cf01124384
* tm.texi (REGISTER_MOVE_COST): Add a mode argument. * reload.c (REGISTER_MOVE_COST): Likewise. Adjust all callers. * reload1.c (REGISTER_MOVE_COST): Likewise. * regclass.c (REGISTER_MOVE_COST): Likewise. (move_cost, may_move_in_cost, may_move_out_cost): Add mode dimension. Adjust all users. (init_reg_sets_1): Iterate on all modes. * config/1750a/1750a.h (REGISTER_MOVE_COST): Adjust. * config/a29k/a29k.h (REGISTER_MOVE_COST): Adjust. * config/alpha/alpha.h (REGISTER_MOVE_COST): Adjust. * config/arc/arc.h (REGISTER_MOVE_COST): Adjust. * config/arm/arm.h (REGISTER_MOVE_COST): Adjust. * config/avr/avr.h (REGISTER_MOVE_COST): Adjust. * config/c4x/c4x.h (REGISTER_MOVE_COST): Adjust. * config/d30v/d30v.h (REGISTER_MOVE_COST): Adjust. * config/dsp16xx/dsp16xx.h (REGISTER_MOVE_COST): Adjust. * config/h8300/h8300.h (REGISTER_MOVE_COST): Adjust. * config/i386/i386.h (REGISTER_MOVE_COST): Adjust. * config/ia64/ia64.h (REGISTER_MOVE_COST): Adjust. * config/m32r/m32r.h (REGISTER_MOVE_COST): Adjust. * config/m68hc11/m68hc11.h (REGISTER_MOVE_COST): Adjust. * config/m68k/m68k.h (REGISTER_MOVE_COST): Adjust. * config/mcore/mcore.h (REGISTER_MOVE_COST): Adjust. * config/mips/mips.h (REGISTER_MOVE_COST): Adjust. * config/mn10200/mn10200.h (REGISTER_MOVE_COST): Adjust. * config/mn10300/mn10300.h (REGISTER_MOVE_COST): Adjust. * config/ns32k/ns32k.h (REGISTER_MOVE_COST): Adjust. * config/pa/pa.h (REGISTER_MOVE_COST): Adjust. * config/pdp11/pdp11.h (REGISTER_MOVE_COST): Adjust. * config/pj/pj.h (REGISTER_MOVE_COST): Adjust. * config/romp/romp.h (REGISTER_MOVE_COST): Adjust. * config/rs6000/rs6000.h (REGISTER_MOVE_COST): Adjust. * config/sh/sh.h (REGISTER_MOVE_COST): Adjust. * config/sparc/sparc.h (REGISTER_MOVE_COST): Adjust. From-SVN: r38597
1455 lines
54 KiB
C++
1455 lines
54 KiB
C++
/* Definitions of target machine for GNU compiler,
|
|
for Motorola M*CORE Processor.
|
|
Copyright (C) 1993, 1999, 2000, 2001 Free Software Foundation, Inc.
|
|
|
|
This file is part of GNU CC.
|
|
|
|
GNU CC is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 2, or (at your option)
|
|
any later version.
|
|
|
|
GNU CC is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with GNU CC; see the file COPYING. If not, write to
|
|
the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
|
|
|
|
#ifndef __MCORE__H
|
|
#define __MCORE__H
|
|
|
|
/* RBE: need to move these elsewhere. */
|
|
#undef LIKE_PPC_ABI
|
|
#define MCORE_STRUCT_ARGS
|
|
/* RBE: end of "move elsewhere". */
|
|
|
|
#include "hwint.h"
|
|
|
|
#ifndef HAVE_MACHINE_MODES
|
|
#include "machmode.h"
|
|
#endif
|
|
|
|
/* Run-time Target Specification. */
|
|
#define TARGET_MCORE
|
|
|
|
/* A C expression whose value is nonzero if IDENTIFIER with arguments ARGS
|
|
is a valid machine specific attribute for DECL.
|
|
The attributes in ATTRIBUTES have previously been assigned to DECL. */
|
|
#undef VALID_MACHINE_DECL_ATTRIBUTE
|
|
#define VALID_MACHINE_DECL_ATTRIBUTE(DECL, ATTRIBUTES, IDENTIFIER, ARGS) \
|
|
mcore_valid_machine_decl_attribute (DECL, ATTRIBUTES, IDENTIFIER, ARGS)
|
|
|
|
#define MERGE_MACHINE_DECL_ATTRIBUTES(OLD, NEW) \
|
|
mcore_merge_machine_decl_attributes (OLD, NEW)
|
|
|
|
/* Support the __declspec keyword by turning them into attributes.
|
|
We currently only support: dllexport and dllimport.
