet.ads, nlists.adb, nlists.ads, opt.adb, opt.ads, osint-b.adb, osint-b.ads, osint-c.adb, osint-c.ads, osint-l.adb, osint-l.ads, osint-m.adb, osint-m.ads, osint.adb, osint.ads, output.adb, output.ads, par-ch10.adb, par-ch11.adb, par-ch12.adb, par-ch13.adb, par-ch2.adb, par-ch3.adb, par-ch4.adb, par-ch5.adb, par-ch6.adb, par-ch7.adb, par-ch8.adb, par-ch9.adb, par-endh.adb, par-labl.adb, par-load.adb, par-prag.adb, par-sync.adb, par-tchk.adb, par-util.adb, par.adb, par.ads, prj-attr.adb, prj-attr.ads, prj-com.adb, prj-com.ads, prj-dect.adb, prj-dect.ads, prj-env.adb, prj-env.ads, prj-ext.adb, prj-ext.ads, prj-makr.adb, prj-makr.ads, prj-nmsc.adb, prj-nmsc.ads, prj-pars.adb, prj-pars.ads, prj-part.adb, prj-part.ads, prj-pp.adb, prj-pp.ads, prj-proc.adb, prj-proc.ads, prj-strt.adb, prj-strt.ads, prj-tree.adb, prj-tree.ads, prj-util.adb, prj-util.ads, prj.adb, prj.ads, repinfo.adb, repinfo.ads, restrict.adb, restrict.ads, rident.ads, rtsfind.adb, rtsfind.ads, s-addima.adb, s-addima.ads, s-arit64.adb, s-arit64.ads, s-assert.adb, s-assert.ads, s-asthan.adb, s-asthan.ads, s-atacco.adb, s-atacco.ads, s-auxdec.adb, s-auxdec.ads, s-bitops.adb, s-bitops.ads, s-chepoo.ads, s-crc32.adb, s-crc32.ads, s-direio.adb, s-direio.ads, s-errrep.adb, s-errrep.ads, s-except.ads, s-exctab.adb, s-exctab.ads, s-exnflt.ads, s-exngen.adb, s-exngen.ads, s-exnint.ads, s-exnlfl.ads, s-exnlin.ads, s-exnllf.ads, s-exnlli.ads, s-exnsfl.ads, s-exnsin.ads, s-exnssi.ads, s-expflt.ads, s-expgen.adb, s-expgen.ads, s-expint.ads, s-explfl.ads, s-explin.ads, s-expllf.ads, s-explli.ads, s-expllu.adb, s-expllu.ads, s-expmod.adb, s-expmod.ads, s-expsfl.ads, s-expsin.ads, s-expssi.ads, s-expuns.adb, s-expuns.ads, s-fatflt.ads, s-fatgen.adb, s-fatgen.ads, s-fatlfl.ads, s-fatllf.ads, s-fatsfl.ads, s-ficobl.ads, s-fileio.adb, s-fileio.ads, s-finimp.adb, s-finimp.ads, s-finroo.adb, s-finroo.ads, s-fore.adb, s-fore.ads, s-gloloc.adb, s-gloloc.ads, s-imgbiu.adb, s-imgbiu.ads, s-imgboo.adb, s-imgboo.ads, s-imgcha.adb, s-imgcha.ads, s-imgdec.adb, s-imgdec.ads, s-imgenu.adb, s-imgenu.ads, s-imgint.adb, s-imgint.ads, s-imgllb.adb, s-imgllb.ads, s-imglld.adb, s-imglld.ads, s-imglli.adb, s-imglli.ads, s-imgllu.adb, s-imgllu.ads, s-imgllw.adb, s-imgllw.ads, s-imgrea.adb, s-imgrea.ads, s-imguns.adb, s-imguns.ads, s-imgwch.adb, s-imgwch.ads, s-imgwiu.adb, s-imgwiu.ads, s-inmaop.ads, s-interr.adb, s-interr.ads, s-intman.ads, s-io.adb, s-io.ads, s-maccod.ads, s-mantis.adb, s-mantis.ads, s-mastop.adb, s-mastop.ads, s-memory.adb, s-memory.ads, s-osprim.ads, s-pack03.adb, s-pack03.ads, s-pack05.adb, s-pack05.ads, s-pack06.adb, s-pack06.ads, s-pack07.adb, s-pack07.ads, s-pack09.adb, s-pack09.ads, s-pack10.adb, s-pack10.ads, s-pack11.adb, s-pack11.ads, s-pack12.adb, s-pack12.ads, s-pack13.adb, s-pack13.ads, s-pack14.adb, s-pack14.ads, s-pack15.adb, s-pack15.ads, s-pack17.adb, s-pack17.ads, s-pack18.adb, s-pack18.ads, s-pack19.adb, s-pack19.ads, s-pack20.adb, s-pack20.ads, s-pack21.adb, s-pack21.ads, s-pack22.adb, s-pack22.ads, s-pack23.adb, s-pack23.ads, s-pack24.adb, s-pack24.ads, s-pack25.adb, s-pack25.ads, s-pack26.adb, s-pack26.ads, s-pack27.adb, s-pack27.ads, s-pack28.adb, s-pack28.ads, s-pack29.adb, s-pack29.ads, s-pack30.adb, s-pack30.ads, s-pack31.adb, s-pack31.ads, s-pack33.adb, s-pack33.ads, s-pack34.adb, s-pack34.ads, s-pack35.adb, s-pack35.ads, s-pack36.adb, s-pack36.ads, s-pack37.adb, s-pack37.ads, s-pack38.adb, s-pack38.ads, s-pack39.adb, s-pack39.ads, s-pack40.adb, s-pack40.ads, s-pack41.adb, s-pack41.ads, s-pack42.adb, s-pack42.ads, s-pack43.adb, s-pack43.ads, s-pack44.adb, s-pack44.ads, s-pack45.adb, s-pack45.ads, s-pack46.adb, s-pack46.ads, s-pack47.adb, s-pack47.ads, s-pack48.adb, s-pack48.ads, s-pack49.adb, s-pack49.ads, s-pack50.adb, s-pack50.ads, s-pack51.adb, s-pack51.ads, s-pack52.adb, s-pack52.ads, s-pack53.adb, s-pack53.ads, s-pack54.adb, s-pack54.ads, s-pack55.adb, s-pack55.ads, s-pack56.adb, s-pack56.ads, s-pack57.adb, s-pack57.ads, s-pack58.adb, s-pack58.ads, s-pack59.adb, s-pack59.ads, s-pack60.adb, s-pack60.ads, s-pack61.adb, s-pack61.ads, s-pack62.adb, s-pack62.ads, s-pack63.adb, s-pack63.ads, s-parame.adb, s-parame.ads, s-parint.adb, s-parint.ads, s-pooglo.adb, s-pooglo.ads, s-pooloc.adb, s-pooloc.ads, s-poosiz.adb, s-poosiz.ads, s-powtab.ads, s-proinf.adb, s-proinf.ads, s-rpc.adb, s-rpc.ads, s-scaval.ads, s