2a2ea744a9
From-SVN: r30481
2312 lines
86 KiB
C++
2312 lines
86 KiB
C++
/* Definitions of target machine for GNU compiler, for the HP Spectrum.
|
||
Copyright (C) 1992, 93-98, 1999 Free Software Foundation, Inc.
|
||
Contributed by Michael Tiemann (tiemann@cygnus.com) of Cygnus Support
|
||
and Tim Moore (moore@defmacro.cs.utah.edu) of the Center for
|
||
Software Science at the University of Utah.
|
||
|
||
This file is part of GNU CC.
|
||
|
||
GNU CC is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 2, or (at your option)
|
||
any later version.
|
||
|
||
GNU CC is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with GNU CC; see the file COPYING. If not, write to
|
||
the Free Software Foundation, 59 Temple Place - Suite 330,
|
||
Boston, MA 02111-1307, USA. */
|
||
|
||
enum cmp_type /* comparison type */
|
||
{
|
||
CMP_SI, /* compare integers */
|
||
CMP_SF, /* compare single precision floats */
|
||
CMP_DF, /* compare double precision floats */
|
||
CMP_MAX /* max comparison type */
|
||
};
|
||
|
||
/* For long call handling. */
|
||
extern unsigned int total_code_bytes;
|
||
|
||
/* Which processor to schedule for. */
|
||
|
||
enum processor_type
|
||
{
|
||
PROCESSOR_700,
|
||
PROCESSOR_7100,
|
||
PROCESSOR_7100LC,
|
||
PROCESSOR_7200,
|
||
PROCESSOR_8000
|
||
};
|
||
|
||
/* For -mschedule= option. */
|
||
extern char *pa_cpu_string;
|
||
extern enum processor_type pa_cpu;
|
||
|
||
#define pa_cpu_attr ((enum attr_cpu)pa_cpu)
|
||
|
||
/* The 700 can only issue a single insn at a time.
|
||
The 7XXX processors can issue two insns at a time.
|
||
The 8000 can issue 4 insns at a time. */
|
||
#define ISSUE_RATE \
|
||
(pa_cpu == PROCESSOR_700 ? 1 \
|
||
: pa_cpu == PROCESSOR_7100 ? 2 \
|
||
: pa_cpu == PROCESSOR_7100LC ? 2 \
|
||
: pa_cpu == PROCESSOR_7200 ? 2 \
|
||
: pa_cpu == PROCESSOR_8000 ? 4 \
|
||
: 2)
|
||
|
||
/* Which architecture to generate code for. */
|
||
|
||
enum architecture_type
|
||
{
|
||
ARCHITECTURE_10,
|
||
ARCHITECTURE_11,
|
||
ARCHITECTURE_20
|
||
};
|
||
|
||
/* For -march= option. */
|
||
extern char *pa_arch_string;
|
||
extern enum architecture_type pa_arch;
|
||
|
||
/* Print subsidiary information on the compiler version in use. */
|
||
|
||
#define TARGET_VERSION fputs (" (hppa)", stderr);
|
||
|
||
/* Run-time compilation parameters selecting different hardware subsets. */
|
||
|
||
extern int target_flags;
|
||
|
||
/* compile code for HP-PA 1.1 ("Snake") */
|
||
|
||
#define MASK_PA_11 1
|
||
#define TARGET_PA_11 (target_flags & MASK_PA_11)
|
||
|
||
/* Disable all FP registers (they all become fixed). This may be necessary
|
||
for compiling kernels which perform lazy context switching of FP regs.
|
||
Note if you use this option and try to perform floating point operations
|
||
the compiler will abort! */
|
||
|
||
#define MASK_DISABLE_FPREGS 2
|
||
#define TARGET_DISABLE_FPREGS (target_flags & MASK_DISABLE_FPREGS)
|
||
|
||
/* Generate code which assumes that calls through function pointers will
|
||
never cross a space boundary. Such assumptions are generally safe for
|
||
building kernels and statically linked executables. Code compiled with
|
||
this option will fail miserably if the executable is dynamically linked
|
||
or uses nested functions!
|
||
|
||
This is also used to trigger aggressive unscaled index addressing. */
|
||
#define MASK_NO_SPACE_REGS 4
|
||
#define TARGET_NO_SPACE_REGS (target_flags & MASK_NO_SPACE_REGS)
|
||
|
||
/* Allow unconditional jumps in the delay slots of call instructions. */
|
||
#define MASK_JUMP_IN_DELAY 8
|
||
#define TARGET_JUMP_IN_DELAY (target_flags & MASK_JUMP_IN_DELAY)
|
||
|
||
/* Disable indexed addressing modes. */
|
||
#define MASK_DISABLE_INDEXING 32
|
||
#define TARGET_DISABLE_INDEXING (target_flags & MASK_DISABLE_INDEXING)
|
||
|
||
/* Emit code which follows the new portable runtime calling conventions
|
||
HP wants everyone to use for ELF objects. If at all possible you want
|
||
to avoid this since it's a performance loss for non-prototyped code.
|
||
|
||
Note TARGET_PORTABLE_RUNTIME also forces all calls to use inline
|
||
long-call stubs which is quite expensive. */
|
||
#define MASK_PORTABLE_RUNTIME 64
|
||
#define TARGET_PORTABLE_RUNTIME (target_flags & MASK_PORTABLE_RUNTIME)
|
||
|
||
/* Emit directives only understood by GAS. This allows parameter
|
||
relocations to work for static functions. There is no way
|
||
to make them work the HP assembler at this time. */
|
||
#define MASK_GAS 128
|
||
#define TARGET_GAS (target_flags & MASK_GAS)
|
||
|
||
/* Emit code for processors which do not have an FPU. */
|
||
#define MASK_SOFT_FLOAT 256
|
||
#define TARGET_SOFT_FLOAT (target_flags & MASK_SOFT_FLOAT)
|
||
|
||
/* Use 3-insn load/store sequences for access to large data segments
|
||
in shared libraries on hpux10. */
|
||
#define MASK_LONG_LOAD_STORE 512
|
||
#define TARGET_LONG_LOAD_STORE (target_flags & MASK_LONG_LOAD_STORE)
|
||
|
||
/* Use a faster sequence for indirect calls. */
|
||
#define MASK_FAST_INDIRECT_CALLS 1024
|
||
#define TARGET_FAST_INDIRECT_CALLS (target_flags & MASK_FAST_INDIRECT_CALLS)
|
||
|
||
/* Generate code with big switch statements to avoid out of range branches
|
||
occurring within the switch table. */
|
||
#define MASK_BIG_SWITCH 2048
|
||
#define TARGET_BIG_SWITCH (target_flags & MASK_BIG_SWITCH)
|
||
|
||
|
||
/* Generate code for the HPPA 2.0 architecture. TARGET_PA_11 should also be
|
||
true when this is true. */
|
||
#define MASK_PA_20 4096
|
||
#define TARGET_PA_20 (target_flags & MASK_PA_20)
|
||
|
||
/* Macro to define tables used to set the flags.
|
||
This is a list in braces of pairs in braces,
|
||
each pair being { "NAME", VALUE }
|
||
where VALUE is the bits to set or minus the bits to clear.
|
||
An empty string NAME is used to identify the default VALUE. */
|
||
|
||
#define TARGET_SWITCHES \
|
||
{{"snake", MASK_PA_11, "Generate PA1.1 code"}, \
|
||
{"nosnake", -(MASK_PA_11 | MASK_PA_20), "Generate PA1.0 code"}, \
|
||
{"pa-risc-1-0", -(MASK_PA_11 | MASK_PA_20), "Generate PA1.0 code"}, \
|
||
{"pa-risc-1-1", MASK_PA_11, "Generate PA1.1 code"}, \
|
||
{"pa-risc-2-0", MASK_PA_20, "Generate PA2.0 code. This option requires gas snapshot 19990413 or later"}, \
|
||
{"disable-fpregs", MASK_DISABLE_FPREGS, "Disable FP regs"}, \
|
||
{"no-disable-fpregs", -MASK_DISABLE_FPREGS, "Do not disable FP regs"},\
|
||
{"no-space-regs", MASK_NO_SPACE_REGS, "Disable space regs"}, \
|
||
{"space-regs", -MASK_NO_SPACE_REGS, "Do not disable space regs"}, \
|
||
{"jump-in-delay", MASK_JUMP_IN_DELAY, "Put jumps in call delay slots"},\
|
||
{"no-jump-in-delay", -MASK_JUMP_IN_DELAY, "Do not put jumps in call delay slots"}, \
|
||
{"disable-indexing", MASK_DISABLE_INDEXING, "Disable indexed addressing"},\
|
||
{"no-disable-indexing", -MASK_DISABLE_INDEXING, "Do not disable indexed addressing"},\
|
||
{"portable-runtime", MASK_PORTABLE_RUNTIME, "Use portable calling conventions"}, \
|
||
{"no-portable-runtime", -MASK_PORTABLE_RUNTIME, "Do not use portable calling conventions"},\
|
||
{"gas", MASK_GAS, "Assume code will be assembled by GAS"}, \
|
||
{"no-gas", -MASK_GAS, "Do not assume code will be assembled by GAS"}, \
|
||
{"soft-float", MASK_SOFT_FLOAT, "Use software floating point"}, \
|
||
{"no-soft-float", -MASK_SOFT_FLOAT, "Do not use software floating point"}, \
|
||
{"long-load-store", MASK_LONG_LOAD_STORE, "Emit long load/store sequences"}, \
|
||
{"no-long-load-store", -MASK_LONG_LOAD_STORE, "Do not emit long load/store sequences"},\
|
||
{"fast-indirect-calls", MASK_FAST_INDIRECT_CALLS, "Generate fast indirect calls"},\
|
||
{"no-fast-indirect-calls", -MASK_FAST_INDIRECT_CALLS, "Do not generate fast indirect calls"},\
|
||
{"big-switch", MASK_BIG_SWITCH, "Generate code for huge switch statements"}, \
|
||
{"no-big-switch", -MASK_BIG_SWITCH, "Do not generate code for huge switch statements"}, \
|
||
{"linker-opt", 0, "Enable linker optimizations"}, \
|
||
{ "", TARGET_DEFAULT | TARGET_CPU_DEFAULT, NULL}}
|
||
|
||
#ifndef TARGET_DEFAULT
|
||
#define TARGET_DEFAULT (MASK_GAS | MASK_JUMP_IN_DELAY)
|
||
#endif
|
||
|
||
#ifndef TARGET_CPU_DEFAULT
|
||
#define TARGET_CPU_DEFAULT 0
|
||
#endif
|
||
|
||
#define TARGET_OPTIONS \
|
||
{ \
|
||
{ "schedule=", &pa_cpu_string, "Specify CPU for scheduling purposes" },\
|
||
{ "arch=", &pa_arch_string, "Specify architecture for code generation. Values are 1.0, 1.1, and 2.0. 2.0 requires gas snapshot 19990413 or later." }\
|
||
}
|
||
|
||
/* Specify the dialect of assembler to use. New mnemonics is dialect one
|
||
and the old mnemonics are dialect zero. */
|
||
#define ASSEMBLER_DIALECT (TARGET_PA_20 ? 1 : 0)
|
||
|
||
#define OVERRIDE_OPTIONS override_options ()
|
||
|
||
/* stabs-in-som is nearly identical to stabs-in-elf. To avoid useless
|
||
code duplication we simply include this file and override as needed. */
|
||
#include "dbxelf.h"
|
||
|
||
/* We do not have to be compatible with dbx, so we enable gdb extensions
|
||
by default. */
|
||
#define DEFAULT_GDB_EXTENSIONS 1
|
||
|
||
/* This used to be zero (no max length), but big enums and such can
|
||
cause huge strings which killed gas.
|
||
|
||
We also have to avoid lossage in dbxout.c -- it does not compute the
|
||
string size accurately, so we are real conservative here. */
|
||
#undef DBX_CONTIN_LENGTH
|
||
#define DBX_CONTIN_LENGTH 3000
|
||
|
||
/* Only labels should ever begin in column zero. */
|
||
#define ASM_STABS_OP "\t.stabs"
|
||
#define ASM_STABN_OP "\t.stabn"
|
||
|
||
/* How to renumber registers for dbx and gdb.
|
||
|
||
Registers 0 - 31 remain unchanged.
|
||
|
||
Registers 32 - 87 are mapped to 72 - 127
|
||
|
||
Register 88 is mapped to 32. */
|
||
|
||
#define DBX_REGISTER_NUMBER(REGNO) \
|
||
((REGNO) <= 31 ? (REGNO) : \
|
||
((REGNO) > 31 && (REGNO) <= 87 ? (REGNO) + 40 : 32))
|
||
|
||
/* GDB always assumes the current function's frame begins at the value
|
||
of the stack pointer upon entry to the current function. Accessing
|
||
local variables and parameters passed on the stack is done using the
|
||
base of the frame + an offset provided by GCC.
|
||
|
||
For functions which have frame pointers this method works fine;
|
||
the (frame pointer) == (stack pointer at function entry) and GCC provides
|
||
an offset relative to the frame pointer.