|
|
Note that the current way we do this may result in a collision with
|
|
predefined attributes later on. This can be solved by using one attribute,
|
|
say __declspec__, and passing args to it. The problem with that approach
|
|
is that args are not accumulated: each new appearance would clobber any
|
|
existing args. XXX- FIXME the definition below relies upon string
|
|
concatenation, which is non-portable. */
|
|
#define CPP_PREDEFINES \
|
|
"-D__mcore__ -D__MCORE__=1 -D__declspec(x)=__attribute__((x))" SUBTARGET_CPP_PREDEFINES
|
|
|
|
/* If -m4align is ever re-enabled then uncomment this line as well:
|
|
#define CPP_SPEC "%{!m4align:-D__MCORE_ALIGN_8__} %{m4align:-D__MCORE__ALIGN_4__}" */
|
|
|
|
#undef CPP_SPEC
|
|
#define CPP_SPEC " \
|
|
%{mbig-endian: \
|
|
%{mlittle-endian:%echoose either big or little endian, not both} \
|
|
-D__MCOREBE__} \
|
|
%{m210: \
|
|
%{m340:%echoose either m340 or m210 not both} \
|
|
%{mlittle-endian:%ethe m210 does not have little endian support} \
|
|
-D__M210__} \
|
|
%{!mbig-endian: -D__MCORELE__} \
|
|
%{!m210: -D__M340__} \
|
|
"
|
|
/* If -m4align is ever re-enabled then add this line to the defintion of CPP_SPEC
|
|
%{!m4align:-D__MCORE_ALIGN_8__} %{m4align:-D__MCORE__ALIGN_4__} */
|
|
|
|
/* We don't have a -lg library, so don't put it in the list. */
|
|
#undef LIB_SPEC
|
|
#define LIB_SPEC "%{!shared: %{!p:%{!pg:-lc}}%{p:-lc_p}%{pg:-lc_p}}"
|
|
|
|
#undef ASM_SPEC
|
|
#define ASM_SPEC "%{mbig-endian:-EB} %{m210:-cpu=210 -EB}"
|
|
|
|
#undef LINK_SPEC
|
|
#define LINK_SPEC "%{mbig-endian:-EB} %{m210:-EB} -X"
|
|
|
|
/* Can only count on 16 bits of availability; change to long would affect
|
|
many architecture specific files (other architectures...). */
|
|
extern int target_flags;
|
|
|
|
#define HARDLIT_BIT (1 << 0) /* Build in-line literals using 2 insns */
|
|
#define ALIGN8_BIT (1 << 1) /* Max alignment goes to 8 instead of 4 */
|
|
#define DIV_BIT (1 << 2) /* Generate divide instructions */
|
|
#define RELAX_IMM_BIT (1 << 3) /* Arbitrary immediates in and, or, tst */
|
|
#define W_FIELD_BIT (1 << 4) /* Generate bit insv/extv using SImode */
|
|
#define OVERALIGN_FUNC_BIT (1 << 5) /* Align functions to 4 byte boundary */
|
|
#define CGDATA_BIT (1 << 6) /* Generate callgraph data */
|
|
#define SLOW_BYTES_BIT (1 << 7) /* Slow byte access */
|
|
#define LITTLE_END_BIT (1 << 8) /* Generate little endian code */
|
|
#define M340_BIT (1 << 9) /* Generate code for the m340 */
|
|
|
|
#define TARGET_DEFAULT \
|
|
(HARDLIT_BIT | ALIGN8_BIT | DIV_BIT | RELAX_IMM_BIT | M340_BIT | LITTLE_END_BIT)
|
|
|
|
#ifndef MULTILIB_DEFAULTS
|
|
#define MULTILIB_DEFAULTS { "mlittle-endian", "m340" }
|
|
#endif
|
|
|
|
#define TARGET_HARDLIT (target_flags & HARDLIT_BIT)
|
|
/* The ability to have 4 byte alignment is being suppressed for now.
|
|
If this ability is reenabled, you must enable the definition below
|
|
*and* edit t-mcore to enable multilibs for 4 byte alignment code. */
|
|
#if 0
|
|
#define TARGET_8ALIGN (target_flags & ALIGN8_BIT)
|
|
#else
|
|
#define TARGET_8ALIGN 1
|
|
#endif
|
|
#define TARGET_DIV (target_flags & DIV_BIT)
|
|
#define TARGET_RELAX_IMM (target_flags & RELAX_IMM_BIT)
|
|
#define TARGET_W_FIELD (target_flags & W_FIELD_BIT)
|
|
#define TARGET_OVERALIGN_FUNC (target_flags & OVERALIGN_FUNC_BIT)
|
|
#define TARGET_CG_DATA (target_flags & CGDATA_BIT)
|
|
#define TARGET_CG_DATA (target_flags & CGDATA_BIT)
|
|
#define TARGET_SLOW_BYTES (target_flags & SLOW_BYTES_BIT)
|
|
#define TARGET_LITTLE_END (target_flags & LITTLE_END_BIT)
|
|
#define TARGET_M340 (target_flags & M340_BIT)
|
|
|
|
|
|
#define TARGET_SWITCHES \
|
|
{ {"hardlit", HARDLIT_BIT, \
|
|
N_("Inline constants if it can be done in 2 insns or less") }, \
|
|
{"no-hardlit", - HARDLIT_BIT, \
|
|
N_("inline constants if it only takes 1 instruction") }, \
|
|
{"4align", - ALIGN8_BIT, \
|
|
N_("Set maximum alignment to 4") }, \
|
|
{"8align", ALIGN8_BIT, \
|
|
N_("Set maximum alignment to 8") }, \