-secsta.adb, s-secsta.ads, s-sequio.adb, s-sequio.ads, s-shasto.adb, s-shasto.ads, s-soflin.adb, s-soflin.ads, s-sopco3.adb, s-sopco3.ads, s-sopco4.adb, s-sopco4.ads, s-sopco5.adb, s-sopco5.ads, s-stache.adb, s-stache.ads, s-stalib.adb, s-stalib.ads, s-stoele.adb, s-stoele.ads, s-stopoo.ads, s-stratt.adb, s-stratt.ads, s-strops.adb, s-strops.ads, s-taasde.adb, s-taasde.ads, s-tadeca.adb, s-tadeca.ads, s-tadert.adb, s-tadert.ads, s-taenca.adb, s-taenca.ads, s-taprob.adb, s-taprob.ads, s-taprop.ads, s-tarest.adb, s-tarest.ads, s-tasdeb.adb, s-tasdeb.ads, s-tasinf.adb, s-tasinf.ads, s-tasini.adb, s-tasini.ads, s-taskin.adb, s-taskin.ads, s-tasque.adb, s-tasque.ads, s-tasren.adb, s-tasren.ads, s-tasres.ads, s-tassta.adb, s-tassta.ads, s-tasuti.adb, s-tasuti.ads, s-tataat.adb, s-tataat.ads, s-tpinop.adb, s-tpinop.ads, s-tpoben.adb, s-tpoben.ads, s-tpobop.adb, s-tpobop.ads, s-tposen.adb, s-tposen.ads, s-traceb.adb, s-traceb.ads, s-traces.adb, s-traces.ads, s-tratas.adb, s-tratas.ads, s-unstyp.ads, s-vaflop.adb, s-vaflop.ads, s-valboo.adb, s-valboo.ads, s-valcha.adb, s-valcha.ads, s-valdec.adb, s-valdec.ads, s-valenu.adb, s-valenu.ads, s-valint.adb, s-valint.ads, s-vallld.adb, s-vallld.ads, s-vallli.adb, s-vallli.ads, s-valllu.adb, s-valllu.ads, s-valrea.adb, s-valrea.ads, s-valuns.adb, s-valuns.ads, s-valuti.adb, s-valuti.ads, s-valwch.adb, s-valwch.ads, s-vercon.adb, s-vercon.ads, s-vmexta.adb, s-vmexta.ads, s-wchcnv.adb, s-wchcnv.ads, s-wchcon.ads, s-wchjis.adb, s-wchjis.ads, s-wchstw.adb, s-wchstw.ads, s-wchwts.adb, s-wchwts.ads, s-widboo.adb, s-widboo.ads, s-widcha.adb, s-widcha.ads, s-widenu.adb, s-widenu.ads, s-widlli.adb, s-widlli.ads, s-widllu.adb, s-widllu.ads, s-widwch.adb, s-widwch.ads, s-wwdcha.adb, s-wwdcha.ads, s-wwdenu.adb, s-wwdenu.ads, s-wwdwch.adb, s-wwdwch.ads, scans.adb, scans.ads, scn-nlit.adb, scn-slit.adb, scn.adb, scn.ads, sdefault.ads, sem.adb, sem.ads, sem_aggr.adb, sem_aggr.ads, sem_attr.adb, sem_attr.ads, sem_case.adb, sem_case.ads, sem_cat.adb, sem_cat.ads, sem_ch10.adb, sem_ch10.ads, sem_ch11.adb, sem_ch11.ads, sem_ch12.adb, sem_ch12.ads, sem_ch13.adb, sem_ch13.ads, sem_ch2.adb, sem_ch2.ads, sem_ch3.adb, sem_ch3.ads, sem_ch4.adb, sem_ch4.ads, sem_ch5.adb, sem_ch5.ads, sem_ch6.adb, sem_ch6.ads, sem_ch7.adb, sem_ch7.ads, sem_ch8.adb, sem_ch8.ads, sem_ch9.adb, sem_ch9.ads, sem_disp.adb, sem_disp.ads, sem_dist.adb, sem_dist.ads, sem_elab.adb, sem_elab.ads, sem_elim.adb, sem_elim.ads, sem_eval.adb, sem_eval.ads, sem_intr.adb, sem_intr.ads, sem_maps.adb, sem_maps.ads, sem_mech.adb, sem_mech.ads, sem_prag.adb, sem_prag.ads, sem_res.adb, sem_res.ads, sem_smem.adb, sem_smem.ads, sem_type.adb, sem_type.ads, sem_util.adb, sem_util.ads, sem_vfpt.adb, sem_vfpt.ads, sem_warn.adb, sem_warn.ads, sequenio.ads, sfn_scan.adb, sfn_scan.ads, sinfo-cn.adb, sinfo-cn.ads, sinfo.adb, sinfo.ads, sinput-d.adb, sinput-d.ads, sinput-l.adb, sinput-l.ads, sinput-p.adb, sinput-p.ads, sinput.adb, sinput.ads, snames.adb, snames.ads, sprint.adb, sprint.ads, stand.adb, stand.ads, stringt.adb, stringt.ads, style.adb, style.ads, stylesw.adb, stylesw.ads, switch-b.adb, switch-b.ads, switch-c.adb, switch-c.ads, switch-m.adb, switch-m.ads, switch.adb, switch.ads, system.ads, table.adb, table.ads, targparm.adb, targparm.ads, tbuild.adb, tbuild.ads, text_io.ads, trans.c, tree_gen.adb, tree_gen.ads, tree_in.adb, tree_in.ads, tree_io.adb, tree_io.ads, treepr.adb, treepr.ads, ttypef.ads, ttypes.ads, types.adb, types.ads, uintp.adb, uintp.ads, uname.adb, uname.ads, unchconv.ads, unchdeal.ads, urealp.adb, urealp.ads, usage.adb, usage.ads, validsw.adb, validsw.ads, widechar.adb, widechar.ads, xeinfo.adb, xnmake.adb, xr_tabls.adb, xr_tabls.ads, xref_lib.adb, xref_lib.ads, xsinfo.adb, xsnames.adb, xtreeprs.adb : Merge header, formatting and other trivial changes from ACT. From-SVN: r66044
1044 lines
27 KiB
Ada
1044 lines
27 KiB
Ada
------------------------------------------------------------------------------
|
|
-- --
|
|
-- GNAT RUNTIME COMPONENTS --
|
|
-- --
|
|
-- ADA.NUMERICS.GENERIC_ELEMENTARY_FUNCTIONS --
|
|
-- --
|
|
-- B o d y --
|
|
-- --
|
|
-- Copyright (C) 1992-2001, Free Software Foundation, Inc. --
|
|
-- --
|
|
-- GNAT is free software; you can redistribute it and/or modify it under --
|
|
-- terms of the GNU General Public License as published by the Free Soft- --
|
|