|
||
|
||
This loses for functions without a frame pointer; GCC provides an offset
|
||
which is relative to the stack pointer after adjusting for the function's
|
||
frame size. GDB would prefer the offset to be relative to the value of
|
||
the stack pointer at the function's entry. Yuk! */
|
||
#define DEBUGGER_AUTO_OFFSET(X) \
|
||
((GET_CODE (X) == PLUS ? INTVAL (XEXP (X, 1)) : 0) \
|
||
+ (frame_pointer_needed ? 0 : compute_frame_size (get_frame_size (), 0)))
|
||
|
||
#define DEBUGGER_ARG_OFFSET(OFFSET, X) \
|
||
((GET_CODE (X) == PLUS ? OFFSET : 0) \
|
||
+ (frame_pointer_needed ? 0 : compute_frame_size (get_frame_size (), 0)))
|
||
|
||
#if ((TARGET_DEFAULT | TARGET_CPU_DEFAULT) & MASK_PA_11) == 0
|
||
#define CPP_SPEC "%{msnake:-D__hp9000s700 -D_PA_RISC1_1}\
|
||
%{mpa-risc-1-1:-D__hp9000s700 -D_PA_RISC1_1}\
|
||
%{!ansi: -D_HPUX_SOURCE -D_HIUX_SOURCE -D__STDC_EXT__}\
|
||
%{threads:-D_REENTRANT -D_DCE_THREADS}"
|
||
#else
|
||
#define CPP_SPEC "%{!mpa-risc-1-0:%{!mnosnake:%{!msoft-float:-D__hp9000s700 -D_PA_RISC1_1}}} \
|
||
%{!ansi: -D_HPUX_SOURCE -D_HIUX_SOURCE -D__STDC_EXT__}\
|
||
%{threads:-D_REENTRANT -D_DCE_THREADS}"
|
||
#endif
|
||
|
||
/* Defines for a K&R CC */
|
||
|
||
#define CC1_SPEC "%{pg:} %{p:}"
|
||
|
||
#define LINK_SPEC "%{mlinker-opt:-O} %{!shared:-u main} %{shared:-b}"
|
||
|
||
/* We don't want -lg. */
|
||
#ifndef LIB_SPEC
|
||
#define LIB_SPEC "%{!p:%{!pg:-lc}}%{p:-lc_p}%{pg:-lc_p}"
|
||
#endif
|
||
|
||
/* Make gcc agree with <machine/ansi.h> */
|
||
|
||
#define SIZE_TYPE "unsigned int"
|
||
#define PTRDIFF_TYPE "int"
|
||
#define WCHAR_TYPE "unsigned int"
|
||
#define WCHAR_TYPE_SIZE 32
|
||
|
||
/* Show we can debug even without a frame pointer. */
|
||
#define CAN_DEBUG_WITHOUT_FP
|
||
|
||
/* Machine dependent reorg pass. */
|
||
#define MACHINE_DEPENDENT_REORG(X) pa_reorg(X)
|
||
|
||
/* Prototype function used in MACHINE_DEPENDENT_REORG macro. */
|
||
void pa_reorg ();
|
||
|
||
/* Prototype function used in various macros. */
|
||
int symbolic_operand ();
|
||
|
||
/* Used in insn-*.c. */
|
||
int following_call ();
|
||
int function_label_operand ();
|
||
int lhs_lshift_cint_operand ();
|
||
|
||
/* Names to predefine in the preprocessor for this target machine. */
|
||
|
||
#define CPP_PREDEFINES "-Dhppa -Dhp9000s800 -D__hp9000s800 -Dhp9k8 -Dunix -Dhp9000 -Dhp800 -Dspectrum -DREVARGV -Asystem(unix) -Asystem(bsd) -Acpu(hppa) -Amachine(hppa)"
|
||
|
||
/* target machine storage layout */
|
||
|
||
/* Define for cross-compilation from a host with a different float format
|
||
or endianness (e.g. VAX, x86). */
|
||
#define REAL_ARITHMETIC
|
||
|
||
/* Define this macro if it is advisable to hold scalars in registers
|
||
in a wider mode than that declared by the program. In such cases,
|
||
the value is constrained to be within the bounds of the declared
|
||
type, but kept valid in the wider mode. The signedness of the
|
||
extension may differ from that of the type. */
|
||
|
||
#define PROMOTE_MODE(MODE,UNSIGNEDP,TYPE) \
|
||
if (GET_MODE_CLASS (MODE) == MODE_INT \
|
||
&& GET_MODE_SIZE (MODE) < UNITS_PER_WORD) \
|
||
(MODE) = word_mode;
|
||
|
||
/* Define this if most significant bit is lowest numbered
|
||
in instructions that operate on numbered bit-fields. */
|
||
#define BITS_BIG_ENDIAN 1
|
||
|
||
/* Define this if most significant byte of a word is the lowest numbered. */
|
||
/* That is true on the HP-PA. */
|
||
#define BYTES_BIG_ENDIAN 1
|
||
|
||
/* Define this if most significant word of a multiword number is lowest
|
||
numbered. */
|
||
#define WORDS_BIG_ENDIAN 1
|
||
|
||
/* number of bits in an addressable storage unit */
|
||
#define BITS_PER_UNIT 8
|
||
|
||
/* Width in bits of a "word", which is the contents of a machine register.
|
||
Note that this is not necessarily the width of data type `int';
|
||
if using 16-bit ints on a 68000, this would still be 32.
|
||
But on a machine with 16-bit registers, this would be 16. */
|
||
#define BITS_PER_WORD 32
|
||
|
||
/* Width of a word, in units (bytes). */
|
||
#define UNITS_PER_WORD 4
|
||
|
||
/* Width in bits of a pointer.
|
||
See also the macro `Pmode' defined below. */
|
||
#define POINTER_SIZE BITS_PER_WORD
|
||
|
||
/* Allocation boundary (in *bits*) for storing arguments in argument list. */
|
||
#define PARM_BOUNDARY BITS_PER_WORD
|
||
|
||
/* Largest alignment required for any stack parameter, in bits.
|
||
Don't define this if it is equal to PARM_BOUNDARY */
|
||
#define MAX_PARM_BOUNDARY 64
|
||
|
||
/* Boundary (in *bits*) on which stack pointer is always aligned;
|
||
certain optimizations in combine depend on this.
|
||
|
||
GCC for the PA always rounds its stacks to a 512bit boundary,
|
||
but that happens late in the compilation process. */
|
||
#define STACK_BOUNDARY 64
|
||
|
||
/* Allocation boundary (in *bits*) for the code of a function. */
|
||
#define FUNCTION_BOUNDARY 32
|
||
|
||
/* Alignment of field after `int : 0' in a structure. */
|
||
#define EMPTY_FIELD_BOUNDARY 32
|
||
|
||
/* Every structure's size must be a multiple of this. */
|
||
#define STRUCTURE_SIZE_BOUNDARY 8
|
||
|
||
/* A bitfield declared as `int' forces `int' alignment for the struct. */
|
||
#define PCC_BITFIELD_TYPE_MATTERS 1
|
||
|
||
/* No data type wants to be aligned rounder than this. */
|
||
#define BIGGEST_ALIGNMENT 64
|
||
|
||
/* Get around hp-ux assembler bug, and make strcpy of constants fast. */
|
||
#define CONSTANT_ALIGNMENT(CODE, TYPEALIGN) \
|
||
((TYPEALIGN) < 32 ? 32 : (TYPEALIGN))
|
||
|
||
/* Make arrays of chars word-aligned for the same reasons. */
|
||
#define DATA_ALIGNMENT(TYPE, ALIGN) \
|
||
(TREE_CODE (TYPE) == ARRAY_TYPE \
|
||
&& TYPE_MODE (TREE_TYPE (TYPE)) == QImode \
|
||
&& (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
|
||
|
||
|
||
/* Set this nonzero if move instructions will actually fail to work
|
||
when given unaligned data. */
|
||
#define STRICT_ALIGNMENT 1
|
||
|
||
/* Generate calls to memcpy, memcmp and memset. */
|
||
#define TARGET_MEM_FUNCTIONS
|
||
|
||
/* Standard register usage. */
|
||
|
||
/* Number of actual hardware registers.
|
||
The hardware registers are assigned numbers for the compiler
|
||
from 0 to just below FIRST_PSEUDO_REGISTER.
|
||
All registers that the compiler knows about must be given numbers,
|
||
even those that are not normally considered general registers.
|
||
|
||
HP-PA 1.0 has 32 fullword registers and 16 floating point
|
||
registers. The floating point registers hold either word or double
|
||
word values.
|
||
|
||
16 additional registers are reserved.
|
||
|
||
HP-PA 1.1 has 32 fullword registers and 32 floating point
|
||
registers. However, the floating point registers behave
|
||
differently: the left and right halves of registers are addressable
|
||
as 32 bit registers. So, we will set things up like the 68k which
|
||
has different fp units: define separate register sets for the 1.0
|
||
and 1.1 fp units. */
|
||
|
||
#define FIRST_PSEUDO_REGISTER 89 /* 32 general regs + 56 fp regs +
|
||
+ 1 shift reg */
|
||
|
||
/* 1 for registers that have pervasive standard uses
|
||
and are not available for the register allocator.
|
||
|
||
On the HP-PA, these are:
|
||
Reg 0 = 0 (hardware). However, 0 is used for condition code,
|
||
so is not fixed.
|
||
Reg 1 = ADDIL target/Temporary (hardware).
|
||
Reg 2 = Return Pointer
|
||
Reg 3 = Frame Pointer
|
||
Reg 4 = Frame Pointer (>8k varying frame with HP compilers only)
|
||
Reg 4-18 = Preserved Registers
|
||
Reg 19 = Linkage Table Register in HPUX 8.0 shared library scheme.
|
||
Reg 20-22 = Temporary Registers
|
||
Reg 23-26 = Temporary/Parameter Registers
|
||
Reg 27 = Global Data Pointer (hp)
|
||
Reg 28 = Temporary/???/Return Value register
|
||
Reg 29 = Temporary/Static Chain/Return Value register #2
|
||
Reg 30 = stack pointer
|
||
Reg 31 = Temporary/Millicode Return Pointer (hp)
|
||
|
||
Freg 0-3 = Status Registers -- Not known to the compiler.
|
||
Freg 4-7 = Arguments/Return Value
|
||
Freg 8-11 = Temporary Registers
|
||
Freg 12-15 = Preserved Registers
|
||
|
||
Freg 16-31 = Reserved
|
||
|
||
On the Snake, fp regs are
|
||
|
||
Freg 0-3 = Status Registers -- Not known to the compiler.
|
||
Freg 4L-7R = Arguments/Return Value
|
||
Freg 8L-11R = Temporary Registers
|
||
Freg 12L-21R = Preserved Registers
|
||
Freg 22L-31R = Temporary Registers
|
||
|
||
*/
|
||
|
||
#define FIXED_REGISTERS \
|
||
{0, 0, 0, 0, 0, 0, 0, 0, \
|
||
0, 0, 0, 0, 0, 0, 0, 0, \
|
||
0, 0, 0, 0, 0, 0, 0, 0, \
|
||
0, 0, 0, 1, 0, 0, 1, 0, \
|
||
/* fp registers */ \
|
||
0, 0, 0, 0, 0, 0, 0, 0, \
|
||
0, 0, 0, 0, 0, 0, 0, 0, \
|
||
0, 0, 0, 0, 0, 0, 0, 0, \
|
||
0, 0, 0, 0, 0, 0, 0, 0, \
|
||
0, 0, 0, 0, 0, 0, 0, 0, \
|
||
0, 0, 0, 0, 0, 0, 0, 0, \
|
||
0, 0, 0, 0, 0, 0, 0, 0, \
|
||
0}
|
||
|
||
/* 1 for registers not available across function calls.
|
||
These must include the FIXED_REGISTERS and also any
|
||
registers that can be used without being saved.
|
||
The latter must include the registers where values are returned
|
||
and the register where structure-value addresses are passed.
|
||
Aside from that, you can include as many other registers as you like. */
|
||
#define CALL_USED_REGISTERS \
|
||
{1, 1, 1, 0, 0, 0, 0, 0, \
|
||
0, 0, 0, 0, 0, 0, 0, 0, \
|
||
0, 0, 0, 1, 1, 1, 1, 1, \
|
||
1, 1, 1, 1, 1, 1, 1, 1, \
|
||
/* fp registers */ \
|
||
1, 1, 1, 1, 1, 1, 1, 1, \
|
||
1, 1, 1, 1, 1, 1, 1, 1, \
|
||
0, 0, 0, 0, 0, 0, 0, 0, \
|
||
0, 0, 0, 0, 0, 0, 0, 0, \
|
||
0, 0, 0, 0, 1, 1, 1, 1, \
|
||
1, 1, 1, 1, 1, 1, 1, 1, \
|
||
1, 1, 1, 1, 1, 1, 1, 1, \
|
||
1}
|
||
|
||
#define CONDITIONAL_REGISTER_USAGE \
|
||
{ \
|
||
if (!TARGET_PA_11) \
|
||
{ \
|
||
for (i = 56; i < 88; i++) \
|
||
fixed_regs[i] = call_used_regs[i] = 1; \
|
||
for (i = 33; i < 88; i += 2) \
|
||
fixed_regs[i] = call_used_regs[i] = 1; \
|
||
} \
|
||
if (TARGET_DISABLE_FPREGS || TARGET_SOFT_FLOAT)\
|
||
{ \
|
||
for (i = 32; i < 88; i++) \
|
||
fixed_regs[i] = call_used_regs[i] = 1; \
|
||
} \
|
||
if (flag_pic) \
|
||
{ \
|
||
fixed_regs[PIC_OFFSET_TABLE_REGNUM] = 1; \
|
||
fixed_regs[PIC_OFFSET_TABLE_REGNUM_SAVED] = 1;\
|
||
} \
|
||
}
|
||
|
||
/* Allocate the call used registers first. This should minimize
|
||
the number of registers that need to be saved (as call used
|
||
registers will generally not be allocated across a call).
|
||
|
||
Experimentation has shown slightly better results by allocating
|
||
FP registers first.
|
||
|
||
FP registers are ordered so that all L registers are selected before
|
||
R registers. This works around a false dependency interlock on the
|
||
PA8000 when accessing the high and low parts of an FP register
|
||
independently. */
|
||
|
||
#define REG_ALLOC_ORDER \
|
||
{ \
|
||
/* caller-saved fp regs. */ \
|
||
68, 70, 72, 74, 76, 78, 80, 82, \
|
||
84, 86, 40, 42, 44, 46, 32, 34, \
|
||
36, 38, \
|
||
69, 71, 73, 75, 77, 79, 81, 83, \
|
||
85, 87, 41, 43, 45, 47, 33, 35, \
|
||
37, 39, \
|
||
/* caller-saved general regs. */ \
|
||
19, 20, 21, 22, 23, 24, 25, 26, \
|
||
27, 28, 29, 31, 2, \
|
||
/* callee-saved fp regs. */ \
|
||
48, 50, 52, 54, 56, 58, 60, 62, \
|
||
64, 66, \
|
||
49, 51, 53, 55, 57, 59, 61, 63, \
|
||
65, 67, \
|
||
/* callee-saved general regs. */ \
|
||
3, 4, 5, 6, 7, 8, 9, 10, \
|
||
11, 12, 13, 14, 15, 16, 17, 18, \
|
||
/* special registers. */ \
|
||
1, 30, 0, 88}
|
||
|
||
|
||
/* True if register is floating-point. */
|
||
#define FP_REGNO_P(N) ((N) >= 32 && (N) <= 87)
|
||
|
||
/* Return number of consecutive hard regs needed starting at reg REGNO
|
||
to hold something of mode MODE.
|
||
This is ordinarily the length in words of a value of mode MODE
|
||
but can be less for certain modes in special long registers.
|
||
|
||
On the HP-PA, ordinary registers hold 32 bits worth;
|
||
The floating point registers are 64 bits wide. Snake fp regs are 32
|
||
bits wide */
|
||
#define HARD_REGNO_NREGS(REGNO, MODE) \
|
||
(FP_REGNO_P (REGNO) \
|
||
? (!TARGET_PA_11 ? 1 : (GET_MODE_SIZE (MODE) + 4 - 1) / 4) \
|
||
: ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
|
||
|
||
/* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
|
||
On the HP-PA, the cpu registers can hold any mode. We
|
||
force this to be an even register is it cannot hold the full mode. */
|
||
#define HARD_REGNO_MODE_OK(REGNO, MODE) \
|
||
((REGNO) == 0 ? (MODE) == CCmode || (MODE) == CCFPmode \
|
||
/* On 1.0 machines, don't allow wide non-fp modes in fp regs. */ \
|
||
: !TARGET_PA_11 && FP_REGNO_P (REGNO) \
|
||
? GET_MODE_SIZE (MODE) <= 4 || GET_MODE_CLASS (MODE) == MODE_FLOAT \
|
||
: FP_REGNO_P (REGNO) \
|
||
? GET_MODE_SIZE (MODE) <= 4 || ((REGNO) & 1) == 0 \
|
||
/* Make wide modes be in aligned registers. */ \
|
||
: GET_MODE_SIZE (MODE) <= UNITS_PER_WORD || ((REGNO) & 1) == 0)
|
||
|
||
/* Value is 1 if it is a good idea to tie two pseudo registers
|
||
when one has mode MODE1 and one has mode MODE2.