|
|
{"div", DIV_BIT, \
|
|
"" }, \
|
|
{"no-div", - DIV_BIT, \
|
|
N_("Do not use the divide instruction") }, \
|
|
{"relax-immediates", RELAX_IMM_BIT, \
|
|
"" }, \
|
|
{"no-relax-immediates", - RELAX_IMM_BIT, \
|
|
N_("Do not arbitary sized immediates in bit operations") }, \
|
|
{"wide-bitfields", W_FIELD_BIT, \
|
|
N_("Always treat bitfield as int-sized") }, \
|
|
{"no-wide-bitfields", - W_FIELD_BIT, \
|
|
"" }, \
|
|
{"4byte-functions", OVERALIGN_FUNC_BIT, \
|
|
N_("Force functions to be aligned to a 4 byte boundary") }, \
|
|
{"no-4byte-functions", - OVERALIGN_FUNC_BIT, \
|
|
N_("Force functions to be aligned to a 2 byte boundary") }, \
|
|
{"callgraph-data", CGDATA_BIT, \
|
|
N_("Emit call graph information") }, \
|
|
{"no-callgraph-data", - CGDATA_BIT, \
|
|
"" }, \
|
|
{"slow-bytes", SLOW_BYTES_BIT, \
|
|
N_("Prefer word accesses over byte accesses") }, \
|
|
{"no-slow-bytes", - SLOW_BYTES_BIT, \
|
|
"" }, \
|
|
{ "no-lsim", 0, "" }, \
|
|
{"little-endian", LITTLE_END_BIT, \
|
|
N_("Generate little endian code") }, \
|
|
{"big-endian", - LITTLE_END_BIT, \
|
|
"" }, \
|
|
{"210", - M340_BIT, \
|
|
"" }, \
|
|
{"340", M340_BIT, \
|
|
N_("Generate code for the M*Core M340") }, \
|
|
{"", TARGET_DEFAULT, \
|
|
"" } \
|
|
}
|
|
|
|
extern char * mcore_current_function_name;
|
|
|
|
/* Target specific options (as opposed to the switches above). */
|
|
extern const char * mcore_stack_increment_string;
|
|
|
|
#define TARGET_OPTIONS \
|
|
{ \
|
|
{"stack-increment=", & mcore_stack_increment_string, \
|
|
N_("Maximum amount for a single stack increment operation")} \
|
|
}
|
|
|
|
/* The MCore ABI says that bitfields are unsigned by default. */
|
|
/* The EPOC C++ environment does not support exceptions. */
|
|
#define CC1_SPEC "-funsigned-bitfields %{!DIN_GCC:-fno-rtti} %{!DIN_GCC:-fno-exceptions}"
|
|
|
|
/* What options are we going to default to specific settings when
|
|
-O* happens; the user can subsequently override these settings.
|
|
|
|
Omitting the frame pointer is a very good idea on the MCore.
|
|
Scheduling isn't worth anything on the current MCore implementation. */
|
|
#define OPTIMIZATION_OPTIONS(LEVEL,SIZE) \
|
|
{ \
|
|
if (LEVEL) \
|
|
{ \
|
|
flag_no_function_cse = 1; \
|
|
flag_omit_frame_pointer = 1; \
|
|
\
|
|
if (LEVEL >= 2) \
|
|
{ \
|
|
flag_caller_saves = 0; \
|
|
flag_schedule_insns = 0; \
|
|
flag_schedule_insns_after_reload = 0; \
|
|
} \
|
|
} \
|
|
if (SIZE) \
|
|
{ \
|
|
target_flags &= ~ HARDLIT_BIT; \
|
|
} \
|
|
}
|
|
|
|
/* What options are we going to force to specific settings,
|
|
regardless of what the user thought he wanted.
|
|
We also use this for some post-processing of options. */
|
|
#define OVERRIDE_OPTIONS mcore_override_options ()
|
|
|
|
/* Target machine storage Layout. */
|
|
|
|
/* Define to use software floating point emulator for REAL_ARITHMETIC and
|
|
decimal <-> binary conversion. */
|
|
#define REAL_ARITHMETIC
|
|
|
|
#define PROMOTE_MODE(MODE,UNSIGNEDP,TYPE) \
|
|
if (GET_MODE_CLASS (MODE) == MODE_INT \
|
|
&& GET_MODE_SIZE (MODE) < UNITS_PER_WORD) \
|
|
{ \
|
|
(MODE) = SImode; \
|
|
(UNSIGNEDP) = 1; \
|
|
}
|
|
|
|
#define PROMOTE_FUNCTION_ARGS
|
|
|
|
#define PROMOTE_FUNCTION_RETURN
|
|
|
|
/* Define this if most significant bit is lowest numbered
|
|
in instructions that operate on numbered bit-fields. */
|
|
#define BITS_BIG_ENDIAN 0
|
|
|
|
/* Define this if most significant byte of a word is the lowest numbered. */
|
|
#define BYTES_BIG_ENDIAN (! TARGET_LITTLE_END)
|
|
|
|
/* Define this if most significant word of a multiword number is the lowest
|
|
numbered. */
|
|
#define WORDS_BIG_ENDIAN (! TARGET_LITTLE_END)
|
|
|
|
#define LIBGCC2_WORDS_BIG_ENDIAN 1
|
|
#ifdef __MCORELE__
|
|
#undef LIBGCC2_WORDS_BIG_ENDIAN
|
|
#define LIBGCC2_WORDS_BIG_ENDIAN 0
|
|
#endif
|
|
|
|
/* Number of bits in an addressable storage unit. */
|
|
#define BITS_PER_UNIT 8
|
|
|
|
/* Width in bits of a "word", which is the contents of a machine register.