-- ware Foundation; either version 2, or (at your option) any later ver- --
|
|
-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
|
|
-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
|
|
-- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
|
|
-- for more details. You should have received a copy of the GNU General --
|
|
-- Public License distributed with GNAT; see file COPYING. If not, write --
|
|
-- to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, --
|
|
-- MA 02111-1307, USA. --
|
|
-- --
|
|
-- As a special exception, if other files instantiate generics from this --
|
|
-- unit, or you link this unit with other files to produce an executable, --
|
|
-- this unit does not by itself cause the resulting executable to be --
|
|
-- covered by the GNU General Public License. This exception does not --
|
|
-- however invalidate any other reasons why the executable file might be --
|
|
-- covered by the GNU Public License. --
|
|
-- --
|
|
-- GNAT was originally developed by the GNAT team at New York University. --
|
|
-- Extensive contributions were provided by Ada Core Technologies Inc. --
|
|
-- --
|
|
------------------------------------------------------------------------------
|
|
|
|
-- This body is specifically for using an Ada interface to C math.h to get
|
|
-- the computation engine. Many special cases are handled locally to avoid
|
|
-- unnecessary calls. This is not a "strict" implementation, but takes full
|
|
-- advantage of the C functions, e.g. in providing interface to hardware
|
|
-- provided versions of the elementary functions.
|
|
|
|
-- Uses functions sqrt, exp, log, pow, sin, asin, cos, acos, tan, atan,
|
|
-- sinh, cosh, tanh from C library via math.h
|
|
|
|
with Ada.Numerics.Aux;
|
|
|
|
package body Ada.Numerics.Generic_Elementary_Functions is
|
|
|
|
use type Ada.Numerics.Aux.Double;
|
|
|
|
Sqrt_Two : constant := 1.41421_35623_73095_04880_16887_24209_69807_85696;
|
|
Log_Two : constant := 0.69314_71805_59945_30941_72321_21458_17656_80755;
|
|
Half_Log_Two : constant := Log_Two / 2;
|
|
|
|
subtype T is Float_Type'Base;
|
|
subtype Double is Aux.Double;
|
|
|
|
Two_Pi : constant T := 2.0 * Pi;
|
|
Half_Pi : constant T := Pi / 2.0;
|
|
Fourth_Pi : constant T := Pi / 4.0;
|
|
|
|
Epsilon : constant T := 2.0 ** (1 - T'Model_Mantissa);
|
|
IEpsilon : constant T := 2.0 ** (T'Model_Mantissa - 1);
|
|
Log_Epsilon : constant T := T (1 - T'Model_Mantissa) * Log_Two;
|
|
Half_Log_Epsilon : constant T := T (1 - T'Model_Mantissa) * Half_Log_Two;
|
|
Log_Inverse_Epsilon : constant T := T (T'Model_Mantissa - 1) * Log_Two;
|
|
Sqrt_Epsilon : constant T := Sqrt_Two ** (1 - T'Model_Mantissa);
|
|
|
|
DEpsilon : constant Double := Double (Epsilon);
|
|
DIEpsilon : constant Double := Double (IEpsilon);
|
|
|
|
-----------------------
|
|
-- Local Subprograms --
|
|
-----------------------
|
|
|
|
function Exp_Strict (X : Float_Type'Base) return Float_Type'Base;
|
|
-- Cody/Waite routine, supposedly more precise than the library
|
|
-- version. Currently only needed for Sinh/Cosh on X86 with the largest
|
|
-- FP type.
|
|
|
|
function Local_Atan
|
|
(Y : Float_Type'Base;
|
|
X : Float_Type'Base := 1.0)
|
|
return Float_Type'Base;
|
|
-- Common code for arc tangent after cyele reduction
|
|
|
|
----------
|
|
-- "**" --
|
|
----------
|
|
|
|
function "**" (Left, Right : Float_Type'Base) return Float_Type'Base is
|
|
A_Right : Float_Type'Base;
|
|
Int_Part : Integer;
|
|
Result : Float_Type'Base;
|
|
R1 : Float_Type'Base;
|
|
Rest : Float_Type'Base;
|
|
|
|
begin
|
|
if Left = 0.0
|
|
and then Right = 0.0
|
|
then
|
|
raise Argument_Error;
|
|
|
|
elsif Left < 0.0 then
|
|
raise Argument_Error;
|
|
|
|
elsif Right = 0.0 then
|
|
return 1.0;
|
|
|
|
elsif Left = 0.0 then
|
|
if Right < 0.0 then
|
|
raise Constraint_Error;
|
|
else
|
|
return 0.0;
|
|
end if;
|
|
|
|
elsif Left = 1.0 then
|
|
return 1.0;
|
|
|
|
elsif Right = 1.0 then
|
|
return Left;
|
|
|
|
else
|
|
begin
|
|
if Right = 2.0 then
|
|
return Left * Left;
|
|
|
|
elsif Right = 0.5 then
|
|
return Sqrt (Left);
|
|
|
|
else
|
|
A_Right := abs (Right);
|
|
|
|
-- If exponent is larger than one, compute integer exponen-
|
|
-- tiation if possible, and evaluate fractional part with
|
|
-- more precision. The relative error is now proportional
|
|
-- to the fractional part of the exponent only.