|
||
If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
|
||
for any hard reg, then this must be 0 for correct output. */
|
||
#define MODES_TIEABLE_P(MODE1, MODE2) \
|
||
(GET_MODE_CLASS (MODE1) == GET_MODE_CLASS (MODE2))
|
||
|
||
/* Specify the registers used for certain standard purposes.
|
||
The values of these macros are register numbers. */
|
||
|
||
/* The HP-PA pc isn't overloaded on a register that the compiler knows about. */
|
||
/* #define PC_REGNUM */
|
||
|
||
/* Register to use for pushing function arguments. */
|
||
#define STACK_POINTER_REGNUM 30
|
||
|
||
/* Base register for access to local variables of the function. */
|
||
#define FRAME_POINTER_REGNUM 3
|
||
|
||
/* Value should be nonzero if functions must have frame pointers. */
|
||
#define FRAME_POINTER_REQUIRED \
|
||
(current_function_calls_alloca)
|
||
|
||
/* C statement to store the difference between the frame pointer
|
||
and the stack pointer values immediately after the function prologue.
|
||
|
||
Note, we always pretend that this is a leaf function because if
|
||
it's not, there's no point in trying to eliminate the
|
||
frame pointer. If it is a leaf function, we guessed right! */
|
||
#define INITIAL_FRAME_POINTER_OFFSET(VAR) \
|
||
do {(VAR) = - compute_frame_size (get_frame_size (), 0);} while (0)
|
||
|
||
/* Base register for access to arguments of the function. */
|
||
#define ARG_POINTER_REGNUM 3
|
||
|
||
/* Register in which static-chain is passed to a function. */
|
||
/* ??? */
|
||
#define STATIC_CHAIN_REGNUM 29
|
||
|
||
/* Register which holds offset table for position-independent
|
||
data references. */
|
||
|
||
#define PIC_OFFSET_TABLE_REGNUM 19
|
||
#define PIC_OFFSET_TABLE_REG_CALL_CLOBBERED 1
|
||
|
||
/* Register into which we save the PIC_OFFEST_TABLE_REGNUM so that it
|
||
can be restore across function calls. */
|
||
#define PIC_OFFSET_TABLE_REGNUM_SAVED 4
|
||
|
||
/* SOM ABI says that objects larger than 64 bits are returned in memory. */
|
||
#define DEFAULT_PCC_STRUCT_RETURN 0
|
||
#define RETURN_IN_MEMORY(TYPE) \
|
||
(int_size_in_bytes (TYPE) > 8)
|
||
|
||
/* Register in which address to store a structure value
|
||
is passed to a function. */
|
||
#define STRUCT_VALUE_REGNUM 28
|
||
|
||
/* Define the classes of registers for register constraints in the
|
||
machine description. Also define ranges of constants.
|
||
|
||
One of the classes must always be named ALL_REGS and include all hard regs.
|
||
If there is more than one class, another class must be named NO_REGS
|
||
and contain no registers.
|
||
|
||
The name GENERAL_REGS must be the name of a class (or an alias for
|
||
another name such as ALL_REGS). This is the class of registers
|
||
that is allowed by "g" or "r" in a register constraint.
|
||
Also, registers outside this class are allocated only when
|
||
instructions express preferences for them.
|
||
|
||
The classes must be numbered in nondecreasing order; that is,
|
||
a larger-numbered class must never be contained completely
|
||
in a smaller-numbered class.
|
||
|
||
For any two classes, it is very desirable that there be another
|
||
class that represents their union. */
|
||
|
||
/* The HP-PA has four kinds of registers: general regs, 1.0 fp regs,
|
||
1.1 fp regs, and the high 1.1 fp regs, to which the operands of
|
||
fmpyadd and fmpysub are restricted. */
|
||
|
||
enum reg_class { NO_REGS, R1_REGS, GENERAL_REGS, FPUPPER_REGS, FP_REGS, GENERAL_OR_FP_REGS,
|
||
SHIFT_REGS, ALL_REGS, LIM_REG_CLASSES};
|
||
|
||
#define N_REG_CLASSES (int) LIM_REG_CLASSES
|
||
|
||
/* Give names of register classes as strings for dump file. */
|
||
|
||
#define REG_CLASS_NAMES \
|
||
{"NO_REGS", "R1_REGS", "GENERAL_REGS", "FPUPPER_REGS", "FP_REGS", \
|
||
"GENERAL_OR_FP_REGS", "SHIFT_REGS", "ALL_REGS"}
|
||
|
||
/* Define which registers fit in which classes.
|
||
This is an initializer for a vector of HARD_REG_SET
|
||
of length N_REG_CLASSES. Register 0, the "condition code" register,
|
||
is in no class. */
|
||
|
||
#define REG_CLASS_CONTENTS \
|
||
{{0x00000000, 0x00000000, 0x00000000}, /* NO_REGS */ \
|
||
{0x00000002, 0x00000000, 0x00000000}, /* R1_REGS */ \
|
||
{0xfffffffe, 0x00000000, 0x00000000}, /* GENERAL_REGS */ \
|
||
{0x00000000, 0xff000000, 0x00ffffff}, /* FPUPPER_REGS */ \
|
||
{0x00000000, 0xffffffff, 0x00ffffff}, /* FP_REGS */ \
|
||
{0xfffffffe, 0xffffffff, 0x00ffffff}, /* GENERAL_OR_FP_REGS */ \
|
||
{0x00000000, 0x00000000, 0x01000000}, /* SHIFT_REGS */ \
|
||
{0xfffffffe, 0xffffffff, 0x01ffffff}} /* ALL_REGS */
|
||
|
||
/* The same information, inverted:
|
||
Return the class number of the smallest class containing
|
||
reg number REGNO. This could be a conditional expression
|
||
or could index an array. */
|
||
|
||
#define REGNO_REG_CLASS(REGNO) \
|
||
((REGNO) == 0 ? NO_REGS \
|
||
: (REGNO) == 1 ? R1_REGS \
|
||
: (REGNO) < 32 ? GENERAL_REGS \
|
||
: (REGNO) < 56 ? FP_REGS \
|
||
: (REGNO) < 88 ? FPUPPER_REGS \
|
||
: SHIFT_REGS)
|
||
|
||
/* The class value for index registers, and the one for base regs. */
|
||
#define INDEX_REG_CLASS GENERAL_REGS
|
||
#define BASE_REG_CLASS GENERAL_REGS
|
||
|
||
#define FP_REG_CLASS_P(CLASS) \
|
||
((CLASS) == FP_REGS || (CLASS) == FPUPPER_REGS)
|
||
|
||
/* Get reg_class from a letter such as appears in the machine description. */
|
||
/* Keep 'x' for backward compatibility with user asm. */
|
||
#define REG_CLASS_FROM_LETTER(C) \
|
||
((C) == 'f' ? FP_REGS : \
|
||
(C) == 'y' ? FPUPPER_REGS : \
|
||
(C) == 'x' ? FP_REGS : \
|
||
(C) == 'q' ? SHIFT_REGS : \
|
||
(C) == 'a' ? R1_REGS : \
|
||
(C) == 'Z' ? ALL_REGS : NO_REGS)
|
||
|
||
/* The letters I, J, K, L and M in a register constraint string
|
||
can be used to stand for particular ranges of immediate operands.
|
||
This macro defines what the ranges are.
|
||
C is the letter, and VALUE is a constant value.
|
||
Return 1 if VALUE is in the range specified by C.
|
||
|
||
`I' is used for the 11 bit constants.
|
||
`J' is used for the 14 bit constants.
|
||
`K' is used for values that can be moved with a zdepi insn.
|
||
`L' is used for the 5 bit constants.
|
||
`M' is used for 0.
|
||
`N' is used for values with the least significant 11 bits equal to zero.
|
||
`O' is used for numbers n such that n+1 is a power of 2.
|
||
*/
|
||
|
||
#define CONST_OK_FOR_LETTER_P(VALUE, C) \
|
||
((C) == 'I' ? VAL_11_BITS_P (VALUE) \
|
||
: (C) == 'J' ? VAL_14_BITS_P (VALUE) \
|
||
: (C) == 'K' ? zdepi_cint_p (VALUE) \
|
||
: (C) == 'L' ? VAL_5_BITS_P (VALUE) \
|
||
: (C) == 'M' ? (VALUE) == 0 \
|
||
: (C) == 'N' ? ((VALUE) & 0x7ff) == 0 \
|
||
: (C) == 'O' ? (((VALUE) & ((VALUE) + 1)) == 0) \
|
||
: (C) == 'P' ? and_mask_p (VALUE) \
|
||
: 0)
|
||
|
||
/* Prototype function used in macro CONST_OK_FOR_LETTER_P. */
|
||
int zdepi_cint_p ();
|
||
|
||
/* Similar, but for floating or large integer constants, and defining letters
|
||
G and H. Here VALUE is the CONST_DOUBLE rtx itself.
|
||
|
||
For PA, `G' is the floating-point constant zero. `H' is undefined. */
|
||
|
||
#define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
|
||
((C) == 'G' ? (GET_MODE_CLASS (GET_MODE (VALUE)) == MODE_FLOAT \
|
||
&& (VALUE) == CONST0_RTX (GET_MODE (VALUE))) \
|
||
: 0)
|
||
|
||
/* Given an rtx X being reloaded into a reg required to be
|
||
in class CLASS, return the class of reg to actually use.
|
||
In general this is just CLASS; but on some machines
|
||
in some cases it is preferable to use a more restrictive class. */
|
||
#define PREFERRED_RELOAD_CLASS(X,CLASS) (CLASS)
|
||
|
||
/* Return the register class of a scratch register needed to copy IN into
|
||
or out of a register in CLASS in MODE. If it can be done directly
|
||
NO_REGS is returned.
|
||
|
||
Avoid doing any work for the common case calls. */
|
||
|
||
#define SECONDARY_RELOAD_CLASS(CLASS,MODE,IN) \
|
||
((CLASS == BASE_REG_CLASS && GET_CODE (IN) == REG \
|
||
&& REGNO (IN) < FIRST_PSEUDO_REGISTER) \
|
||
? NO_REGS : secondary_reload_class (CLASS, MODE, IN))
|
||
|
||
/* On the PA it is not possible to directly move data between
|
||
GENERAL_REGS and FP_REGS. */
|
||
#define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE) \
|
||
(FP_REG_CLASS_P (CLASS1) != FP_REG_CLASS_P (CLASS2))
|
||
|
||
/* Return the stack location to use for secondary memory needed reloads. */
|
||
#define SECONDARY_MEMORY_NEEDED_RTX(MODE) \
|
||
gen_rtx_MEM (MODE, gen_rtx_PLUS (Pmode, stack_pointer_rtx, GEN_INT (-16)))
|
||
|
||
/* Return the maximum number of consecutive registers
|
||
needed to represent mode MODE in a register of class CLASS. */
|
||
#define CLASS_MAX_NREGS(CLASS, MODE) \
|
||
((CLASS) == FP_REGS || (CLASS) == FPUPPER_REGS \
|
||
? (!TARGET_PA_11 ? 1 : (GET_MODE_SIZE (MODE) + 4 - 1) / 4) \
|
||
: ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
|
||
|
||
|
||
/* Stack layout; function entry, exit and calling. */
|
||
|
||
/* Define this if pushing a word on the stack
|
||
makes the stack pointer a smaller address. */
|
||
/* #define STACK_GROWS_DOWNWARD */
|
||
|
||
/* Believe it or not. */
|
||
#define ARGS_GROW_DOWNWARD
|
||
|
||
/* Define this if the nominal address of the stack frame
|
||
is at the high-address end of the local variables;
|
||
that is, each additional local variable allocated
|
||
goes at a more negative offset in the frame. */
|
||
/* #define FRAME_GROWS_DOWNWARD */
|
||
|
||
/* Offset within stack frame to start allocating local variables at.
|
||
If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
|
||
first local allocated. Otherwise, it is the offset to the BEGINNING
|
||
of the first local allocated. */
|
||
#define STARTING_FRAME_OFFSET 8
|
||
|
||
/* If we generate an insn to push BYTES bytes,
|
||
this says how many the stack pointer really advances by.
|
||
On the HP-PA, don't define this because there are no push insns. */
|
||
/* #define PUSH_ROUNDING(BYTES) */
|
||
|
||
/* Offset of first parameter from the argument pointer register value.
|
||
This value will be negated because the arguments grow down.
|
||
Also note that on STACK_GROWS_UPWARD machines (such as this one)
|
||
this is the distance from the frame pointer to the end of the first
|
||
argument, not it's beginning. To get the real offset of the first
|
||
argument, the size of the argument must be added.
|
||
|
||
??? Have to check on this.*/
|
||
|
||
#define FIRST_PARM_OFFSET(FNDECL) -32
|
||
|
||
/* When a parameter is passed in a register, stack space is still
|
||
allocated for it. */
|
||
#define REG_PARM_STACK_SPACE(DECL) 16
|
||
|
||
/* Define this if the above stack space is to be considered part of the
|
||
space allocated by the caller. */
|
||
#define OUTGOING_REG_PARM_STACK_SPACE
|
||
|
||
/* Keep the stack pointer constant throughout the function.
|
||
This is both an optimization and a necessity: longjmp
|
||
doesn't behave itself when the stack pointer moves within
|
||
the function! */
|
||
#define ACCUMULATE_OUTGOING_ARGS
|
||
|
||
/* The weird HPPA calling conventions require a minimum of 48 bytes on
|
||
the stack: 16 bytes for register saves, and 32 bytes for magic.
|
||
This is the difference between the logical top of stack and the
|
||
actual sp. */
|
||
#define STACK_POINTER_OFFSET -32
|
||
|
||
#define STACK_DYNAMIC_OFFSET(FNDECL) \
|
||
((STACK_POINTER_OFFSET) - current_function_outgoing_args_size)
|
||
|
||
/* Value is 1 if returning from a function call automatically
|
||
pops the arguments described by the number-of-args field in the call.
|
||
FUNDECL is the declaration node of the function (as a tree),
|
||
FUNTYPE is the data type of the function (as a tree),
|
||
or for a library call it is an identifier node for the subroutine name. */
|
||
|
||
#define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0
|
||
|
||
/* Define how to find the value returned by a function.
|
||
VALTYPE is the data type of the value (as a tree).