|
|
Note that this is not necessarily the width of data type `int';
|
|
if using 16-bit ints on a 68000, this would still be 32.
|
|
But on a machine with 16-bit registers, this would be 16. */
|
|
#define BITS_PER_WORD 32
|
|
#define MAX_BITS_PER_WORD 32
|
|
|
|
/* Width of a word, in units (bytes). */
|
|
#define UNITS_PER_WORD 4
|
|
|
|
/* Width in bits of a pointer.
|
|
See also the macro `Pmode' defined below. */
|
|
#define POINTER_SIZE 32
|
|
|
|
/* A C expression for the size in bits of the type `long long' on the
|
|
target machine. If you don't define this, the default is two
|
|
words. */
|
|
#define LONG_LONG_TYPE_SIZE 64
|
|
|
|
/* the size of the boolean type -- in C++; */
|
|
#define BOOL_TYPE_SIZE 8
|
|
|
|
/* Allocation boundary (in *bits*) for storing arguments in argument list. */
|
|
#define PARM_BOUNDARY 32
|
|
|
|
/* Doubles must be alogned to an 8 byte boundary. */
|
|
#define FUNCTION_ARG_BOUNDARY(MODE, TYPE) \
|
|
((MODE != BLKmode && (GET_MODE_SIZE (MODE) == 8)) \
|
|
? BIGGEST_ALIGNMENT : PARM_BOUNDARY)
|
|
|
|
/* Boundary (in *bits*) on which stack pointer should be aligned. */
|
|
#define STACK_BOUNDARY (TARGET_8ALIGN ? 64 : 32)
|
|
|
|
/* Largest increment in UNITS we allow the stack to grow in a single operation. */
|
|
extern int mcore_stack_increment;
|
|
#define STACK_UNITS_MAXSTEP 4096
|
|
|
|
/* Allocation boundary (in *bits*) for the code of a function. */
|
|
#define FUNCTION_BOUNDARY ((TARGET_OVERALIGN_FUNC) ? 32 : 16)
|
|
|
|
/* Alignment of field after `int : 0' in a structure. */
|
|
#define EMPTY_FIELD_BOUNDARY 32
|
|
|
|
/* No data type wants to be aligned rounder than this. */
|
|
#define BIGGEST_ALIGNMENT (TARGET_8ALIGN ? 64 : 32)
|
|
|
|
/* The best alignment to use in cases where we have a choice. */
|
|
#define FASTEST_ALIGNMENT 32
|
|
|
|
/* Every structures size must be a multiple of 8 bits. */
|
|
#define STRUCTURE_SIZE_BOUNDARY 8
|
|
|
|
/* Look at the fundamental type that is used for a bitfield and use
|
|
that to impose alignment on the enclosing structure.
|
|
struct s {int a:8}; should have same alignment as "int", not "char". */
|
|
#define PCC_BITFIELD_TYPE_MATTERS 1
|
|
|
|
/* Largest integer machine mode for structures. If undefined, the default
|
|
is GET_MODE_SIZE(DImode). */
|
|
#define MAX_FIXED_MODE_SIZE 32
|
|
|
|
/* Make strings word-aligned so strcpy from constants will be faster. */
|
|
#define CONSTANT_ALIGNMENT(EXP, ALIGN) \
|
|
((TREE_CODE (EXP) == STRING_CST \
|
|
&& (ALIGN) < FASTEST_ALIGNMENT) \
|
|
? FASTEST_ALIGNMENT : (ALIGN))
|
|
|
|
/* Make arrays of chars word-aligned for the same reasons. */
|
|
#define DATA_ALIGNMENT(TYPE, ALIGN) \
|
|
(TREE_CODE (TYPE) == ARRAY_TYPE \
|
|
&& TYPE_MODE (TREE_TYPE (TYPE)) == QImode \
|
|
&& (ALIGN) < FASTEST_ALIGNMENT ? FASTEST_ALIGNMENT : (ALIGN))
|
|
|
|
/* Set this nonzero if move instructions will actually fail to work
|
|
when given unaligned data. */
|
|
#define STRICT_ALIGNMENT 1
|
|
|
|
/* Standard register usage. */
|
|
|
|
/* Register allocation for our first guess
|
|
|
|
r0 stack pointer
|
|
r1 scratch, target reg for xtrb?
|
|
r2-r7 arguments.
|
|
r8-r14 call saved
|
|
r15 link register
|
|
ap arg pointer (doesn't really exist, always eliminated)
|
|
c c bit
|
|
fp frame pointer (doesn't really exist, always eliminated)
|
|
x19 two control registers */
|
|
|
|
/* Number of actual hardware registers.
|
|
The hardware registers are assigned numbers for the compiler
|
|
from 0 to just below FIRST_PSEUDO_REGISTER.
|
|
All registers that the compiler knows about must be given numbers,
|
|
even those that are not normally considered general registers.
|
|
|
|
MCore has 16 integer registers and 2 control registers + the arg
|
|
pointer. */
|
|
|
|
#define FIRST_PSEUDO_REGISTER 20
|
|
|
|
#define R1_REG 1 /* where literals are forced */
|
|
#define LK_REG 15 /* overloaded on general register */
|
|
#define AP_REG 16 /* fake arg pointer register */
|
|
/* RBE: mcore.md depends on CC_REG being set to 17 */
|
|
#define CC_REG 17 /* cant name it C_REG */
|
|
#define FP_REG 18 /* fake frame pointer register */
|
|
|
|
/* Specify the registers used for certain standard purposes.