|
|
|
|
if A_Right > 1.0
|
|
and then A_Right < Float_Type'Base (Integer'Last)
|
|
then
|
|
Int_Part := Integer (Float_Type'Base'Truncation (A_Right));
|
|
Result := Left ** Int_Part;
|
|
Rest := A_Right - Float_Type'Base (Int_Part);
|
|
|
|
-- Compute with two leading bits of the mantissa using
|
|
-- square roots. Bound to be better than logarithms, and
|
|
-- easily extended to greater precision.
|
|
|
|
if Rest >= 0.5 then
|
|
R1 := Sqrt (Left);
|
|
Result := Result * R1;
|
|
Rest := Rest - 0.5;
|
|
|
|
if Rest >= 0.25 then
|
|
Result := Result * Sqrt (R1);
|
|
Rest := Rest - 0.25;
|
|
end if;
|
|
|
|
elsif Rest >= 0.25 then
|
|
Result := Result * Sqrt (Sqrt (Left));
|
|
Rest := Rest - 0.25;
|
|
end if;
|
|
|
|
Result := Result *
|
|
Float_Type'Base (Aux.Pow (Double (Left), Double (Rest)));
|
|
|
|
if Right >= 0.0 then
|
|
return Result;
|
|
else
|
|
return (1.0 / Result);
|
|
end if;
|
|
else
|
|
return
|
|
Float_Type'Base (Aux.Pow (Double (Left), Double (Right)));
|
|
end if;
|
|
end if;
|
|
|
|
exception
|
|
when others =>
|
|
raise Constraint_Error;
|
|
end;
|
|
end if;
|
|
end "**";
|
|
|
|
------------
|
|
-- Arccos --
|
|
------------
|
|
|
|
-- Natural cycle
|
|
|
|
function Arccos (X : Float_Type'Base) return Float_Type'Base is
|
|
Temp : Float_Type'Base;
|
|
|
|
begin
|
|
if abs X > 1.0 then
|
|
raise Argument_Error;
|
|
|
|
elsif abs X < Sqrt_Epsilon then
|
|
return Pi / 2.0 - X;
|
|
|
|
elsif X = 1.0 then
|
|
return 0.0;
|
|
|
|
elsif X = -1.0 then
|
|
return Pi;
|
|
end if;
|
|
|
|
Temp := Float_Type'Base (Aux.Acos (Double (X)));
|
|
|
|
if Temp < 0.0 then
|
|
Temp := Pi + Temp;
|
|
end if;
|
|
|
|
return Temp;
|
|
end Arccos;
|
|
|
|
-- Arbitrary cycle
|
|
|
|
function Arccos (X, Cycle : Float_Type'Base) return Float_Type'Base is
|
|
Temp : Float_Type'Base;
|
|
|
|
begin
|
|
if Cycle <= 0.0 then
|
|
raise Argument_Error;
|
|
|
|
elsif abs X > 1.0 then
|
|
raise Argument_Error;
|
|
|
|
elsif abs X < Sqrt_Epsilon then
|
|
return Cycle / 4.0;
|
|
|
|
elsif X = 1.0 then
|
|
return 0.0;
|
|
|
|
elsif X = -1.0 then
|
|
return Cycle / 2.0;
|
|
end if;
|
|
|
|
Temp := Arctan (Sqrt ((1.0 - X) * (1.0 + X)) / X, 1.0, Cycle);
|
|
|
|
if Temp < 0.0 then
|
|
Temp := Cycle / 2.0 + Temp;
|
|
end if;
|
|
|
|
return Temp;
|
|
end Arccos;
|
|
|
|
-------------
|
|
-- Arccosh --
|
|
-------------
|
|
|
|
function Arccosh (X : Float_Type'Base) return Float_Type'Base is
|
|
begin
|
|
-- Return positive branch of Log (X - Sqrt (X * X - 1.0)), or
|
|
-- the proper approximation for X close to 1 or >> 1.
|
|
|
|
if X < 1.0 then
|
|
raise Argument_Error;
|
|
|
|
elsif X < 1.0 + Sqrt_Epsilon then
|
|
return Sqrt (2.0 * (X - 1.0));
|
|
|
|
elsif X > 1.0 / Sqrt_Epsilon then
|
|
return Log (X) + Log_Two;
|
|
|
|
else
|
|
return Log (X + Sqrt ((X - 1.0) * (X + 1.0)));
|
|
end if;
|
|
end Arccosh;
|
|
|
|
------------
|
|
-- Arccot --
|
|
------------
|
|
|
|
-- Natural cycle
|
|
|
|
function Arccot
|
|
(X : Float_Type'Base;
|
|
Y : Float_Type'Base := 1.0)
|
|
return Float_Type'Base
|
|
is
|
|
begin
|
|
-- Just reverse arguments
|
|
|
|
return Arctan (Y, X);
|
|
end Arccot;
|
|
|
|
-- Arbitrary cycle
|
|
|
|
function Arccot
|
|
(X : Float_Type'Base;
|
|
Y : Float_Type'Base := 1.0;
|
|
Cycle : Float_Type'Base)
|
|
return Float_Type'Base
|
|
is
|
|
begin
|
|
-- Just reverse arguments
|
|
|
|
return Arctan (Y, X, Cycle);
|
|
end Arccot;
|
|
|
|
-------------
|
|
-- Arccoth --
|
|
-------------
|
|
|
|
function Arccoth (X : Float_Type'Base) return Float_Type'Base is
|
|
begin
|
|
if abs X > 2.0 then
|
|
return Arctanh (1.0 / X);
|
|
|
|
elsif abs X = 1.0 then
|
|
raise Constraint_Error;
|
|
|
|
elsif abs X < 1.0 then
|
|
raise Argument_Error;
|
|
|
|
else
|
|
-- 1.0 < abs X <= 2.0. One of X + 1.0 and X - 1.0 is exact, the
|
|
-- other has error 0 or Epsilon.