|
||
If the precise function being called is known, FUNC is its FUNCTION_DECL;
|
||
otherwise, FUNC is 0. */
|
||
|
||
/* On the HP-PA the value is found in register(s) 28(-29), unless
|
||
the mode is SF or DF. Then the value is returned in fr4 (32, ) */
|
||
|
||
|
||
#define FUNCTION_VALUE(VALTYPE, FUNC) \
|
||
gen_rtx_REG (TYPE_MODE (VALTYPE), ((! TARGET_SOFT_FLOAT \
|
||
&& (TYPE_MODE (VALTYPE) == SFmode || \
|
||
TYPE_MODE (VALTYPE) == DFmode)) ? \
|
||
32 : 28))
|
||
|
||
/* Define how to find the value returned by a library function
|
||
assuming the value has mode MODE. */
|
||
|
||
#define LIBCALL_VALUE(MODE) \
|
||
gen_rtx_REG (MODE, \
|
||
(! TARGET_SOFT_FLOAT \
|
||
&& ((MODE) == SFmode || (MODE) == DFmode) ? 32 : 28))
|
||
|
||
/* 1 if N is a possible register number for a function value
|
||
as seen by the caller. */
|
||
|
||
#define FUNCTION_VALUE_REGNO_P(N) \
|
||
((N) == 28 || (! TARGET_SOFT_FLOAT && (N) == 32))
|
||
|
||
/* 1 if N is a possible register number for function argument passing. */
|
||
|
||
#define FUNCTION_ARG_REGNO_P(N) \
|
||
(((N) >= 23 && (N) <= 26) || (! TARGET_SOFT_FLOAT && (N) >= 32 && (N) <= 39))
|
||
|
||
/* Define a data type for recording info about an argument list
|
||
during the scan of that argument list. This data type should
|
||
hold all necessary information about the function itself
|
||
and about the args processed so far, enough to enable macros
|
||
such as FUNCTION_ARG to determine where the next arg should go.
|
||
|
||
On the HP-PA, this is a single integer, which is a number of words
|
||
of arguments scanned so far (including the invisible argument,
|
||
if any, which holds the structure-value-address).
|
||
Thus 4 or more means all following args should go on the stack. */
|
||
|
||
struct hppa_args {int words, nargs_prototype, indirect; };
|
||
|
||
#define CUMULATIVE_ARGS struct hppa_args
|
||
|
||
/* Initialize a variable CUM of type CUMULATIVE_ARGS
|
||
for a call to a function whose data type is FNTYPE.
|
||
For a library call, FNTYPE is 0. */
|
||
|
||
#define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME,INDIRECT) \
|
||
(CUM).words = 0, \
|
||
(CUM).indirect = INDIRECT, \
|
||
(CUM).nargs_prototype = (FNTYPE && TYPE_ARG_TYPES (FNTYPE) \
|
||
? (list_length (TYPE_ARG_TYPES (FNTYPE)) - 1 \
|
||
+ (TYPE_MODE (TREE_TYPE (FNTYPE)) == BLKmode \
|
||
|| RETURN_IN_MEMORY (TREE_TYPE (FNTYPE)))) \
|
||
: 0)
|
||
|
||
|
||
|
||
/* Similar, but when scanning the definition of a procedure. We always
|
||
set NARGS_PROTOTYPE large so we never return a PARALLEL. */
|
||
|
||
#define INIT_CUMULATIVE_INCOMING_ARGS(CUM,FNTYPE,IGNORE) \
|
||
(CUM).words = 0, \
|
||
(CUM).indirect = 0, \
|
||
(CUM).nargs_prototype = 1000
|
||
|
||
/* Figure out the size in words of the function argument. */
|
||
|
||
#define FUNCTION_ARG_SIZE(MODE, TYPE) \
|
||
((((MODE) != BLKmode \
|
||
? GET_MODE_SIZE (MODE) \
|
||
: int_size_in_bytes (TYPE)) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
|
||
|
||
/* Update the data in CUM to advance over an argument
|
||
of mode MODE and data type TYPE.
|
||
(TYPE is null for libcalls where that information may not be available.) */
|
||
|
||
#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
|
||
{ (CUM).nargs_prototype--; \
|
||
((((CUM).words & 01) && (TYPE) != 0 \
|
||
&& FUNCTION_ARG_SIZE(MODE, TYPE) > 1) \
|
||
&& (CUM).words++), \
|
||
(CUM).words += FUNCTION_ARG_SIZE(MODE, TYPE); \
|
||
}
|
||
|
||
/* Determine where to put an argument to a function.
|
||
Value is zero to push the argument on the stack,
|
||
or a hard register in which to store the argument.
|
||
|
||
MODE is the argument's machine mode.
|
||
TYPE is the data type of the argument (as a tree).
|
||
This is null for libcalls where that information may
|
||
not be available.
|
||
CUM is a variable of type CUMULATIVE_ARGS which gives info about
|
||
the preceding args and about the function being called.
|
||
NAMED is nonzero if this argument is a named parameter
|
||
(otherwise it is an extra parameter matching an ellipsis).
|
||
|
||
On the HP-PA the first four words of args are normally in registers
|
||
and the rest are pushed. But any arg that won't entirely fit in regs
|
||
is pushed.
|
||
|
||
Arguments passed in registers are either 1 or 2 words long.
|
||
|
||
The caller must make a distinction between calls to explicitly named
|
||
functions and calls through pointers to functions -- the conventions
|
||
are different! Calls through pointers to functions only use general
|
||
registers for the first four argument words.
|
||
|
||
Of course all this is different for the portable runtime model
|
||
HP wants everyone to use for ELF. Ugh. Here's a quick description
|
||
of how it's supposed to work.
|
||
|
||
1) callee side remains unchanged. It expects integer args to be
|
||
in the integer registers, float args in the float registers and
|
||
unnamed args in integer registers.
|
||
|
||
2) caller side now depends on if the function being called has
|
||
a prototype in scope (rather than if it's being called indirectly).
|
||
|
||
2a) If there is a prototype in scope, then arguments are passed
|
||
according to their type (ints in integer registers, floats in float
|
||
registers, unnamed args in integer registers.
|
||
|
||
2b) If there is no prototype in scope, then floating point arguments
|
||
are passed in both integer and float registers. egad.
|
||
|
||
FYI: The portable parameter passing conventions are almost exactly like
|
||
the standard parameter passing conventions on the RS6000. That's why
|
||
you'll see lots of similar code in rs6000.h. */
|
||
|
||
#define FUNCTION_ARG_PADDING(MODE, TYPE) function_arg_padding ((MODE), (TYPE))
|
||
|
||
/* Do not expect to understand this without reading it several times. I'm
|
||
tempted to try and simply it, but I worry about breaking something. */
|
||
|
||
#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
|
||
(4 >= ((CUM).words + FUNCTION_ARG_SIZE ((MODE), (TYPE))) \
|
||
? (!TARGET_PORTABLE_RUNTIME || (TYPE) == 0 \
|
||
|| !FLOAT_MODE_P (MODE) || TARGET_SOFT_FLOAT \
|
||
|| (CUM).nargs_prototype > 0) \
|
||
? gen_rtx_REG ((MODE), \
|
||
(FUNCTION_ARG_SIZE ((MODE), (TYPE)) > 1 \
|
||
? (((!(CUM).indirect \
|
||
|| TARGET_PORTABLE_RUNTIME) \
|
||
&& (MODE) == DFmode \
|
||
&& ! TARGET_SOFT_FLOAT) \
|
||
? ((CUM).words ? 38 : 34) \
|
||
: ((CUM).words ? 23 : 25)) \
|
||
: (((!(CUM).indirect \
|
||
|| TARGET_PORTABLE_RUNTIME) \
|
||
&& (MODE) == SFmode \
|
||
&& ! TARGET_SOFT_FLOAT) \
|
||
? (32 + 2 * (CUM).words) \
|
||
: (27 - (CUM).words - FUNCTION_ARG_SIZE ((MODE),\
|
||
(TYPE))))))\
|
||
/* We are calling a non-prototyped function with floating point \
|
||
arguments using the portable conventions. */ \
|
||
: (gen_rtx_PARALLEL \
|
||
((MODE), \
|
||
gen_rtvec \
|
||
(2, \
|
||
gen_rtx_EXPR_LIST \
|
||
(VOIDmode, \
|
||
gen_rtx_REG ((MODE), \
|
||
(FUNCTION_ARG_SIZE ((MODE), (TYPE)) > 1 \
|
||
? ((CUM).words ? 38 : 34) : (32 + 2 * (CUM).words))), \
|
||
const0_rtx), \
|
||
gen_rtx_EXPR_LIST \
|
||
(VOIDmode, \
|
||
gen_rtx_REG ((MODE), \
|
||
(FUNCTION_ARG_SIZE ((MODE), (TYPE)) > 1 \
|
||
? ((CUM).words ? 23 : 25) \
|
||
: (27 - (CUM).words - \
|
||
FUNCTION_ARG_SIZE ((MODE), (TYPE))))), \
|
||
const0_rtx)))) \
|
||
/* Pass this parameter in the stack. */ \
|
||
: 0)
|
||
|
||
/* For an arg passed partly in registers and partly in memory,
|
||
this is the number of registers used.
|
||
For args passed entirely in registers or entirely in memory, zero. */
|
||
|
||
#define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) 0
|
||
|
||
/* If defined, a C expression that gives the alignment boundary, in
|
||
bits, of an argument with the specified mode and type. If it is
|
||
not defined, `PARM_BOUNDARY' is used for all arguments. */
|
||
|
||
#define FUNCTION_ARG_BOUNDARY(MODE, TYPE) \
|
||
(((TYPE) != 0) \
|
||
? (((int_size_in_bytes (TYPE)) + UNITS_PER_WORD - 1) \
|
||
/ UNITS_PER_WORD) * BITS_PER_WORD \
|
||
: ((GET_MODE_ALIGNMENT(MODE) <= PARM_BOUNDARY) \
|
||
? PARM_BOUNDARY \
|
||
: GET_MODE_ALIGNMENT(MODE)))
|
||
|
||
/* Arguments larger than eight bytes are passed by invisible reference */
|
||
|
||
#define FUNCTION_ARG_PASS_BY_REFERENCE(CUM, MODE, TYPE, NAMED) \
|
||
((TYPE) && int_size_in_bytes (TYPE) > 8)
|
||
|
||
#define FUNCTION_ARG_CALLEE_COPIES(CUM, MODE, TYPE, NAMED) \
|
||
((TYPE) && int_size_in_bytes (TYPE) > 8)
|
||
|
||
|
||
extern struct rtx_def *hppa_compare_op0, *hppa_compare_op1;
|
||
extern enum cmp_type hppa_branch_type;
|
||
|
||
#define ASM_OUTPUT_MI_THUNK(FILE, THUNK_FNDECL, DELTA, FUNCTION) \
|
||
{ const char *target_name = XSTR (XEXP (DECL_RTL (FUNCTION), 0), 0); \
|
||
STRIP_NAME_ENCODING (target_name, target_name); \
|
||
output_function_prologue (FILE, 0); \
|
||
if (VAL_14_BITS_P (DELTA)) \
|
||
fprintf (FILE, "\tb %s\n\tldo %d(%%r26),%%r26\n", target_name, DELTA); \
|
||
else \
|
||
fprintf (FILE, "\taddil L%%%d,%%r26\n\tb %s\n\tldo R%%%d(%%r1),%%r26\n", \
|
||
DELTA, target_name, DELTA); \
|
||
fprintf (FILE, "\n\t.EXIT\n\t.PROCEND\n"); \
|
||
}
|
||
|
||
/* This macro generates the assembly code for function entry.
|
||
FILE is a stdio stream to output the code to.
|
||
SIZE is an int: how many units of temporary storage to allocate.
|
||
Refer to the array `regs_ever_live' to determine which registers
|
||
to save; `regs_ever_live[I]' is nonzero if register number I
|
||
is ever used in the function. This macro is responsible for
|
||
knowing which registers should not be saved even if used. */
|
||
|
||
/* On HP-PA, move-double insns between fpu and cpu need an 8-byte block
|
||
of memory. If any fpu reg is used in the function, we allocate
|
||
such a block here, at the bottom of the frame, just in case it's needed.
|
||
|
||
If this function is a leaf procedure, then we may choose not
|
||
to do a "save" insn. The decision about whether or not
|
||
to do this is made in regclass.c. */
|
||
|
||
#define FUNCTION_PROLOGUE(FILE, SIZE) \
|
||
output_function_prologue (FILE, SIZE)
|
||
|
||
/* Output assembler code to FILE to increment profiler label # LABELNO
|
||
for profiling a function entry.
|
||
|
||
Because HPUX _mcount is so different, we actually emit the
|
||
profiling code in function_prologue. This just stores LABELNO for
|
||
that. */
|
||
|
||
#define PROFILE_BEFORE_PROLOGUE
|
||
#define FUNCTION_PROFILER(FILE, LABELNO) \
|
||
{ extern int hp_profile_labelno; hp_profile_labelno = (LABELNO);}
|
||
|
||
/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
|
||
the stack pointer does not matter. The value is tested only in
|
||
functions that have frame pointers.
|
||
No definition is equivalent to always zero. */
|
||
|
||
extern int may_call_alloca;
|
||
|
||
#define EXIT_IGNORE_STACK \
|
||
(get_frame_size () != 0 \
|
||
|| current_function_calls_alloca || current_function_outgoing_args_size)
|
||
|
||
|
||
/* This macro generates the assembly code for function exit,
|
||
on machines that need it. If FUNCTION_EPILOGUE is not defined
|
||
then individual return instructions are generated for each
|
||
return statement. Args are same as for FUNCTION_PROLOGUE.
|
||
|
||
The function epilogue should not depend on the current stack pointer!
|
||
It should use the frame pointer only. This is mandatory because
|
||
of alloca; we also take advantage of it to omit stack adjustments
|
||
before returning. */
|
||
|
||
#define FUNCTION_EPILOGUE(FILE, SIZE) \
|
||
output_function_epilogue (FILE, SIZE)
|
||
|
||
/* Output assembler code for a block containing the constant parts
|
||
of a trampoline, leaving space for the variable parts.\
|
||
|
||
The trampoline sets the static chain pointer to STATIC_CHAIN_REGNUM
|
||
and then branches to the specified routine.
|
||
|
||
This code template is copied from text segment to stack location
|
||
and then patched with INITIALIZE_TRAMPOLINE to contain
|
||
valid values, and then entered as a subroutine.