|
|
The values of these macros are register numbers. */
|
|
|
|
|
|
#undef PC_REGNUM /* Define this if the program counter is overloaded on a register. */
|
|
#define STACK_POINTER_REGNUM 0 /* Register to use for pushing function arguments. */
|
|
#define FRAME_POINTER_REGNUM 8 /* When we need FP, use r8. */
|
|
|
|
/* The assembler's names for the registers. RFP need not always be used as
|
|
the Real framepointer; it can also be used as a normal general register.
|
|
Note that the name `fp' is horribly misleading since `fp' is in fact only
|
|
the argument-and-return-context pointer. */
|
|
#define REGISTER_NAMES \
|
|
{ \
|
|
"sp", "r1", "r2", "r3", "r4", "r5", "r6", "r7", \
|
|
"r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", \
|
|
"apvirtual", "c", "fpvirtual", "x19" \
|
|
}
|
|
|
|
/* 1 for registers that have pervasive standard uses
|
|
and are not available for the register allocator. */
|
|
#define FIXED_REGISTERS \
|
|
/* r0 r1 r2 r3 r4 r5 r6 r7 r8 r9 r10 r11 r12 r13 r14 r15 ap c fp x19 */ \
|
|
{ 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1}
|
|
|
|
/* 1 for registers not available across function calls.
|
|
These must include the FIXED_REGISTERS and also any
|
|
registers that can be used without being saved.
|
|
The latter must include the registers where values are returned
|
|
and the register where structure-value addresses are passed.
|
|
Aside from that, you can include as many other registers as you like. */
|
|
|
|
/* RBE: r15 {link register} not available across calls,
|
|
* But we don't mark it that way here... */
|
|
#define CALL_USED_REGISTERS \
|
|
/* r0 r1 r2 r3 r4 r5 r6 r7 r8 r9 r10 r11 r12 r13 r14 r15 ap c fp x19 */ \
|
|
{ 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1}
|
|
|
|
/* The order in which register should be allocated. */
|
|
#define REG_ALLOC_ORDER \
|
|
/* r7 r6 r5 r4 r3 r2 r15 r14 r13 r12 r11 r10 r9 r8 r1 r0 ap c fp x19*/ \
|
|
{ 7, 6, 5, 4, 3, 2, 15, 14, 13, 12, 11, 10, 9, 8, 1, 0, 16, 17, 18, 19}
|
|
|
|
/* Return number of consecutive hard regs needed starting at reg REGNO
|
|
to hold something of mode MODE.
|
|
This is ordinarily the length in words of a value of mode MODE
|
|
but can be less for certain modes in special long registers.
|
|
|
|
On the MCore regs are UNITS_PER_WORD bits wide; */
|
|
#define HARD_REGNO_NREGS(REGNO, MODE) \
|
|
(((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
|
|
|
|
/* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
|
|
We may keep double values in even registers. */
|
|
#define HARD_REGNO_MODE_OK(REGNO, MODE) \
|
|
((TARGET_8ALIGN && GET_MODE_SIZE (MODE) > UNITS_PER_WORD) ? (((REGNO) & 1) == 0) : (REGNO < 18))
|
|
|
|
/* Value is 1 if it is a good idea to tie two pseudo registers
|
|
when one has mode MODE1 and one has mode MODE2.
|
|
If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
|
|
for any hard reg, then this must be 0 for correct output. */
|
|
#define MODES_TIEABLE_P(MODE1, MODE2) \
|
|
((MODE1) == (MODE2) || GET_MODE_CLASS (MODE1) == GET_MODE_CLASS (MODE2))
|
|
|
|
/* Value should be nonzero if functions must have frame pointers.
|
|
Zero means the frame pointer need not be set up (and parms may be accessed
|
|
via the stack pointer) in functions that seem suitable. */
|
|
#define FRAME_POINTER_REQUIRED 0
|
|
|
|
/* Definitions for register eliminations.
|
|
|
|
We have two registers that can be eliminated on the MCore. First, the
|
|
frame pointer register can often be eliminated in favor of the stack
|
|
pointer register. Secondly, the argument pointer register can always be
|
|
eliminated; it is replaced with either the stack or frame pointer. */
|
|
|
|
/* Base register for access to arguments of the function. */
|
|
#define ARG_POINTER_REGNUM 16
|
|
|
|
/* Register in which the static-chain is passed to a function. */
|
|
#define STATIC_CHAIN_REGNUM 1
|
|
|
|
/* This is an array of structures. Each structure initializes one pair
|
|
of eliminable registers. The "from" register number is given first,
|
|
followed by "to". Eliminations of the same "from" register are listed
|
|
in order of preference. */
|
|
#define ELIMINABLE_REGS \
|
|
{{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
|
|
{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
|
|
{ ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM},}
|
|
|
|
/* Given FROM and TO register numbers, say whether this elimination
|
|
is allowed. */
|
|
#define CAN_ELIMINATE(FROM, TO) \
|
|
(!((FROM) == FRAME_POINTER_REGNUM && FRAME_POINTER_REQUIRED))
|
|
|
|
/* Define the offset between two registers, one to be eliminated, and the other
|
|
its replacement, at the start of a routine. */
|
|
#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
|
|
OFFSET = mcore_initial_elimination_offset (FROM, TO)
|
|
|
|
/* Place that structure value return address is placed. */
|
|
#define STRUCT_VALUE 0
|
|
|
|
/* Define the classes of registers for register constraints in the
|
|
machine description. Also define ranges of constants.