|
|
|
|
return 0.5 * (Log (abs (X + 1.0)) - Log (abs (X - 1.0)));
|
|
end if;
|
|
end Arccoth;
|
|
|
|
------------
|
|
-- Arcsin --
|
|
------------
|
|
|
|
-- Natural cycle
|
|
|
|
function Arcsin (X : Float_Type'Base) return Float_Type'Base is
|
|
begin
|
|
if abs X > 1.0 then
|
|
raise Argument_Error;
|
|
|
|
elsif abs X < Sqrt_Epsilon then
|
|
return X;
|
|
|
|
elsif X = 1.0 then
|
|
return Pi / 2.0;
|
|
|
|
elsif X = -1.0 then
|
|
return -Pi / 2.0;
|
|
end if;
|
|
|
|
return Float_Type'Base (Aux.Asin (Double (X)));
|
|
end Arcsin;
|
|
|
|
-- Arbitrary cycle
|
|
|
|
function Arcsin (X, Cycle : Float_Type'Base) return Float_Type'Base is
|
|
begin
|
|
if Cycle <= 0.0 then
|
|
raise Argument_Error;
|
|
|
|
elsif abs X > 1.0 then
|
|
raise Argument_Error;
|
|
|
|
elsif X = 0.0 then
|
|
return X;
|
|
|
|
elsif X = 1.0 then
|
|
return Cycle / 4.0;
|
|
|
|
elsif X = -1.0 then
|
|
return -Cycle / 4.0;
|
|
end if;
|
|
|
|
return Arctan (X / Sqrt ((1.0 - X) * (1.0 + X)), 1.0, Cycle);
|
|
end Arcsin;
|
|
|
|
-------------
|
|
-- Arcsinh --
|
|
-------------
|
|
|
|
function Arcsinh (X : Float_Type'Base) return Float_Type'Base is
|
|
begin
|
|
if abs X < Sqrt_Epsilon then
|
|
return X;
|
|
|
|
elsif X > 1.0 / Sqrt_Epsilon then
|
|
return Log (X) + Log_Two;
|
|
|
|
elsif X < -1.0 / Sqrt_Epsilon then
|
|
return -(Log (-X) + Log_Two);
|
|
|
|
elsif X < 0.0 then
|
|
return -Log (abs X + Sqrt (X * X + 1.0));
|
|
|
|
else
|
|
return Log (X + Sqrt (X * X + 1.0));
|
|
end if;
|
|
end Arcsinh;
|
|
|
|
------------
|
|
-- Arctan --
|
|
------------
|
|
|
|
-- Natural cycle
|
|
|
|
function Arctan
|
|
(Y : Float_Type'Base;
|
|
X : Float_Type'Base := 1.0)
|
|
return Float_Type'Base
|
|
is
|
|
begin
|
|
if X = 0.0
|
|
and then Y = 0.0
|
|
then
|
|
raise Argument_Error;
|
|
|
|
elsif Y = 0.0 then
|
|
if X > 0.0 then
|
|
return 0.0;
|
|
else -- X < 0.0
|
|
return Pi * Float_Type'Copy_Sign (1.0, Y);
|
|
end if;
|
|
|
|
elsif X = 0.0 then
|
|
if Y > 0.0 then
|
|
return Half_Pi;
|
|
else -- Y < 0.0
|
|
return -Half_Pi;
|
|
end if;
|
|
|
|
else
|
|
return Local_Atan (Y, X);
|
|
end if;
|
|
end Arctan;
|
|
|
|
-- Arbitrary cycle
|
|
|
|
function Arctan
|
|
(Y : Float_Type'Base;
|
|
X : Float_Type'Base := 1.0;
|
|
Cycle : Float_Type'Base)
|
|
return Float_Type'Base
|
|
is
|
|
begin
|
|
if Cycle <= 0.0 then
|
|
raise Argument_Error;
|
|
|
|
elsif X = 0.0
|
|
and then Y = 0.0
|
|
then
|
|
raise Argument_Error;
|
|
|
|
elsif Y = 0.0 then
|
|
if X > 0.0 then
|
|
return 0.0;
|
|
else -- X < 0.0
|
|
return Cycle / 2.0 * Float_Type'Copy_Sign (1.0, Y);
|
|
end if;
|
|
|
|
elsif X = 0.0 then
|
|
if Y > 0.0 then
|
|
return Cycle / 4.0;
|
|
else -- Y < 0.0
|
|
return -Cycle / 4.0;
|
|
end if;
|
|
|
|
else
|
|
return Local_Atan (Y, X) * Cycle / Two_Pi;
|
|
end if;
|
|
end Arctan;
|
|
|
|
-------------
|
|
-- Arctanh --
|
|
-------------
|
|
|
|
function Arctanh (X : Float_Type'Base) return Float_Type'Base is
|
|
A, B, D, A_Plus_1, A_From_1 : Float_Type'Base;
|
|
Mantissa : constant Integer := Float_Type'Base'Machine_Mantissa;
|
|
|
|
begin
|
|
-- The naive formula:
|
|
|
|
-- Arctanh (X) := (1/2) * Log (1 + X) / (1 - X)
|
|
|
|
-- is not well-behaved numerically when X < 0.5 and when X is close
|
|
-- to one. The following is accurate but probably not optimal.
|
|
|
|
if abs X = 1.0 then
|
|
raise Constraint_Error;
|
|
|
|
elsif abs X >= 1.0 - 2.0 ** (-Mantissa) then
|
|
|
|
if abs X >= 1.0 then
|
|
raise Argument_Error;
|
|
else
|
|
|
|
-- The one case that overflows if put through the method below:
|
|
-- abs X = 1.0 - Epsilon. In this case (1/2) log (2/Epsilon) is
|
|
-- accurate. This simplifies to:
|
|
|
|
return Float_Type'Copy_Sign (
|
|
Half_Log_Two * Float_Type'Base (Mantissa + 1), X);
|
|
end if;
|
|
|
|
-- elsif abs X <= 0.5 then
|
|
-- why is above line commented out ???
|
|
|
|
else
|
|
-- Use several piecewise linear approximations.
|
|
-- A is close to X, chosen so 1.0 + A, 1.0 - A, and X - A are exact.
|
|
-- The two scalings remove the low-order bits of X.
|
|
|
|
A := Float_Type'Base'Scaling (
|
|
Float_Type'Base (Long_Long_Integer
|
|
(Float_Type'Base'Scaling (X, Mantissa - 1))), 1 - Mantissa);
|
|
|
|
B := X - A; -- This is exact; abs B <= 2**(-Mantissa).