|
||
|
||
It is best to keep this as small as possible to avoid having to
|
||
flush multiple lines in the cache. */
|
||
|
||
#define TRAMPOLINE_TEMPLATE(FILE) \
|
||
{ \
|
||
fputs ("\tldw 36(%r22),%r21\n", FILE); \
|
||
fputs ("\tbb,>=,n %r21,30,.+16\n", FILE); \
|
||
if (ASSEMBLER_DIALECT == 0) \
|
||
fputs ("\tdepi 0,31,2,%r21\n", FILE); \
|
||
else \
|
||
fputs ("\tdepwi 0,31,2,%r21\n", FILE); \
|
||
fputs ("\tldw 4(%r21),%r19\n", FILE); \
|
||
fputs ("\tldw 0(%r21),%r21\n", FILE); \
|
||
fputs ("\tldsid (%r21),%r1\n", FILE); \
|
||
fputs ("\tmtsp %r1,%sr0\n", FILE); \
|
||
fputs ("\tbe 0(%sr0,%r21)\n", FILE); \
|
||
fputs ("\tldw 40(%r22),%r29\n", FILE); \
|
||
fputs ("\t.word 0\n", FILE); \
|
||
fputs ("\t.word 0\n", FILE); \
|
||
}
|
||
|
||
/* Length in units of the trampoline for entering a nested function.
|
||
|
||
Flush the cache entries corresponding to the first and last addresses
|
||
of the trampoline. This is necessary as the trampoline may cross two
|
||
cache lines.
|
||
|
||
If the code part of the trampoline ever grows to > 32 bytes, then it
|
||
will become necessary to hack on the cacheflush pattern in pa.md. */
|
||
|
||
#define TRAMPOLINE_SIZE (11 * 4)
|
||
|
||
/* Emit RTL insns to initialize the variable parts of a trampoline.
|
||
FNADDR is an RTX for the address of the function's pure code.
|
||
CXT is an RTX for the static chain value for the function.
|
||
|
||
Move the function address to the trampoline template at offset 12.
|
||
Move the static chain value to trampoline template at offset 16. */
|
||
|
||
#define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
|
||
{ \
|
||
rtx start_addr, end_addr; \
|
||
\
|
||
start_addr = memory_address (Pmode, plus_constant ((TRAMP), 36)); \
|
||
emit_move_insn (gen_rtx_MEM (Pmode, start_addr), (FNADDR)); \
|
||
start_addr = memory_address (Pmode, plus_constant ((TRAMP), 40)); \
|
||
emit_move_insn (gen_rtx_MEM (Pmode, start_addr), (CXT)); \
|
||
/* fdc and fic only use registers for the address to flush, \
|
||
they do not accept integer displacements. */ \
|
||
start_addr = force_reg (Pmode, (TRAMP)); \
|
||
end_addr = force_reg (Pmode, plus_constant ((TRAMP), 32)); \
|
||
emit_insn (gen_dcacheflush (start_addr, end_addr)); \
|
||
end_addr = force_reg (Pmode, plus_constant (start_addr, 32)); \
|
||
emit_insn (gen_icacheflush (start_addr, end_addr, start_addr, \
|
||
gen_reg_rtx (Pmode), gen_reg_rtx (Pmode)));\
|
||
}
|
||
|
||
/* Emit code for a call to builtin_saveregs. We must emit USE insns which
|
||
reference the 4 integer arg registers and 4 fp arg registers.
|
||
Ordinarily they are not call used registers, but they are for
|
||
_builtin_saveregs, so we must make this explicit. */
|
||
|
||
extern struct rtx_def *hppa_builtin_saveregs ();
|
||
#define EXPAND_BUILTIN_SAVEREGS() hppa_builtin_saveregs ()
|
||
|
||
/* Implement `va_start' for varargs and stdarg. */
|
||
|
||
extern void hppa_va_start();
|
||
#define EXPAND_BUILTIN_VA_START(stdarg, valist, nextarg) \
|
||
hppa_va_start (stdarg, valist, nextarg)
|
||
|
||
/* Implement `va_arg'. */
|
||
|
||
extern struct rtx_def *hppa_va_arg();
|
||
#define EXPAND_BUILTIN_VA_ARG(valist, type) \
|
||
hppa_va_arg (valist, type)
|
||
|
||
/* Addressing modes, and classification of registers for them.
|
||
|
||
Using autoincrement addressing modes on PA8000 class machines is
|
||
not profitable. */
|
||
|
||
#define HAVE_POST_INCREMENT (pa_cpu < PROCESSOR_8000)
|
||
#define HAVE_POST_DECREMENT (pa_cpu < PROCESSOR_8000)
|
||
|
||
#define HAVE_PRE_DECREMENT (pa_cpu < PROCESSOR_8000)
|
||
#define HAVE_PRE_INCREMENT (pa_cpu < PROCESSOR_8000)
|
||
|
||
/* Macros to check register numbers against specific register classes. */
|
||
|
||
/* These assume that REGNO is a hard or pseudo reg number.
|
||
They give nonzero only if REGNO is a hard reg of the suitable class
|
||
or a pseudo reg currently allocated to a suitable hard reg.
|
||
Since they use reg_renumber, they are safe only once reg_renumber
|
||
has been allocated, which happens in local-alloc.c. */
|
||
|
||
#define REGNO_OK_FOR_INDEX_P(REGNO) \
|
||
((REGNO) && ((REGNO) < 32 || (unsigned) reg_renumber[REGNO] < 32))
|
||
#define REGNO_OK_FOR_BASE_P(REGNO) \
|
||
((REGNO) && ((REGNO) < 32 || (unsigned) reg_renumber[REGNO] < 32))
|
||
#define REGNO_OK_FOR_FP_P(REGNO) \
|
||
(FP_REGNO_P (REGNO) || FP_REGNO_P (reg_renumber[REGNO]))
|
||
|
||
/* Now macros that check whether X is a register and also,
|
||
strictly, whether it is in a specified class.
|
||
|
||
These macros are specific to the HP-PA, and may be used only
|
||
in code for printing assembler insns and in conditions for
|
||
define_optimization. */
|
||
|
||
/* 1 if X is an fp register. */
|
||
|
||
#define FP_REG_P(X) (REG_P (X) && REGNO_OK_FOR_FP_P (REGNO (X)))
|
||
|
||
/* Maximum number of registers that can appear in a valid memory address. */
|
||
|
||
#define MAX_REGS_PER_ADDRESS 2
|
||
|
||
/* Recognize any constant value that is a valid address except
|
||
for symbolic addresses. We get better CSE by rejecting them
|
||
here and allowing hppa_legitimize_address to break them up. We
|
||
use most of the constants accepted by CONSTANT_P, except CONST_DOUBLE. */
|
||
|
||
#define CONSTANT_ADDRESS_P(X) \
|
||
((GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \
|
||
|| GET_CODE (X) == CONST_INT || GET_CODE (X) == CONST \
|
||
|| GET_CODE (X) == HIGH) \
|
||
&& (reload_in_progress || reload_completed || ! symbolic_expression_p (X)))
|
||
|
||
/* Include all constant integers and constant doubles, but not
|
||
floating-point, except for floating-point zero.
|
||
|
||
Reject LABEL_REFs if we're not using gas or the new HP assembler. */
|
||
#ifdef NEW_HP_ASSEMBLER
|
||
#define LEGITIMATE_CONSTANT_P(X) \
|
||
((GET_MODE_CLASS (GET_MODE (X)) != MODE_FLOAT \
|
||
|| (X) == CONST0_RTX (GET_MODE (X))) \
|
||
&& !function_label_operand (X, VOIDmode))
|
||
#else
|
||
#define LEGITIMATE_CONSTANT_P(X) \
|
||
((GET_MODE_CLASS (GET_MODE (X)) != MODE_FLOAT \
|
||
|| (X) == CONST0_RTX (GET_MODE (X))) \
|
||
&& (GET_CODE (X) != LABEL_REF || TARGET_GAS)\
|
||
&& !function_label_operand (X, VOIDmode))
|
||
#endif
|
||
|
||
/* Subroutine for EXTRA_CONSTRAINT.
|
||
|
||
Return 1 iff OP is a pseudo which did not get a hard register and
|
||
we are running the reload pass. */
|
||
|
||
#define IS_RELOADING_PSEUDO_P(OP) \
|
||
((reload_in_progress \
|
||
&& GET_CODE (OP) == REG \
|
||
&& REGNO (OP) >= FIRST_PSEUDO_REGISTER \
|
||
&& reg_renumber [REGNO (OP)] < 0))
|
||
|
||
/* Optional extra constraints for this machine. Borrowed from sparc.h.
|
||
|
||
For the HPPA, `Q' means that this is a memory operand but not a
|
||
symbolic memory operand. Note that an unassigned pseudo register
|
||
is such a memory operand. Needed because reload will generate
|
||
these things in insns and then not re-recognize the insns, causing
|
||
constrain_operands to fail.
|
||
|
||
`R' is used for scaled indexed addresses.
|
||
|
||
`S' is the constant 31.
|
||
|
||
`T' is for fp loads and stores. */
|
||
#define EXTRA_CONSTRAINT(OP, C) \
|
||
((C) == 'Q' ? \
|
||
(IS_RELOADING_PSEUDO_P (OP) \
|
||
|| (GET_CODE (OP) == MEM \
|
||
&& (memory_address_p (GET_MODE (OP), XEXP (OP, 0))\
|
||
|| reload_in_progress) \
|
||
&& ! symbolic_memory_operand (OP, VOIDmode) \
|
||
&& !(GET_CODE (XEXP (OP, 0)) == PLUS \
|
||
&& (GET_CODE (XEXP (XEXP (OP, 0), 0)) == MULT\
|
||
|| GET_CODE (XEXP (XEXP (OP, 0), 1)) == MULT))))\
|
||
: ((C) == 'R' ? \
|
||
(GET_CODE (OP) == MEM \
|
||
&& GET_CODE (XEXP (OP, 0)) == PLUS \
|
||
&& (GET_CODE (XEXP (XEXP (OP, 0), 0)) == MULT \
|
||
|| GET_CODE (XEXP (XEXP (OP, 0), 1)) == MULT) \
|
||
&& (move_operand (OP, GET_MODE (OP)) \
|
||
|| memory_address_p (GET_MODE (OP), XEXP (OP, 0))\
|
||
|| reload_in_progress)) \
|
||
: ((C) == 'T' ? \
|
||
(GET_CODE (OP) == MEM \
|
||
/* Using DFmode forces only short displacements \
|
||
to be recognized as valid in reg+d addresses. \
|
||
However, this is not necessary for PA2.0 since\
|
||
it has long FP loads/stores. */ \
|
||
&& memory_address_p ((TARGET_PA_20 \
|
||
? GET_MODE (OP) \
|
||
: DFmode), \
|
||
XEXP (OP, 0)) \
|
||
&& !(GET_CODE (XEXP (OP, 0)) == PLUS \
|
||
&& (GET_CODE (XEXP (XEXP (OP, 0), 0)) == MULT\
|
||
|| GET_CODE (XEXP (XEXP (OP, 0), 1)) == MULT)))\
|
||
: ((C) == 'S' ? \
|
||
(GET_CODE (OP) == CONST_INT && INTVAL (OP) == 31) : 0))))
|
||
|
||
/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
|
||
and check its validity for a certain class.
|
||
We have two alternate definitions for each of them.
|
||
The usual definition accepts all pseudo regs; the other rejects
|
||
them unless they have been allocated suitable hard regs.
|
||
The symbol REG_OK_STRICT causes the latter definition to be used.
|
||
|
||
Most source files want to accept pseudo regs in the hope that
|
||
they will get allocated to the class that the insn wants them to be in.
|
||
Source files for reload pass need to be strict.
|
||
After reload, it makes no difference, since pseudo regs have
|
||
been eliminated by then. */
|
||
|
||
#ifndef REG_OK_STRICT
|
||
|
||
/* Nonzero if X is a hard reg that can be used as an index
|
||
or if it is a pseudo reg. */
|
||
#define REG_OK_FOR_INDEX_P(X) \
|
||
(REGNO (X) && (REGNO (X) < 32 || REGNO (X) >= FIRST_PSEUDO_REGISTER))
|
||
/* Nonzero if X is a hard reg that can be used as a base reg
|
||
or if it is a pseudo reg. */
|
||
#define REG_OK_FOR_BASE_P(X) \
|
||
(REGNO (X) && (REGNO (X) < 32 || REGNO (X) >= FIRST_PSEUDO_REGISTER))
|
||
|
||
#else
|
||
|
||
/* Nonzero if X is a hard reg that can be used as an index. */
|
||
#define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
|
||
/* Nonzero if X is a hard reg that can be used as a base reg. */
|
||
#define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
|
||
|
||
#endif
|
||
|
||
/* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
|
||
that is a valid memory address for an instruction.
|
||
The MODE argument is the machine mode for the MEM expression
|
||
that wants to use this address.
|
||
|
||
On the HP-PA, the actual legitimate addresses must be
|
||
REG+REG, REG+(REG*SCALE) or REG+SMALLINT.
|
||
But we can treat a SYMBOL_REF as legitimate if it is part of this
|
||
function's constant-pool, because such addresses can actually
|
||
be output as REG+SMALLINT.