|
|
|
|
One of the classes must always be named ALL_REGS and include all hard regs.
|
|
If there is more than one class, another class must be named NO_REGS
|
|
and contain no registers.
|
|
|
|
The name GENERAL_REGS must be the name of a class (or an alias for
|
|
another name such as ALL_REGS). This is the class of registers
|
|
that is allowed by "g" or "r" in a register constraint.
|
|
Also, registers outside this class are allocated only when
|
|
instructions express preferences for them.
|
|
|
|
The classes must be numbered in nondecreasing order; that is,
|
|
a larger-numbered class must never be contained completely
|
|
in a smaller-numbered class.
|
|
|
|
For any two classes, it is very desirable that there be another
|
|
class that represents their union. */
|
|
|
|
/* The MCore has only general registers. There are
|
|
also some special purpose registers: the T bit register, the
|
|
procedure Link and the Count Registers */
|
|
enum reg_class
|
|
{
|
|
NO_REGS,
|
|
ONLYR1_REGS,
|
|
LRW_REGS,
|
|
GENERAL_REGS,
|
|
C_REGS,
|
|
ALL_REGS,
|
|
LIM_REG_CLASSES
|
|
};
|
|
|
|
#define N_REG_CLASSES (int) LIM_REG_CLASSES
|
|
|
|
/* Give names of register classes as strings for dump file. */
|
|
#define REG_CLASS_NAMES \
|
|
{ \
|
|
"NO_REGS", \
|
|
"ONLYR1_REGS", \
|
|
"LRW_REGS", \
|
|
"GENERAL_REGS", \
|
|
"C_REGS", \
|
|
"ALL_REGS", \
|
|
}
|
|
|
|
/* Define which registers fit in which classes.
|
|
This is an initializer for a vector of HARD_REG_SET
|
|
of length N_REG_CLASSES. */
|
|
|
|
/* ??? STACK_POINTER_REGNUM should be excluded from LRW_REGS. */
|
|
#define REG_CLASS_CONTENTS \
|
|
{ \
|
|
{0x000000}, /* NO_REGS */ \
|
|
{0x000002}, /* ONLYR1_REGS */ \
|
|
{0x007FFE}, /* LRW_REGS */ \
|
|
{0x01FFFF}, /* GENERAL_REGS */ \
|
|
{0x020000}, /* C_REGS */ \
|
|
{0x0FFFFF} /* ALL_REGS */ \
|
|
}
|
|
|
|
/* The same information, inverted:
|
|
Return the class number of the smallest class containing
|
|
reg number REGNO. This could be a conditional expression
|
|
or could index an array. */
|
|
|
|
extern int regno_reg_class[];
|
|
#define REGNO_REG_CLASS(REGNO) regno_reg_class[REGNO]
|
|
|
|
/* When defined, the compiler allows registers explicitly used in the
|
|
rtl to be used as spill registers but prevents the compiler from
|
|
extending the lifetime of these registers. */
|
|
#define SMALL_REGISTER_CLASSES 1
|
|
|
|
/* The class value for index registers, and the one for base regs. */
|
|
#define INDEX_REG_CLASS NO_REGS
|
|
#define BASE_REG_CLASS GENERAL_REGS
|
|
|
|
/* Get reg_class from a letter such as appears in the machine
|
|
description. */
|
|
extern enum reg_class reg_class_from_letter[];
|
|
|
|
#define REG_CLASS_FROM_LETTER(C) \
|
|
( (C) >= 'a' && (C) <= 'z' ? reg_class_from_letter[(C) - 'a'] : NO_REGS )
|
|
|
|
/* The letters I, J, K, L, M, N, O, and P in a register constraint string
|
|
can be used to stand for particular ranges of immediate operands.
|
|
This macro defines what the ranges are.
|
|
C is the letter, and VALUE is a constant value.
|
|
Return 1 if VALUE is in the range specified by C.