|
|
A_Plus_1 := 1.0 + A; -- This is exact.
|
|
A_From_1 := 1.0 - A; -- Ditto.
|
|
D := A_Plus_1 * A_From_1; -- 1 - A*A.
|
|
|
|
-- use one term of the series expansion:
|
|
-- f (x + e) = f(x) + e * f'(x) + ..
|
|
|
|
-- The derivative of Arctanh at A is 1/(1-A*A). Next term is
|
|
-- A*(B/D)**2 (if a quadratic approximation is ever needed).
|
|
|
|
return 0.5 * (Log (A_Plus_1) - Log (A_From_1)) + B / D;
|
|
|
|
-- else
|
|
-- return 0.5 * Log ((X + 1.0) / (1.0 - X));
|
|
-- why are above lines commented out ???
|
|
end if;
|
|
end Arctanh;
|
|
|
|
---------
|
|
-- Cos --
|
|
---------
|
|
|
|
-- Natural cycle
|
|
|
|
function Cos (X : Float_Type'Base) return Float_Type'Base is
|
|
begin
|
|
if X = 0.0 then
|
|
return 1.0;
|
|
|
|
elsif abs X < Sqrt_Epsilon then
|
|
return 1.0;
|
|
|
|
end if;
|
|
|
|
return Float_Type'Base (Aux.Cos (Double (X)));
|
|
end Cos;
|
|
|
|
-- Arbitrary cycle
|
|
|
|
function Cos (X, Cycle : Float_Type'Base) return Float_Type'Base is
|
|
begin
|
|
-- Just reuse the code for Sin. The potential small
|
|
-- loss of speed is negligible with proper (front-end) inlining.
|
|
|
|
return -Sin (abs X - Cycle * 0.25, Cycle);
|
|
end Cos;
|
|
|
|
----------
|
|
-- Cosh --
|
|
----------
|
|
|
|
function Cosh (X : Float_Type'Base) return Float_Type'Base is
|
|
Lnv : constant Float_Type'Base := 8#0.542714#;
|
|
V2minus1 : constant Float_Type'Base := 0.13830_27787_96019_02638E-4;
|
|
Y : Float_Type'Base := abs X;
|
|
Z : Float_Type'Base;
|
|
|
|
begin
|
|
if Y < Sqrt_Epsilon then
|
|
return 1.0;
|
|
|
|
elsif Y > Log_Inverse_Epsilon then
|
|
Z := Exp_Strict (Y - Lnv);
|
|
return (Z + V2minus1 * Z);
|
|
|
|
else
|
|
Z := Exp_Strict (Y);
|
|
return 0.5 * (Z + 1.0 / Z);
|
|
end if;
|
|
|
|
end Cosh;
|
|
|
|
---------
|
|
-- Cot --
|
|
---------
|
|
|
|
-- Natural cycle
|
|
|
|
function Cot (X : Float_Type'Base) return Float_Type'Base is
|
|
begin
|
|
if X = 0.0 then
|
|
raise Constraint_Error;
|
|
|
|
elsif abs X < Sqrt_Epsilon then
|
|
return 1.0 / X;
|
|
end if;
|
|
|
|
return 1.0 / Float_Type'Base (Aux.Tan (Double (X)));
|
|
end Cot;
|
|
|
|
-- Arbitrary cycle
|
|
|
|
function Cot (X, Cycle : Float_Type'Base) return Float_Type'Base is
|
|
T : Float_Type'Base;
|
|
|
|
begin
|
|
if Cycle <= 0.0 then
|
|
raise Argument_Error;
|
|
end if;
|
|
|
|
T := Float_Type'Base'Remainder (X, Cycle);
|
|
|
|
if T = 0.0 or abs T = 0.5 * Cycle then
|
|
raise Constraint_Error;
|
|
|
|
elsif abs T < Sqrt_Epsilon then
|
|
return 1.0 / T;
|
|
|
|
elsif abs T = 0.25 * Cycle then
|
|
return 0.0;
|
|
|
|
else
|
|
T := T / Cycle * Two_Pi;
|
|
return Cos (T) / Sin (T);
|
|
end if;
|
|
end Cot;
|
|
|
|
----------
|
|
-- Coth --
|
|
----------
|
|
|
|
function Coth (X : Float_Type'Base) return Float_Type'Base is
|
|
begin
|
|
if X = 0.0 then
|
|
raise Constraint_Error;
|
|
|
|
elsif X < Half_Log_Epsilon then
|
|
return -1.0;
|
|
|
|
elsif X > -Half_Log_Epsilon then
|
|
return 1.0;
|
|
|
|
elsif abs X < Sqrt_Epsilon then
|
|
return 1.0 / X;
|
|
end if;
|
|
|
|
return 1.0 / Float_Type'Base (Aux.Tanh (Double (X)));
|
|
end Coth;
|
|
|
|
---------
|
|
-- Exp --
|
|
---------
|
|
|
|
function Exp (X : Float_Type'Base) return Float_Type'Base is
|
|
Result : Float_Type'Base;
|
|
|
|
begin
|
|
if X = 0.0 then
|
|
return 1.0;
|
|
end if;
|
|
|
|
Result := Float_Type'Base (Aux.Exp (Double (X)));
|
|
|
|
-- Deal with case of Exp returning IEEE infinity. If Machine_Overflows
|
|
-- is False, then we can just leave it as an infinity (and indeed we
|
|
-- prefer to do so). But if Machine_Overflows is True, then we have
|
|
-- to raise a Constraint_Error exception as required by the RM.