|
||
|
||
Note we only allow 5 bit immediates for access to a constant address;
|
||
doing so avoids losing for loading/storing a FP register at an address
|
||
which will not fit in 5 bits. */
|
||
|
||
#define VAL_5_BITS_P(X) ((unsigned)(X) + 0x10 < 0x20)
|
||
#define INT_5_BITS(X) VAL_5_BITS_P (INTVAL (X))
|
||
|
||
#define VAL_U5_BITS_P(X) ((unsigned)(X) < 0x20)
|
||
#define INT_U5_BITS(X) VAL_U5_BITS_P (INTVAL (X))
|
||
|
||
#define VAL_11_BITS_P(X) ((unsigned)(X) + 0x400 < 0x800)
|
||
#define INT_11_BITS(X) VAL_11_BITS_P (INTVAL (X))
|
||
|
||
#define VAL_14_BITS_P(X) ((unsigned)(X) + 0x2000 < 0x4000)
|
||
#define INT_14_BITS(X) VAL_14_BITS_P (INTVAL (X))
|
||
|
||
#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
|
||
{ \
|
||
if ((REG_P (X) && REG_OK_FOR_BASE_P (X)) \
|
||
|| ((GET_CODE (X) == PRE_DEC || GET_CODE (X) == POST_DEC \
|
||
|| GET_CODE (X) == PRE_INC || GET_CODE (X) == POST_INC) \
|
||
&& REG_P (XEXP (X, 0)) \
|
||
&& REG_OK_FOR_BASE_P (XEXP (X, 0)))) \
|
||
goto ADDR; \
|
||
else if (GET_CODE (X) == PLUS) \
|
||
{ \
|
||
rtx base = 0, index = 0; \
|
||
if (flag_pic && XEXP (X, 0) == pic_offset_table_rtx)\
|
||
{ \
|
||
if (GET_CODE (XEXP (X, 1)) == REG \
|
||
&& REG_OK_FOR_BASE_P (XEXP (X, 1))) \
|
||
goto ADDR; \
|
||
else if (flag_pic == 1 \
|
||
&& GET_CODE (XEXP (X, 1)) == SYMBOL_REF)\
|
||
goto ADDR; \
|
||
} \
|
||
else if (REG_P (XEXP (X, 0)) \
|
||
&& REG_OK_FOR_BASE_P (XEXP (X, 0))) \
|
||
base = XEXP (X, 0), index = XEXP (X, 1); \
|
||
else if (REG_P (XEXP (X, 1)) \
|
||
&& REG_OK_FOR_BASE_P (XEXP (X, 1))) \
|
||
base = XEXP (X, 1), index = XEXP (X, 0); \
|
||
if (base != 0) \
|
||
if (GET_CODE (index) == CONST_INT \
|
||
&& ((INT_14_BITS (index) \
|
||
&& (TARGET_SOFT_FLOAT \
|
||
|| (TARGET_PA_20 \
|
||
&& ((MODE == SFmode \
|
||
&& (INTVAL (index) % 4) == 0)\
|
||
|| (MODE == DFmode \
|
||
&& (INTVAL (index) % 8) == 0)))\
|
||
|| ((MODE) != SFmode && (MODE) != DFmode))) \
|
||
|| INT_5_BITS (index))) \
|
||
goto ADDR; \
|
||
if (! TARGET_SOFT_FLOAT \
|
||
&& ! TARGET_DISABLE_INDEXING \
|
||
&& base \
|
||
&& (mode == SFmode || mode == DFmode) \
|
||
&& GET_CODE (index) == MULT \
|
||
&& GET_CODE (XEXP (index, 0)) == REG \
|
||
&& REG_OK_FOR_BASE_P (XEXP (index, 0)) \
|
||
&& GET_CODE (XEXP (index, 1)) == CONST_INT \
|
||
&& INTVAL (XEXP (index, 1)) == (mode == SFmode ? 4 : 8))\
|
||
goto ADDR; \
|
||
} \
|
||
else if (GET_CODE (X) == LO_SUM \
|
||
&& GET_CODE (XEXP (X, 0)) == REG \
|
||
&& REG_OK_FOR_BASE_P (XEXP (X, 0)) \
|
||
&& CONSTANT_P (XEXP (X, 1)) \
|
||
&& (TARGET_SOFT_FLOAT \
|
||
/* We can allow symbolic LO_SUM addresses\
|
||
for PA2.0. */ \
|
||
|| (TARGET_PA_20 \
|
||
&& GET_CODE (XEXP (X, 1)) != CONST_INT)\
|
||
|| ((MODE) != SFmode \
|
||
&& (MODE) != DFmode))) \
|
||
goto ADDR; \
|
||
else if (GET_CODE (X) == LO_SUM \
|
||
&& GET_CODE (XEXP (X, 0)) == SUBREG \
|
||
&& GET_CODE (SUBREG_REG (XEXP (X, 0))) == REG\
|
||
&& REG_OK_FOR_BASE_P (SUBREG_REG (XEXP (X, 0)))\
|
||
&& CONSTANT_P (XEXP (X, 1)) \
|
||
&& (TARGET_SOFT_FLOAT \
|
||
/* We can allow symbolic LO_SUM addresses\
|
||
for PA2.0. */ \
|
||
|| (TARGET_PA_20 \
|
||
&& GET_CODE (XEXP (X, 1)) != CONST_INT)\
|
||
|| ((MODE) != SFmode \
|
||
&& (MODE) != DFmode))) \
|
||
goto ADDR; \
|
||
else if (GET_CODE (X) == LABEL_REF \
|
||
|| (GET_CODE (X) == CONST_INT \
|
||
&& INT_5_BITS (X))) \
|
||
goto ADDR; \
|
||
/* Needed for -fPIC */ \
|
||
else if (GET_CODE (X) == LO_SUM \
|
||
&& GET_CODE (XEXP (X, 0)) == REG \
|
||
&& REG_OK_FOR_BASE_P (XEXP (X, 0)) \
|
||
&& GET_CODE (XEXP (X, 1)) == UNSPEC) \
|
||
goto ADDR; \
|
||
}
|
||
|
||
/* Look for machine dependent ways to make the invalid address AD a
|
||
valid address.
|
||
|
||
For the PA, transform:
|
||
|
||
memory(X + <large int>)
|
||
|
||
into:
|
||
|
||
if (<large int> & mask) >= 16
|
||
Y = (<large int> & ~mask) + mask + 1 Round up.
|
||
else
|
||
Y = (<large int> & ~mask) Round down.
|
||
Z = X + Y
|
||
memory (Z + (<large int> - Y));
|
||
|
||
This makes reload inheritance and reload_cse work better since Z
|
||
can be reused.
|
||
|
||
There may be more opportunities to improve code with this hook. */
|
||
#define LEGITIMIZE_RELOAD_ADDRESS(AD, MODE, OPNUM, TYPE, IND, WIN) \
|
||
do { \
|
||
int offset, newoffset, mask; \
|
||
rtx new, temp = NULL_RTX; \
|
||
\
|
||
mask = (GET_MODE_CLASS (MODE) == MODE_FLOAT \
|
||
? (TARGET_PA_20 ? 0x3fff : 0x1f) : 0x3fff); \
|
||
\
|
||
if (optimize \
|
||
&& GET_CODE (AD) == PLUS) \
|
||
temp = simplify_binary_operation (PLUS, Pmode, \
|
||
XEXP (AD, 0), XEXP (AD, 1)); \
|
||
\
|
||
new = temp ? temp : AD; \
|
||
\
|
||
if (optimize \
|
||
&& GET_CODE (new) == PLUS \
|
||
&& GET_CODE (XEXP (new, 0)) == REG \
|
||
&& GET_CODE (XEXP (new, 1)) == CONST_INT) \
|
||
{ \
|
||
offset = INTVAL (XEXP ((new), 1)); \
|
||
\
|
||
/* Choose rounding direction. Round up if we are >= halfway. */ \
|
||
if ((offset & mask) >= ((mask + 1) / 2)) \
|
||
newoffset = (offset & ~mask) + mask + 1; \
|
||
else \
|
||
newoffset = offset & ~mask; \
|
||
\
|
||
if (newoffset != 0 \
|
||
&& VAL_14_BITS_P (newoffset)) \
|
||
{ \
|
||
\
|
||
temp = gen_rtx_PLUS (Pmode, XEXP (new, 0), \
|
||
GEN_INT (newoffset)); \
|
||
AD = gen_rtx_PLUS (Pmode, temp, GEN_INT (offset - newoffset));\
|
||
push_reload (XEXP (AD, 0), 0, &XEXP (AD, 0), 0, \
|
||
BASE_REG_CLASS, Pmode, VOIDmode, 0, 0, \
|
||
(OPNUM), (TYPE)); \
|
||
goto WIN; \
|
||
} \
|
||
} \
|
||
} while (0)
|
||
|
||
|
||
|
||
|
||
/* Try machine-dependent ways of modifying an illegitimate address
|
||
to be legitimate. If we find one, return the new, valid address.
|
||
This macro is used in only one place: `memory_address' in explow.c.
|
||
|
||
OLDX is the address as it was before break_out_memory_refs was called.
|
||
In some cases it is useful to look at this to decide what needs to be done.
|
||
|
||
MODE and WIN are passed so that this macro can use
|
||
GO_IF_LEGITIMATE_ADDRESS.
|
||
|
||
It is always safe for this macro to do nothing. It exists to recognize
|
||
opportunities to optimize the output. */
|
||
|
||
extern struct rtx_def *hppa_legitimize_address ();
|
||
#define LEGITIMIZE_ADDRESS(X, OLDX, MODE, WIN) \
|
||
{ rtx orig_x = (X); \
|
||
(X) = hppa_legitimize_address (X, OLDX, MODE); \
|
||
if ((X) != orig_x && memory_address_p (MODE, X)) \
|
||
goto WIN; }
|
||
|
||
/* Go to LABEL if ADDR (a legitimate address expression)
|
||
has an effect that depends on the machine mode it is used for. */
|
||
|
||
#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) \
|
||
if (GET_CODE (ADDR) == PRE_DEC \
|
||
|| GET_CODE (ADDR) == POST_DEC \
|
||
|| GET_CODE (ADDR) == PRE_INC \
|
||
|| GET_CODE (ADDR) == POST_INC) \
|
||
goto LABEL
|
||
|
||
/* Arghh. The hpux10 linker chokes if we have a reference to symbols
|
||
in a readonly data section when the symbol is defined in a shared
|
||
library. Since we can't know at compile time if a symbol will be
|
||
satisfied by a shared library or main program we put any symbolic
|
||
constant into the normal data section. */
|
||
#define SELECT_RTX_SECTION(MODE,RTX) \
|
||
if (symbolic_operand (RTX, MODE)) \
|
||
data_section (); \
|
||
else \
|
||
readonly_data_section ();
|
||
|
||
/* On hpux10, the linker will give an error if we have a reference
|
||
in the read-only data section to a symbol defined in a shared
|
||
library. Therefore, expressions that might require a reloc can
|
||
not be placed in the read-only data section. */
|
||
#define SELECT_SECTION(EXP,RELOC) \
|
||
if (TREE_CODE (EXP) == VAR_DECL \
|
||
&& TREE_READONLY (EXP) \
|
||
&& !TREE_THIS_VOLATILE (EXP) \
|
||
&& DECL_INITIAL (EXP) \
|
||
&& (DECL_INITIAL (EXP) == error_mark_node \
|
||
|| TREE_CONSTANT (DECL_INITIAL (EXP))) \
|
||
&& !RELOC) \
|
||
readonly_data_section (); \
|
||
else if (TREE_CODE_CLASS (TREE_CODE (EXP)) == 'c' \
|
||
&& !(TREE_CODE (EXP) == STRING_CST && flag_writable_strings) \
|
||
&& !RELOC) \
|
||
readonly_data_section (); \
|
||
else \
|
||
data_section ();
|
||
|
||
/* Define this macro if references to a symbol must be treated
|
||
differently depending on something about the variable or
|
||
function named by the symbol (such as what section it is in).
|
||
|
||
The macro definition, if any, is executed immediately after the
|
||
rtl for DECL or other node is created.
|
||
The value of the rtl will be a `mem' whose address is a
|
||
`symbol_ref'.
|
||
|
||
The usual thing for this macro to do is to a flag in the
|
||
`symbol_ref' (such as `SYMBOL_REF_FLAG') or to store a modified
|
||
name string in the `symbol_ref' (if one bit is not enough
|
||
information).
|
||
|
||
On the HP-PA we use this to indicate if a symbol is in text or
|
||
data space. Also, function labels need special treatment. */
|
||
|
||
#define TEXT_SPACE_P(DECL)\
|
||
(TREE_CODE (DECL) == FUNCTION_DECL \
|
||
|| (TREE_CODE (DECL) == VAR_DECL \
|
||
&& TREE_READONLY (DECL) && ! TREE_SIDE_EFFECTS (DECL) \
|
||
&& (! DECL_INITIAL (DECL) || ! reloc_needed (DECL_INITIAL (DECL))) \
|
||
&& !flag_pic) \
|
||
|| (TREE_CODE_CLASS (TREE_CODE (DECL)) == 'c' \
|
||
&& !(TREE_CODE (DECL) == STRING_CST && flag_writable_strings)))
|
||
|
||
#define FUNCTION_NAME_P(NAME) \
|
||
(*(NAME) == '@' || (*(NAME) == '*' && *((NAME) + 1) == '@'))
|
||
|
||
#define ENCODE_SECTION_INFO(DECL)\
|
||
do \
|
||
{ if (TEXT_SPACE_P (DECL)) \
|
||
{ rtx _rtl; \
|
||
if (TREE_CODE (DECL) == FUNCTION_DECL \
|
||
|| TREE_CODE (DECL) == VAR_DECL) \
|
||
_rtl = DECL_RTL (DECL); \
|
||
else \
|
||
_rtl = TREE_CST_RTL (DECL); \
|
||
SYMBOL_REF_FLAG (XEXP (_rtl, 0)) = 1; \
|
||
if (TREE_CODE (DECL) == FUNCTION_DECL) \
|
||
hppa_encode_label (XEXP (DECL_RTL (DECL), 0), 0);\
|
||
} \
|
||
} \
|
||
while (0)
|
||
|
||
/* Store the user-specified part of SYMBOL_NAME in VAR.
|
||
This is sort of inverse to ENCODE_SECTION_INFO. */
|
||
|
||
#define STRIP_NAME_ENCODING(VAR,SYMBOL_NAME) \
|
||
(VAR) = ((SYMBOL_NAME) + ((SYMBOL_NAME)[0] == '*' ? \
|
||
1 + (SYMBOL_NAME)[1] == '@'\
|
||
: (SYMBOL_NAME)[0] == '@'))
|
||
|
||
/* Specify the machine mode that this machine uses
|
||
for the index in the tablejump instruction. */
|
||
#define CASE_VECTOR_MODE (TARGET_BIG_SWITCH ? TImode : DImode)
|
||
|
||
/* Jump tables must be 32 bit aligned, no matter the size of the element. */
|
||
#define ADDR_VEC_ALIGN(ADDR_VEC) 2
|
||
|
||
/* Specify the tree operation to be used to convert reals to integers. */
|
||
#define IMPLICIT_FIX_EXPR FIX_ROUND_EXPR
|
||
|
||
/* This is the kind of divide that is easiest to do in the general case. */
|
||
#define EASY_DIV_EXPR TRUNC_DIV_EXPR
|
||
|
||
/* Define this as 1 if `char' should by default be signed; else as 0. */
|
||
#define DEFAULT_SIGNED_CHAR 1
|
||
|
||
/* Max number of bytes we can move from memory to memory
|
||
in one reasonably fast instruction. */
|
||
#define MOVE_MAX 8
|
||
|
||
/* Higher than the default as we prefer to use simple move insns
|
||
(better scheduling and delay slot filling) and because our
|
||
built-in block move is really a 2X unrolled loop. */
|
||
#define MOVE_RATIO 4
|
||
|
||
/* Define if operations between registers always perform the operation
|
||
on the full register even if a narrower mode is specified. */
|
||
#define WORD_REGISTER_OPERATIONS
|
||
|
||
/* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
|
||
will either zero-extend or sign-extend. The value of this macro should
|
||
be the code that says which one of the two operations is implicitly
|
||
done, NIL if none. */
|
||
#define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
|
||
|
||
/* Nonzero if access to memory by bytes is slow and undesirable. */
|
||
#define SLOW_BYTE_ACCESS 1
|
||
|
||
/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
|
||
is done just by pretending it is already truncated. */
|
||
#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
|
||
|
||
/* We assume that the store-condition-codes instructions store 0 for false
|
||
and some other value for true. This is the value stored for true. */
|
||
|
||
#define STORE_FLAG_VALUE 1
|
||
|
||
/* When a prototype says `char' or `short', really pass an `int'. */
|
||
#define PROMOTE_PROTOTYPES 1
|
||
|
||
/* Specify the machine mode that pointers have.