|
|
I: loadable by movi (0..127)
|
|
J: arithmetic operand 1..32
|
|
K: shift operand 0..31
|
|
L: negative arithmetic operand -1..-32
|
|
M: powers of two, constants loadable by bgeni
|
|
N: powers of two minus 1, constants loadable by bmaski, including -1
|
|
O: allowed by cmov with two constants +/- 1 of each other
|
|
P: values we will generate 'inline' -- without an 'lrw'
|
|
|
|
Others defined for use after reload
|
|
Q: constant 1
|
|
R: a label
|
|
S: 0/1/2 cleared bits out of 32 [for bclri's]
|
|
T: 2 set bits out of 32 [for bseti's]
|
|
U: constant 0
|
|
xxxS: 1 cleared bit out of 32 (complement of power of 2). for bclri
|
|
xxxT: 2 cleared bits out of 32. for pairs of bclris. */
|
|
#define CONST_OK_FOR_I(VALUE) (((int)(VALUE)) >= 0 && ((int)(VALUE)) <= 0x7f)
|
|
#define CONST_OK_FOR_J(VALUE) (((int)(VALUE)) > 0 && ((int)(VALUE)) <= 32)
|
|
#define CONST_OK_FOR_L(VALUE) (((int)(VALUE)) < 0 && ((int)(VALUE)) >= -32)
|
|
#define CONST_OK_FOR_K(VALUE) (((int)(VALUE)) >= 0 && ((int)(VALUE)) <= 31)
|
|
#define CONST_OK_FOR_M(VALUE) (exact_log2 (VALUE) >= 0)
|
|
#define CONST_OK_FOR_N(VALUE) (((int)(VALUE)) == -1 || exact_log2 ((VALUE) + 1) >= 0)
|
|
#define CONST_OK_FOR_O(VALUE) (CONST_OK_FOR_I(VALUE) || \
|
|
CONST_OK_FOR_M(VALUE) || \
|
|
CONST_OK_FOR_N(VALUE) || \
|
|
CONST_OK_FOR_M((int)(VALUE) - 1) || \
|
|
CONST_OK_FOR_N((int)(VALUE) + 1))
|
|
|
|
#define CONST_OK_FOR_P(VALUE) (mcore_const_ok_for_inline (VALUE))
|
|
|
|
#define CONST_OK_FOR_LETTER_P(VALUE, C) \
|
|
((C) == 'I' ? CONST_OK_FOR_I (VALUE) \
|
|
: (C) == 'J' ? CONST_OK_FOR_J (VALUE) \
|
|
: (C) == 'L' ? CONST_OK_FOR_L (VALUE) \
|
|
: (C) == 'K' ? CONST_OK_FOR_K (VALUE) \
|
|
: (C) == 'M' ? CONST_OK_FOR_M (VALUE) \
|
|
: (C) == 'N' ? CONST_OK_FOR_N (VALUE) \
|
|
: (C) == 'P' ? CONST_OK_FOR_P (VALUE) \
|
|
: (C) == 'O' ? CONST_OK_FOR_O (VALUE) \
|
|
: 0)
|
|
|
|
/* Similar, but for floating constants, and defining letters G and H.
|
|
Here VALUE is the CONST_DOUBLE rtx itself. */
|
|
#define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
|
|
((C) == 'G' ? CONST_OK_FOR_I (CONST_DOUBLE_HIGH (VALUE)) \
|
|
&& CONST_OK_FOR_I (CONST_DOUBLE_LOW (VALUE)) \
|
|
: 0)
|
|
|
|
/* Letters in the range `Q' through `U' in a register constraint string
|
|
may be defined in a machine-dependent fashion to stand for arbitrary
|
|
operand types. */
|
|
#define EXTRA_CONSTRAINT(OP, C) \
|
|
((C) == 'R' ? (GET_CODE (OP) == MEM \
|
|
&& GET_CODE (XEXP (OP, 0)) == LABEL_REF) \
|
|
: (C) == 'S' ? (GET_CODE (OP) == CONST_INT \
|
|
&& mcore_num_zeros (INTVAL (OP)) <= 2) \
|
|
: (C) == 'T' ? (GET_CODE (OP) == CONST_INT \
|
|
&& mcore_num_ones (INTVAL (OP)) == 2) \
|
|
: (C) == 'Q' ? (GET_CODE (OP) == CONST_INT \
|
|
&& INTVAL(OP) == 1) \
|
|
: (C) == 'U' ? (GET_CODE (OP) == CONST_INT \
|
|
&& INTVAL(OP) == 0) \
|
|
: 0)
|
|
|
|
/* Given an rtx X being reloaded into a reg required to be
|
|
in class CLASS, return the class of reg to actually use.
|
|
In general this is just CLASS; but on some machines
|
|
in some cases it is preferable to use a more restrictive class. */
|
|
#define PREFERRED_RELOAD_CLASS(X, CLASS) mcore_reload_class (X, CLASS)
|
|
|
|
/* Return the register class of a scratch register needed to copy IN into
|
|
or out of a register in CLASS in MODE. If it can be done directly,
|
|
NO_REGS is returned. */
|
|
#define SECONDARY_RELOAD_CLASS(CLASS, MODE, X) NO_REGS
|
|
|
|
/* Return the maximum number of consecutive registers
|
|
needed to represent mode MODE in a register of class CLASS.
|
|
|
|
On MCore this is the size of MODE in words. */
|
|
#define CLASS_MAX_NREGS(CLASS, MODE) \
|
|
(ROUND_ADVANCE (GET_MODE_SIZE (MODE)))
|
|
|
|
/* Stack layout; function entry, exit and calling. */
|
|
|
|
/* Define the number of register that can hold parameters.
|
|
These two macros are used only in other macro definitions below. */
|
|
#define NPARM_REGS 6
|
|
#define FIRST_PARM_REG 2
|
|
#define FIRST_RET_REG 2
|
|
|
|
/* Define this if pushing a word on the stack
|
|
makes the stack pointer a smaller address. */
|
|
#define STACK_GROWS_DOWNWARD
|
|
|
|
/* Define this if the nominal address of the stack frame
|
|
is at the high-address end of the local variables;
|
|
that is, each additional local variable allocated
|
|
goes at a more negative offset in the frame. */
|
|
/* We don't define this, because the MCore does not support
|
|
addresses with negative offsets. */
|
|
/* #define FRAME_GROWS_DOWNWARD */
|
|
|
|
/* Offset within stack frame to start allocating local variables at.