|
|
|
|
if Float_Type'Machine_Overflows and then not Result'Valid then
|
|
raise Constraint_Error;
|
|
end if;
|
|
|
|
return Result;
|
|
end Exp;
|
|
|
|
----------------
|
|
-- Exp_Strict --
|
|
----------------
|
|
|
|
function Exp_Strict (X : Float_Type'Base) return Float_Type'Base is
|
|
G : Float_Type'Base;
|
|
Z : Float_Type'Base;
|
|
|
|
P0 : constant := 0.25000_00000_00000_00000;
|
|
P1 : constant := 0.75753_18015_94227_76666E-2;
|
|
P2 : constant := 0.31555_19276_56846_46356E-4;
|
|
|
|
Q0 : constant := 0.5;
|
|
Q1 : constant := 0.56817_30269_85512_21787E-1;
|
|
Q2 : constant := 0.63121_89437_43985_02557E-3;
|
|
Q3 : constant := 0.75104_02839_98700_46114E-6;
|
|
|
|
C1 : constant := 8#0.543#;
|
|
C2 : constant := -2.1219_44400_54690_58277E-4;
|
|
Le : constant := 1.4426_95040_88896_34074;
|
|
|
|
XN : Float_Type'Base;
|
|
P, Q, R : Float_Type'Base;
|
|
|
|
begin
|
|
if X = 0.0 then
|
|
return 1.0;
|
|
end if;
|
|
|
|
XN := Float_Type'Base'Rounding (X * Le);
|
|
G := (X - XN * C1) - XN * C2;
|
|
Z := G * G;
|
|
P := G * ((P2 * Z + P1) * Z + P0);
|
|
Q := ((Q3 * Z + Q2) * Z + Q1) * Z + Q0;
|
|
R := 0.5 + P / (Q - P);
|
|
|
|
R := Float_Type'Base'Scaling (R, Integer (XN) + 1);
|
|
|
|
-- Deal with case of Exp returning IEEE infinity. If Machine_Overflows
|
|
-- is False, then we can just leave it as an infinity (and indeed we
|
|
-- prefer to do so). But if Machine_Overflows is True, then we have
|
|
-- to raise a Constraint_Error exception as required by the RM.
|
|
|
|
if Float_Type'Machine_Overflows and then not R'Valid then
|
|
raise Constraint_Error;
|
|
else
|
|
return R;
|
|
end if;
|
|
|
|
end Exp_Strict;
|
|
|
|
----------------
|
|
-- Local_Atan --
|
|
----------------
|
|
|
|
function Local_Atan
|
|
(Y : Float_Type'Base;
|
|
X : Float_Type'Base := 1.0)
|
|
return Float_Type'Base
|
|
is
|
|
Z : Float_Type'Base;
|
|
Raw_Atan : Float_Type'Base;
|
|
|
|
begin
|
|
if abs Y > abs X then
|
|
Z := abs (X / Y);
|
|
else
|
|
Z := abs (Y / X);
|
|
end if;
|
|
|
|
if Z < Sqrt_Epsilon then
|
|
Raw_Atan := Z;
|
|
|
|
elsif Z = 1.0 then
|
|
Raw_Atan := Pi / 4.0;
|
|
|
|
else
|
|
Raw_Atan := Float_Type'Base (Aux.Atan (Double (Z)));
|
|
end if;
|
|
|
|
if abs Y > abs X then
|
|
Raw_Atan := Half_Pi - Raw_Atan;
|
|
end if;
|
|
|
|
if X > 0.0 then
|
|
if Y > 0.0 then
|
|
return Raw_Atan;
|
|
else -- Y < 0.0
|
|
return -Raw_Atan;
|
|
end if;
|
|
|
|
else -- X < 0.0
|
|
if Y > 0.0 then
|
|
return Pi - Raw_Atan;
|
|
else -- Y < 0.0
|
|
return -(Pi - Raw_Atan);
|
|
end if;
|
|
end if;
|
|
end Local_Atan;
|
|
|
|
---------
|
|
-- Log --
|
|
---------
|
|
|
|
-- Natural base
|
|
|
|
function Log (X : Float_Type'Base) return Float_Type'Base is
|
|
begin
|
|
if X < 0.0 then
|
|
raise Argument_Error;
|
|
|
|
elsif X = 0.0 then
|
|
raise Constraint_Error;
|
|
|
|
elsif X = 1.0 then
|
|
return 0.0;
|
|
end if;
|
|
|
|
return Float_Type'Base (Aux.Log (Double (X)));
|
|
end Log;
|
|
|
|
-- Arbitrary base
|
|
|
|
function Log (X, Base : Float_Type'Base) return Float_Type'Base is
|
|
begin
|
|
if X < 0.0 then
|
|
raise Argument_Error;
|
|
|
|
elsif Base <= 0.0 or else Base = 1.0 then
|
|
raise Argument_Error;
|
|
|
|
elsif X = 0.0 then
|
|
raise Constraint_Error;
|
|
|
|
elsif X = 1.0 then
|
|
return 0.0;
|
|
end if;
|
|
|
|
return Float_Type'Base (Aux.Log (Double (X)) / Aux.Log (Double (Base)));
|
|
end Log;
|
|
|
|
---------
|
|
-- Sin --
|
|
---------
|
|
|
|
-- Natural cycle
|
|
|
|
function Sin (X : Float_Type'Base) return Float_Type'Base is
|
|
begin
|
|
if abs X < Sqrt_Epsilon then
|
|
return X;
|
|
end if;
|
|
|
|
return Float_Type'Base (Aux.Sin (Double (X)));
|
|
end Sin;
|
|
|
|
-- Arbitrary cycle
|
|
|
|
function Sin (X, Cycle : Float_Type'Base) return Float_Type'Base is
|
|
T : Float_Type'Base;
|
|
|
|
begin
|
|
if Cycle <= 0.0 then
|
|
raise Argument_Error;
|
|
|
|
elsif X = 0.0 then
|
|
-- Is this test really needed on any machine ???
|
|
return X;
|
|
end if;
|
|
|
|
T := Float_Type'Base'Remainder (X, Cycle);
|
|
|
|
-- The following two reductions reduce the argument
|
|
-- to the interval [-0.25 * Cycle, 0.25 * Cycle].
|
|
-- This reduction is exact and is needed to prevent
|
|
-- inaccuracy that may result if the sinus function
|
|
-- a different (more accurate) value of Pi in its
|
|
-- reduction than is used in the multiplication with Two_Pi.
|
|
|
|
if abs T > 0.25 * Cycle then
|
|
T := 0.5 * Float_Type'Copy_Sign (Cycle, T) - T;
|
|
end if;
|
|
|
|
-- Could test for 12.0 * abs T = Cycle, and return
|
|
-- an exact value in those cases. It is not clear that
|
|
-- this is worth the extra test though.