|
||
After generation of rtl, the compiler makes no further distinction
|
||
between pointers and any other objects of this machine mode. */
|
||
#define Pmode word_mode
|
||
|
||
/* Add any extra modes needed to represent the condition code.
|
||
|
||
HPPA floating comparisons produce condition codes. */
|
||
#define EXTRA_CC_MODES CC(CCFPmode, "CCFP")
|
||
|
||
/* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
|
||
return the mode to be used for the comparison. For floating-point, CCFPmode
|
||
should be used. CC_NOOVmode should be used when the first operand is a
|
||
PLUS, MINUS, or NEG. CCmode should be used when no special processing is
|
||
needed. */
|
||
#define SELECT_CC_MODE(OP,X,Y) \
|
||
(GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT ? CCFPmode : CCmode) \
|
||
|
||
/* A function address in a call instruction
|
||
is a byte address (for indexing purposes)
|
||
so give the MEM rtx a byte's mode. */
|
||
#define FUNCTION_MODE SImode
|
||
|
||
/* Define this if addresses of constant functions
|
||
shouldn't be put through pseudo regs where they can be cse'd.
|
||
Desirable on machines where ordinary constants are expensive
|
||
but a CALL with constant address is cheap. */
|
||
#define NO_FUNCTION_CSE
|
||
|
||
/* Define this to be nonzero if shift instructions ignore all but the low-order
|
||
few bits. */
|
||
#define SHIFT_COUNT_TRUNCATED 1
|
||
|
||
/* Compute the cost of computing a constant rtl expression RTX
|
||
whose rtx-code is CODE. The body of this macro is a portion
|
||
of a switch statement. If the code is computed here,
|
||
return it with a return statement. Otherwise, break from the switch. */
|
||
|
||
#define CONST_COSTS(RTX,CODE,OUTER_CODE) \
|
||
case CONST_INT: \
|
||
if (INTVAL (RTX) == 0) return 0; \
|
||
if (INT_14_BITS (RTX)) return 1; \
|
||
case HIGH: \
|
||
return 2; \
|
||
case CONST: \
|
||
case LABEL_REF: \
|
||
case SYMBOL_REF: \
|
||
return 4; \
|
||
case CONST_DOUBLE: \
|
||
if ((RTX == CONST0_RTX (DFmode) || RTX == CONST0_RTX (SFmode)) \
|
||
&& OUTER_CODE != SET) \
|
||
return 0; \
|
||
else \
|
||
return 8;
|
||
|
||
#define ADDRESS_COST(RTX) \
|
||
(GET_CODE (RTX) == REG ? 1 : hppa_address_cost (RTX))
|
||
|
||
/* Compute extra cost of moving data between one register class
|
||
and another.
|
||
|
||
Make moves from SAR so expensive they should never happen. We used to
|
||
have 0xffff here, but that generates overflow in rare cases.
|
||
|
||
Copies involving a FP register and a non-FP register are relatively
|
||
expensive because they must go through memory.
|
||
|
||
Other copies are reasonably cheap. */
|
||
#define REGISTER_MOVE_COST(CLASS1, CLASS2) \
|
||
(CLASS1 == SHIFT_REGS ? 0x100 \
|
||
: FP_REG_CLASS_P (CLASS1) && ! FP_REG_CLASS_P (CLASS2) ? 16 \
|
||
: FP_REG_CLASS_P (CLASS2) && ! FP_REG_CLASS_P (CLASS1) ? 16 \
|
||
: 2)
|
||
|
||
|
||
/* Provide the costs of a rtl expression. This is in the body of a
|
||
switch on CODE. The purpose for the cost of MULT is to encourage
|
||
`synth_mult' to find a synthetic multiply when reasonable. */
|
||
|
||
#define RTX_COSTS(X,CODE,OUTER_CODE) \
|
||
case MULT: \
|
||
if (GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT) \
|
||
return COSTS_N_INSNS (3); \
|
||
return (TARGET_PA_11 && ! TARGET_DISABLE_FPREGS && ! TARGET_SOFT_FLOAT) \
|
||
? COSTS_N_INSNS (8) : COSTS_N_INSNS (20); \
|
||
case DIV: \
|
||
if (GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT) \
|
||
return COSTS_N_INSNS (14); \
|
||
case UDIV: \
|
||
case MOD: \
|
||
case UMOD: \
|
||
return COSTS_N_INSNS (60); \
|
||
case PLUS: /* this includes shNadd insns */ \
|
||
case MINUS: \
|
||
if (GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT) \
|
||
return COSTS_N_INSNS (3); \
|
||
return COSTS_N_INSNS (1); \
|
||
case ASHIFT: \
|
||
case ASHIFTRT: \
|
||
case LSHIFTRT: \
|
||
return COSTS_N_INSNS (1);
|
||
|
||
/* Adjust the cost of branches. */
|
||
#define BRANCH_COST (pa_cpu == PROCESSOR_8000 ? 2 : 1)
|
||
|
||
/* Adjust the cost of dependencies. */
|
||
|
||
#define ADJUST_COST(INSN,LINK,DEP,COST) \
|
||
(COST) = pa_adjust_cost (INSN, LINK, DEP, COST)
|
||
|
||
/* Adjust scheduling priorities. We use this to try and keep addil
|
||
and the next use of %r1 close together. */
|
||
#define ADJUST_PRIORITY(PREV) \
|
||
{ \
|
||
rtx set = single_set (PREV); \
|
||
rtx src, dest; \
|
||
if (set) \
|
||
{ \
|
||
src = SET_SRC (set); \
|
||
dest = SET_DEST (set); \
|
||
if (GET_CODE (src) == LO_SUM \
|
||
&& symbolic_operand (XEXP (src, 1), VOIDmode) \
|
||
&& ! read_only_operand (XEXP (src, 1), VOIDmode)) \
|
||
INSN_PRIORITY (PREV) >>= 3; \
|
||
else if (GET_CODE (src) == MEM \
|
||
&& GET_CODE (XEXP (src, 0)) == LO_SUM \
|
||
&& symbolic_operand (XEXP (XEXP (src, 0), 1), VOIDmode)\
|
||
&& ! read_only_operand (XEXP (XEXP (src, 0), 1), VOIDmode))\
|
||
INSN_PRIORITY (PREV) >>= 1; \
|
||
else if (GET_CODE (dest) == MEM \
|
||
&& GET_CODE (XEXP (dest, 0)) == LO_SUM \
|
||
&& symbolic_operand (XEXP (XEXP (dest, 0), 1), VOIDmode)\
|
||
&& ! read_only_operand (XEXP (XEXP (dest, 0), 1), VOIDmode))\
|
||
INSN_PRIORITY (PREV) >>= 3; \
|
||
} \
|
||
}
|
||
|
||
/* Handling the special cases is going to get too complicated for a macro,
|
||
just call `pa_adjust_insn_length' to do the real work. */
|
||
#define ADJUST_INSN_LENGTH(INSN, LENGTH) \
|
||
LENGTH += pa_adjust_insn_length (INSN, LENGTH);
|
||
|
||
/* Millicode insns are actually function calls with some special
|
||
constraints on arguments and register usage.
|
||
|
||
Millicode calls always expect their arguments in the integer argument
|
||
registers, and always return their result in %r29 (ret1). They
|
||
are expected to clobber their arguments, %r1, %r29, and %r31 and
|
||
nothing else.
|
||
|
||
This macro tells reorg that the references to arguments and
|
||
millicode calls do not appear to happen until after the millicode call.
|
||
This allows reorg to put insns which set the argument registers into the
|
||
delay slot of the millicode call -- thus they act more like traditional
|
||
CALL_INSNs.
|
||
|
||
Note we can not consider side effects of the insn to be delayed because
|
||
the branch and link insn will clobber the return pointer. If we happened
|
||
to use the return pointer in the delay slot of the call, then we lose.
|
||
|
||
get_attr_type will try to recognize the given insn, so make sure to
|
||
filter out things it will not accept -- SEQUENCE, USE and CLOBBER insns
|
||
in particular. */
|
||
#define INSN_REFERENCES_ARE_DELAYED(X) (insn_refs_are_delayed (X))
|
||
|
||
|
||
/* Control the assembler format that we output. */
|
||
|
||
/* Output to assembler file text saying following lines
|
||
may contain character constants, extra white space, comments, etc. */
|
||
|
||
#define ASM_APP_ON ""
|
||
|
||
/* Output to assembler file text saying following lines
|
||
no longer contain unusual constructs. */
|
||
|
||
#define ASM_APP_OFF ""
|
||
|
||
/* How to refer to registers in assembler output.
|
||
This sequence is indexed by compiler's hard-register-number (see above). */
|
||
|
||
#define REGISTER_NAMES \
|
||
{"%r0", "%r1", "%r2", "%r3", "%r4", "%r5", "%r6", "%r7", \
|
||
"%r8", "%r9", "%r10", "%r11", "%r12", "%r13", "%r14", "%r15", \
|
||
"%r16", "%r17", "%r18", "%r19", "%r20", "%r21", "%r22", "%r23", \
|
||
"%r24", "%r25", "%r26", "%r27", "%r28", "%r29", "%r30", "%r31", \
|
||
"%fr4", "%fr4R", "%fr5", "%fr5R", "%fr6", "%fr6R", "%fr7", "%fr7R", \
|
||
"%fr8", "%fr8R", "%fr9", "%fr9R", "%fr10", "%fr10R", "%fr11", "%fr11R", \
|
||
"%fr12", "%fr12R", "%fr13", "%fr13R", "%fr14", "%fr14R", "%fr15", "%fr15R", \
|
||
"%fr16", "%fr16R", "%fr17", "%fr17R", "%fr18", "%fr18R", "%fr19", "%fr19R", \
|
||
"%fr20", "%fr20R", "%fr21", "%fr21R", "%fr22", "%fr22R", "%fr23", "%fr23R", \
|
||
"%fr24", "%fr24R", "%fr25", "%fr25R", "%fr26", "%fr26R", "%fr27", "%fr27R", \
|
||
"%fr28", "%fr28R", "%fr29", "%fr29R", "%fr30", "%fr30R", "%fr31", "%fr31R", \
|
||
"SAR"}
|
||
|
||
#define ADDITIONAL_REGISTER_NAMES \
|
||
{{"%fr4L",32}, {"%fr5L",34}, {"%fr6L",36}, {"%fr7L",38}, \
|
||
{"%fr8L",40}, {"%fr9L",42}, {"%fr10L",44}, {"%fr11L",46}, \
|
||
{"%fr12L",48}, {"%fr13L",50}, {"%fr14L",52}, {"%fr15L",54}, \
|
||
{"%fr16L",56}, {"%fr17L",58}, {"%fr18L",60}, {"%fr19L",62}, \
|
||
{"%fr20L",64}, {"%fr21L",66}, {"%fr22L",68}, {"%fr23L",70}, \
|
||
{"%fr24L",72}, {"%fr25L",74}, {"%fr26L",76}, {"%fr27L",78}, \
|
||
{"%fr28L",80}, {"%fr29L",82}, {"%fr30L",84}, {"%fr31R",86}, \
|
||
{"%cr11",88}}
|
||
|
||
/* This is how to output the definition of a user-level label named NAME,
|
||
such as the label on a static function or variable NAME. */
|
||
|
||
#define ASM_OUTPUT_LABEL(FILE, NAME) \
|
||
do { assemble_name (FILE, NAME); \
|
||
fputc ('\n', FILE); } while (0)
|
||
|
||
/* This is how to output a reference to a user-level label named NAME.
|
||
`assemble_name' uses this. */
|
||
|
||
#define ASM_OUTPUT_LABELREF(FILE,NAME) \
|
||
fprintf ((FILE), "%s", (NAME) + (FUNCTION_NAME_P (NAME) ? 1 : 0))
|
||
|
||
/* This is how to output an internal numbered label where
|
||
PREFIX is the class of label and NUM is the number within the class. */
|
||
|
||
#define ASM_OUTPUT_INTERNAL_LABEL(FILE,PREFIX,NUM) \
|
||
{fprintf (FILE, "%c$%s%04d\n", (PREFIX)[0], (PREFIX) + 1, NUM);}
|
||
|
||
/* This is how to store into the string LABEL
|
||
the symbol_ref name of an internal numbered label where
|
||
PREFIX is the class of label and NUM is the number within the class.
|
||
This is suitable for output with `assemble_name'. */
|
||
|
||
#define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
|
||
sprintf (LABEL, "*%c$%s%04d", (PREFIX)[0], (PREFIX) + 1, NUM)
|
||
|
||
/* This is how to output an assembler line defining a `double' constant. */
|
||
|
||
#define ASM_OUTPUT_DOUBLE(FILE,VALUE) \
|
||
do { long l[2]; \
|
||
REAL_VALUE_TO_TARGET_DOUBLE (VALUE, l); \
|
||
fprintf (FILE, "\t.word 0x%lx\n\t.word 0x%lx\n", l[0], l[1]); \
|
||
} while (0)
|
||
|
||
/* This is how to output an assembler line defining a `float' constant. */
|
||
|
||
#define ASM_OUTPUT_FLOAT(FILE,VALUE) \
|
||
do { long l; \
|
||
REAL_VALUE_TO_TARGET_SINGLE (VALUE, l); \
|
||
fprintf (FILE, "\t.word 0x%lx\n", l); \
|
||
} while (0)
|
||
|
||
/* This is how to output an assembler line defining an `int' constant.
|
||
|
||
This is made more complicated by the fact that functions must be
|
||
prefixed by a P% as well as code label references for the exception
|
||
table -- otherwise the linker chokes. */
|
||
|
||
#define ASM_OUTPUT_INT(FILE,VALUE) \
|
||
{ fputs ("\t.word ", FILE); \
|
||
if (function_label_operand (VALUE, VOIDmode)) \
|
||
fputs ("P%", FILE); \
|
||
output_addr_const (FILE, (VALUE)); \
|
||
fputs ("\n", FILE);}
|
||
|
||
/* Likewise for `short' and `char' constants. */
|
||
|
||
#define ASM_OUTPUT_SHORT(FILE,VALUE) \
|
||
( fputs ("\t.half ", FILE), \
|
||
output_addr_const (FILE, (VALUE)), \
|
||
fputs ("\n", FILE))
|
||
|
||
#define ASM_OUTPUT_CHAR(FILE,VALUE) \
|
||
( fputs ("\t.byte ", FILE), \
|
||
output_addr_const (FILE, (VALUE)), \
|
||
fputs ("\n", FILE))
|
||
|
||
/* This is how to output an assembler line for a numeric constant byte. */
|
||
|
||
#define ASM_OUTPUT_BYTE(FILE,VALUE) \
|
||
fprintf (FILE, "\t.byte 0x%x\n", (VALUE))
|
||
|
||
#define ASM_GLOBALIZE_LABEL(FILE, NAME) \
|
||
do { \
|
||
/* We only handle DATA objects here, functions are globalized in \
|
||
ASM_DECLARE_FUNCTION_NAME. */ \
|
||
if (! FUNCTION_NAME_P (NAME)) \
|
||
{ \
|
||
fputs ("\t.EXPORT ", FILE); \
|
||
assemble_name (FILE, NAME); \
|
||
fputs (",DATA\n", FILE); \
|
||
} \
|
||
} while (0)
|
||
|
||
#define ASM_OUTPUT_ASCII(FILE, P, SIZE) \
|
||
output_ascii ((FILE), (P), (SIZE))
|
||
|
||
#define ASM_OUTPUT_REG_PUSH(FILE,REGNO)
|
||
#define ASM_OUTPUT_REG_POP(FILE,REGNO)
|
||
/* This is how to output an element of a case-vector that is absolute.
|
||
Note that this method makes filling these branch delay slots
|
||
impossible. */
|
||
|
||
#define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
|
||
if (TARGET_BIG_SWITCH) \
|
||
fprintf (FILE, "\tstw %%r1,-16(%%r30)\n\tldil LR'L$%04d,%%r1\n\tbe RR'L$%04d(%%sr4,%%r1)\n\tldw -16(%%r30),%%r1\n", VALUE, VALUE); \
|
||
else \
|
||
fprintf (FILE, "\tb L$%04d\n\tnop\n", VALUE)
|
||
|
||
/* Jump tables are executable code and live in the TEXT section on the PA. */
|
||
#define JUMP_TABLES_IN_TEXT_SECTION 1
|
||
|
||
/* This is how to output an element of a case-vector that is relative.
|
||
This must be defined correctly as it is used when generating PIC code.
|
||
|
||
I believe it safe to use the same definition as ASM_OUTPUT_ADDR_VEC_ELT
|
||
on the PA since ASM_OUTPUT_ADDR_VEC_ELT uses pc-relative jump instructions
|
||
rather than a table of absolute addresses. */
|
||
|
||
#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
|
||
if (TARGET_BIG_SWITCH) \
|
||
fprintf (FILE, "\tstw %%r1,-16(%%r30)\n\tldw T'L$%04d(%%r19),%%r1\n\tbv %%r0(%%r1)\n\tldw -16(%%r30),%%r1\n", VALUE); \
|
||
else \
|
||
fprintf (FILE, "\tb L$%04d\n\tnop\n", VALUE)
|
||
|
||
/* This is how to output an assembler line
|
||
that says to advance the location counter
|
||
to a multiple of 2**LOG bytes. */
|
||
|
||
#define ASM_OUTPUT_ALIGN(FILE,LOG) \
|
||
fprintf (FILE, "\t.align %d\n", (1<<(LOG)))
|
||
|
||
#define ASM_OUTPUT_SKIP(FILE,SIZE) \
|
||
fprintf (FILE, "\t.blockz %d\n", (SIZE))
|
||
|
||
/* This says how to output an assembler line to define a global common symbol
|
||
with size SIZE (in bytes) and alignment ALIGN (in bits). */
|
||
|
||
#define ASM_OUTPUT_ALIGNED_COMMON(FILE, NAME, SIZE, ALIGNED) \
|
||
{ bss_section (); \
|
||
assemble_name ((FILE), (NAME)); \
|
||
fputs ("\t.comm ", (FILE)); \
|
||
fprintf ((FILE), "%d\n", MAX ((SIZE), ((ALIGNED) / BITS_PER_UNIT)));}
|
||
|
||
/* This says how to output an assembler line to define a local common symbol
|
||
with size SIZE (in bytes) and alignment ALIGN (in bits). */
|
||
|
||
#define ASM_OUTPUT_ALIGNED_LOCAL(FILE, NAME, SIZE, ALIGNED) \
|
||
{ bss_section (); \
|
||
fprintf ((FILE), "\t.align %d\n", ((ALIGNED) / BITS_PER_UNIT)); \
|
||
assemble_name ((FILE), (NAME)); \
|
||
fprintf ((FILE), "\n\t.block %d\n", (SIZE));}
|
||
|
||
/* Store in OUTPUT a string (made with alloca) containing
|
||
an assembler-name for a local static variable named NAME.
|
||
LABELNO is an integer which is different for each call. */
|
||
|
||
#define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \
|
||
( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 12), \
|
||
sprintf ((OUTPUT), "%s___%d", (NAME), (LABELNO)))
|
||
|
||
/* Define the parentheses used to group arithmetic operations
|
||
in assembler code. */
|
||
|
||
#define ASM_OPEN_PAREN "("
|
||
#define ASM_CLOSE_PAREN ")"
|
||
|
||
/* All HP assemblers use "!" to separate logical lines. */
|
||
#define IS_ASM_LOGICAL_LINE_SEPARATOR(C) ((C) == '!')
|
||
|
||
/* Define results of standard character escape sequences. */
|
||
#define TARGET_BELL 007
|
||
#define TARGET_BS 010
|
||
#define TARGET_TAB 011
|
||
#define TARGET_NEWLINE 012
|
||
#define TARGET_VT 013
|
||
#define TARGET_FF 014
|
||
#define TARGET_CR 015
|
||
|
||
#define PRINT_OPERAND_PUNCT_VALID_P(CHAR) \
|
||
((CHAR) == '@' || (CHAR) == '#' || (CHAR) == '*' || (CHAR) == '^')
|
||
|
||
/* Print operand X (an rtx) in assembler syntax to file FILE.
|
||
CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
|
||
For `%' followed by punctuation, CODE is the punctuation and X is null.
|
||
|
||
On the HP-PA, the CODE can be `r', meaning this is a register-only operand
|
||
and an immediate zero should be represented as `r0'.
|
||
|
||
Several % codes are defined:
|
||
O an operation
|
||
C compare conditions
|
||
N extract conditions
|
||
M modifier to handle preincrement addressing for memory refs.
|
||
F modifier to handle preincrement addressing for fp memory refs */
|
||
|
||
#define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
|
||
|
||
|
||
/* Print a memory address as an operand to reference that memory location. */
|
||
|
||
#define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
|
||
{ register rtx addr = ADDR; \
|
||
register rtx base; \
|
||
int offset; \
|
||
switch (GET_CODE (addr)) \
|
||
{ \
|
||
case REG: \
|
||
fprintf (FILE, "0(%s)", reg_names [REGNO (addr)]); \
|
||
break; \
|
||
case PLUS: \
|
||
if (GET_CODE (XEXP (addr, 0)) == CONST_INT) \
|
||
offset = INTVAL (XEXP (addr, 0)), base = XEXP (addr, 1); \
|
||
else if (GET_CODE (XEXP (addr, 1)) == CONST_INT) \
|
||
offset = INTVAL (XEXP (addr, 1)), base = XEXP (addr, 0); \
|
||
else \
|
||
abort (); \
|
||
fprintf (FILE, "%d(%s)", offset, reg_names [REGNO (base)]); \
|
||
break; \
|
||
case LO_SUM: \
|
||
if (!symbolic_operand (XEXP (addr, 1))) \
|
||
fputs ("R'", FILE); \
|
||
else if (flag_pic == 0) \
|
||
fputs ("RR'", FILE); \
|
||
else if (flag_pic == 1) \
|
||
abort (); \
|
||
else if (flag_pic == 2) \
|
||
fputs ("RT'", FILE); \
|
||
output_global_address (FILE, XEXP (addr, 1), 0); \
|
||
fputs ("(", FILE); \
|
||
output_operand (XEXP (addr, 0), 0); \
|
||
fputs (")", FILE); \
|
||
break; \
|
||
case CONST_INT: \
|
||
fprintf (FILE, "%d(%%r0)", INTVAL (addr)); \
|
||
break; \
|
||
default: \
|
||
output_addr_const (FILE, addr); \
|
||
}}
|
||
|
||
|
||
/* Define functions in pa.c and used in insn-output.c. */
|
||
|
||
extern char *output_and ();
|
||
extern char *output_ior ();
|
||
extern char *output_move_double ();
|
||
extern char *output_fp_move_double ();
|
||
extern char *output_block_move ();
|
||
extern char *output_cbranch ();
|
||
extern char *output_bb ();
|
||
extern char *output_bvb ();
|
||
extern char *output_dbra ();
|
||
extern char *output_movb ();
|
||
extern char *output_parallel_movb ();
|
||
extern char *output_parallel_addb ();
|
||
extern char *output_return ();
|
||
extern char *output_call ();
|
||
extern char *output_millicode_call ();
|
||
extern char *output_mul_insn ();
|
||
extern char *output_div_insn ();
|
||
extern char *output_mod_insn ();
|
||
extern char *singlemove_string ();
|
||
extern void output_arg_descriptor ();
|
||
extern void output_deferred_plabels ();
|
||
extern void override_options ();
|
||
extern void output_ascii ();
|
||
extern void output_function_prologue ();
|
||
extern void output_function_epilogue ();
|
||
extern void output_global_address ();
|
||
extern void print_operand ();
|
||
extern struct rtx_def *legitimize_pic_address ();
|
||
extern struct rtx_def *gen_cmp_fp ();
|
||
extern void hppa_encode_label ();
|
||
extern int arith11_operand ();
|
||
extern int symbolic_expression_p ();
|
||
extern int reloc_needed ();
|
||
extern int compute_frame_size ();
|
||
extern int hppa_address_cost ();
|
||
extern int and_mask_p ();
|
||
extern int symbolic_memory_operand ();
|
||
extern int pa_adjust_cost ();
|
||
extern int pa_adjust_insn_length ();
|
||
extern int int11_operand ();
|
||
extern int reg_or_cint_move_operand ();
|
||
extern int arith5_operand ();
|
||
extern int uint5_operand ();
|
||
extern int pic_label_operand ();
|
||
extern int plus_xor_ior_operator ();
|
||
extern int basereg_operand ();
|
||
extern int shadd_operand ();
|
||
extern int arith_operand ();
|
||
extern int read_only_operand ();
|
||
extern int move_operand ();
|
||
extern int and_operand ();
|
||
extern int ior_operand ();
|
||
extern int arith32_operand ();
|
||
extern int uint32_operand ();
|
||
extern int reg_or_nonsymb_mem_operand ();
|
||
extern int reg_or_0_operand ();
|
||
extern int reg_or_0_or_nonsymb_mem_operand ();
|
||
extern int pre_cint_operand ();
|
||
extern int post_cint_operand ();
|
||
extern int div_operand ();
|
||
extern int int5_operand ();
|
||
extern int movb_comparison_operator ();
|
||
extern int ireg_or_int5_operand ();
|
||
extern int fmpyaddoperands ();
|
||
extern int fmpysuboperands ();
|
||
extern int call_operand_address ();
|
||
extern int cint_ok_for_move ();
|
||
extern int ior_operand ();
|
||
extern void emit_bcond_fp ();
|
||
extern int emit_move_sequence ();
|
||
extern int emit_hpdiv_const ();
|
||
extern void hppa_expand_prologue ();
|
||
extern void hppa_expand_epilogue ();
|
||
extern int hppa_can_use_return_insn_p ();
|
||
extern int is_function_label_plus_const ();
|
||
extern int jump_in_call_delay ();
|
||
extern enum reg_class secondary_reload_class ();
|
||
extern int insn_sets_and_refs_are_delayed ();
|
||
|
||
/* Declare functions defined in pa.c and used in templates. */
|
||
|
||
extern struct rtx_def *return_addr_rtx ();
|
||
|
||
/* Find the return address associated with the frame given by
|
||
FRAMEADDR. */
|
||
#define RETURN_ADDR_RTX(COUNT, FRAMEADDR) \
|
||
(return_addr_rtx (COUNT, FRAMEADDR))
|
||
|
||
/* Used to mask out junk bits from the return address, such as
|
||
processor state, interrupt status, condition codes and the like. */
|
||
#define MASK_RETURN_ADDR \
|
||
/* The privilege level is in the two low order bits, mask em out \
|
||
of the return address. */ \
|
||
(GEN_INT (-4))
|
||
|
||
/* The number of Pmode words for the setjmp buffer. */
|
||
#define JMP_BUF_SIZE 50
|
||
|
||
#define PREDICATE_CODES \
|
||
{"reg_or_0_operand", {SUBREG, REG, CONST_INT}}, \
|
||
{"call_operand_address", {LABEL_REF, SYMBOL_REF, CONST_INT, \
|
||
CONST_DOUBLE, CONST, HIGH, CONSTANT_P_RTX}}, \
|
||
{"symbolic_operand", {SYMBOL_REF, LABEL_REF, CONST}}, \
|
||
{"symbolic_memory_operand", {SUBREG, MEM}}, \
|
||
{"reg_or_nonsymb_mem_operand", {SUBREG, REG, MEM}}, \
|
||
{"reg_or_0_or_nonsymb_mem_operand", {SUBREG, REG, MEM, CONST_INT, \
|
||
CONST_DOUBLE}}, \
|
||
{"move_operand", {SUBREG, REG, CONSTANT_P_RTX, CONST_INT, MEM}}, \
|
||
{"reg_or_cint_move_operand", {SUBREG, REG, CONST_INT}}, \
|
||
{"pic_label_operand", {LABEL_REF, CONST}}, \
|
||
{"fp_reg_operand", {REG}}, \
|
||
{"arith_operand", {SUBREG, REG, CONST_INT}}, \
|
||
{"arith11_operand", {SUBREG, REG, CONST_INT}}, \
|
||
{"pre_cint_operand", {CONST_INT}}, \
|
||
{"post_cint_operand", {CONST_INT}}, \
|
||
{"arith_double_operand", {SUBREG, REG, CONST_DOUBLE}}, \
|
||
{"ireg_or_int5_operand", {CONST_INT, REG}}, \
|
||
{"int5_operand", {CONST_INT}}, \
|
||
{"uint5_operand", {CONST_INT}}, \
|
||
{"int11_operand", {CONST_INT}}, \
|
||
{"uint32_operand", {CONST_INT, \
|
||
HOST_BITS_PER_WIDE_INT > 32 ? 0 : CONST_DOUBLE}}, \
|
||
{"arith5_operand", {SUBREG, REG, CONST_INT}}, \
|
||
{"and_operand", {SUBREG, REG, CONST_INT}}, \
|
||
{"ior_operand", {CONST_INT}}, \
|
||
{"lhs_lshift_cint_operand", {CONST_INT}}, \
|
||
{"lhs_lshift_operand", {SUBREG, REG, CONST_INT}}, \
|
||
{"arith32_operand", {SUBREG, REG, CONST_INT}}, \
|
||
{"pc_or_label_operand", {PC, LABEL_REF}}, \
|
||
{"plus_xor_ior_operator", {PLUS, XOR, IOR}}, \
|
||
{"shadd_operand", {CONST_INT}}, \
|
||
{"basereg_operand", {REG}}, \
|
||
{"div_operand", {REG, CONST_INT}}, \
|
||
{"ireg_operand", {REG}}, \
|
||
{"movb_comparison_operator", {EQ, NE, LT, GE}},
|