|
|
|
|
return Float_Type'Base (Aux.Sin (Double (T / Cycle * Two_Pi)));
|
|
end Sin;
|
|
|
|
----------
|
|
-- Sinh --
|
|
----------
|
|
|
|
function Sinh (X : Float_Type'Base) return Float_Type'Base is
|
|
Lnv : constant Float_Type'Base := 8#0.542714#;
|
|
V2minus1 : constant Float_Type'Base := 0.13830_27787_96019_02638E-4;
|
|
Y : Float_Type'Base := abs X;
|
|
F : constant Float_Type'Base := Y * Y;
|
|
Z : Float_Type'Base;
|
|
|
|
Float_Digits_1_6 : constant Boolean := Float_Type'Digits < 7;
|
|
|
|
begin
|
|
if Y < Sqrt_Epsilon then
|
|
return X;
|
|
|
|
elsif Y > Log_Inverse_Epsilon then
|
|
Z := Exp_Strict (Y - Lnv);
|
|
Z := Z + V2minus1 * Z;
|
|
|
|
elsif Y < 1.0 then
|
|
|
|
if Float_Digits_1_6 then
|
|
|
|
-- Use expansion provided by Cody and Waite, p. 226. Note that
|
|
-- leading term of the polynomial in Q is exactly 1.0.
|
|
|
|
declare
|
|
P0 : constant := -0.71379_3159E+1;
|
|
P1 : constant := -0.19033_3399E+0;
|
|
Q0 : constant := -0.42827_7109E+2;
|
|
|
|
begin
|
|
Z := Y + Y * F * (P1 * F + P0) / (F + Q0);
|
|
end;
|
|
|
|
else
|
|
declare
|
|
P0 : constant := -0.35181_28343_01771_17881E+6;
|
|
P1 : constant := -0.11563_52119_68517_68270E+5;
|
|
P2 : constant := -0.16375_79820_26307_51372E+3;
|
|
P3 : constant := -0.78966_12741_73570_99479E+0;
|
|
Q0 : constant := -0.21108_77005_81062_71242E+7;
|
|
Q1 : constant := 0.36162_72310_94218_36460E+5;
|
|
Q2 : constant := -0.27773_52311_96507_01667E+3;
|
|
|
|
begin
|
|
Z := Y + Y * F * (((P3 * F + P2) * F + P1) * F + P0)
|
|
/ (((F + Q2) * F + Q1) * F + Q0);
|
|
end;
|
|
end if;
|
|
|
|
else
|
|
Z := Exp_Strict (Y);
|
|
Z := 0.5 * (Z - 1.0 / Z);
|
|
end if;
|
|
|
|
if X > 0.0 then
|
|
return Z;
|
|
else
|
|
return -Z;
|
|
end if;
|
|
end Sinh;
|
|
|
|
----------
|
|
-- Sqrt --
|
|
----------
|
|
|
|
function Sqrt (X : Float_Type'Base) return Float_Type'Base is
|
|
begin
|
|
if X < 0.0 then
|
|
raise Argument_Error;
|
|
|
|
-- Special case Sqrt (0.0) to preserve possible minus sign per IEEE
|
|
|
|
elsif X = 0.0 then
|
|
return X;
|
|
|
|
end if;
|
|
|
|
return Float_Type'Base (Aux.Sqrt (Double (X)));
|
|
end Sqrt;
|
|
|
|
---------
|
|
-- Tan --
|
|
---------
|
|
|
|
-- Natural cycle
|
|
|
|
function Tan (X : Float_Type'Base) return Float_Type'Base is
|
|
begin
|
|
if abs X < Sqrt_Epsilon then
|
|
return X;
|
|
|
|
elsif abs X = Pi / 2.0 then
|
|
raise Constraint_Error;
|
|
end if;
|
|
|
|
return Float_Type'Base (Aux.Tan (Double (X)));
|
|
end Tan;
|
|
|
|
-- Arbitrary cycle
|
|
|
|
function Tan (X, Cycle : Float_Type'Base) return Float_Type'Base is
|
|
T : Float_Type'Base;
|
|
|
|
begin
|
|
if Cycle <= 0.0 then
|
|
raise Argument_Error;
|
|
|
|
elsif X = 0.0 then
|
|
return X;
|
|
end if;
|
|
|
|
T := Float_Type'Base'Remainder (X, Cycle);
|
|
|
|
if abs T = 0.25 * Cycle then
|
|
raise Constraint_Error;
|
|
|
|
elsif abs T = 0.5 * Cycle then
|
|
return 0.0;
|
|
|
|
else
|
|
T := T / Cycle * Two_Pi;
|
|
return Sin (T) / Cos (T);
|
|
end if;
|
|
|
|
end Tan;
|
|
|
|
----------
|
|
-- Tanh --
|
|
----------
|
|
|
|
function Tanh (X : Float_Type'Base) return Float_Type'Base is
|
|
P0 : constant Float_Type'Base := -0.16134_11902E4;
|
|
P1 : constant Float_Type'Base := -0.99225_92967E2;
|
|
P2 : constant Float_Type'Base := -0.96437_49299E0;
|
|
|
|
Q0 : constant Float_Type'Base := 0.48402_35707E4;
|
|
Q1 : constant Float_Type'Base := 0.22337_72071E4;
|
|
Q2 : constant Float_Type'Base := 0.11274_47438E3;
|
|
Q3 : constant Float_Type'Base := 0.10000000000E1;
|
|
|
|
Half_Ln3 : constant Float_Type'Base := 0.54930_61443;
|
|
|
|
P, Q, R : Float_Type'Base;
|
|
Y : Float_Type'Base := abs X;
|
|
G : Float_Type'Base := Y * Y;
|
|
|
|
Float_Type_Digits_15_Or_More : constant Boolean :=
|
|
Float_Type'Digits > 14;
|
|
|
|
begin
|
|
if X < Half_Log_Epsilon then
|
|
return -1.0;
|
|
|
|
elsif X > -Half_Log_Epsilon then
|
|
return 1.0;
|
|
|
|
elsif Y < Sqrt_Epsilon then
|
|
return X;
|
|
|
|
elsif Y < Half_Ln3
|
|
and then Float_Type_Digits_15_Or_More
|
|
then
|
|
P := (P2 * G + P1) * G + P0;
|
|
Q := ((Q3 * G + Q2) * G + Q1) * G + Q0;
|
|
R := G * (P / Q);
|
|
return X + X * R;
|
|
|
|
else
|
|
return Float_Type'Base (Aux.Tanh (Double (X)));
|
|
end if;
|
|
end Tanh;
|
|
|
|
end Ada.Numerics.Generic_Elementary_Functions;
|