|
|
If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
|
|
first local allocated. Otherwise, it is the offset to the BEGINNING
|
|
of the first local allocated. */
|
|
#define STARTING_FRAME_OFFSET 0
|
|
|
|
/* If defined, the maximum amount of space required for outgoing arguments
|
|
will be computed and placed into the variable
|
|
`current_function_outgoing_args_size'. No space will be pushed
|
|
onto the stack for each call; instead, the function prologue should
|
|
increase the stack frame size by this amount. */
|
|
#define ACCUMULATE_OUTGOING_ARGS 1
|
|
|
|
/* Offset of first parameter from the argument pointer register value. */
|
|
#define FIRST_PARM_OFFSET(FNDECL) 0
|
|
|
|
/* Value is the number of byte of arguments automatically
|
|
popped when returning from a subroutine call.
|
|
FUNTYPE is the data type of the function (as a tree),
|
|
or for a library call it is an identifier node for the subroutine name.
|
|
SIZE is the number of bytes of arguments passed on the stack.
|
|
|
|
On the MCore, the callee does not pop any of its arguments that were passed
|
|
on the stack. */
|
|
#define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0
|
|
|
|
/* Define how to find the value returned by a function.
|
|
VALTYPE is the data type of the value (as a tree).
|
|
If the precise function being called is known, FUNC is its FUNCTION_DECL;
|
|
otherwise, FUNC is 0. */
|
|
#define FUNCTION_VALUE(VALTYPE, FUNC) mcore_function_value (VALTYPE, FUNC)
|
|
|
|
/* Don't default to pcc-struct-return, because gcc is the only compiler, and
|
|
we want to retain compatibility with older gcc versions. */
|
|
#define DEFAULT_PCC_STRUCT_RETURN 0
|
|
|
|
/* how we are going to return big values */
|
|
/*
|
|
* #define RETURN_IN_MEMORY(TYPE) \
|
|
* (TYPE_MODE (TYPE) == BLKmode \
|
|
* || ((TREE_CODE (TYPE) == RECORD_TYPE || TREE_CODE(TYPE) == UNION_TYPE) \
|
|
* && !(TYPE_MODE (TYPE) == SImode \
|
|
* || (TYPE_MODE (TYPE) == BLKmode \
|
|
* && TYPE_ALIGN (TYPE) == BITS_PER_WORD \
|
|
* && int_size_in_bytes (TYPE) == UNITS_PER_WORD))))
|
|
*/
|
|
|
|
|
|
/* How many registers to use for struct return. */
|
|
#define RETURN_IN_MEMORY(TYPE) (int_size_in_bytes (TYPE) > 2 * UNITS_PER_WORD)
|
|
|
|
/* Define how to find the value returned by a library function
|
|
assuming the value has mode MODE. */
|
|
#define LIBCALL_VALUE(MODE) gen_rtx (REG, MODE, FIRST_RET_REG)
|
|
|
|
/* 1 if N is a possible register number for a function value.
|
|
On the MCore, only r4 can return results. */
|
|
#define FUNCTION_VALUE_REGNO_P(REGNO) ((REGNO) == FIRST_RET_REG)
|
|
|
|
#define MUST_PASS_IN_STACK(MODE,TYPE) \
|
|
mcore_must_pass_on_stack (MODE, TYPE)
|
|
|
|
/* 1 if N is a possible register number for function argument passing. */
|
|
#define FUNCTION_ARG_REGNO_P(REGNO) \
|
|
((REGNO) >= FIRST_PARM_REG && (REGNO) < (NPARM_REGS + FIRST_PARM_REG))
|
|
|
|
/* Define a data type for recording info about an argument list
|
|
during the scan of that argument list. This data type should
|
|
hold all necessary information about the function itself
|
|
and about the args processed so far, enough to enable macros
|
|
such as FUNCTION_ARG to determine where the next arg should go.
|
|
|
|
On MCore, this is a single integer, which is a number of words
|
|
of arguments scanned so far (including the invisible argument,
|
|
if any, which holds the structure-value-address).
|
|
Thus NARGREGS or more means all following args should go on the stack. */
|
|
#define CUMULATIVE_ARGS int
|
|
|
|
#define ROUND_ADVANCE(SIZE) \
|
|
((SIZE + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
|
|
|
|
/* Round a register number up to a proper boundary for an arg of mode
|
|
MODE.
|
|
|
|
We round to an even reg for things larger than a word. */
|
|
#define ROUND_REG(X, MODE) \
|
|
((TARGET_8ALIGN \
|
|
&& GET_MODE_UNIT_SIZE ((MODE)) > UNITS_PER_WORD) \
|
|
? ((X) + ((X) & 1)) : (X))
|
|
|
|
|
|
/* Initialize a variable CUM of type CUMULATIVE_ARGS
|
|
for a call to a function whose data type is FNTYPE.
|
|
For a library call, FNTYPE is 0.
|
|
|
|
On MCore, the offset always starts at 0: the first parm reg is always
|
|
the same reg. */
|
|
#define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT) \
|
|
((CUM) = 0)
|
|
|
|
/* Update the data in CUM to advance over an argument
|
|
of mode MODE and data type TYPE.
|
|
(TYPE is null for libcalls where that information may not be
|
|
available.) */
|
|
#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
|
|
((CUM) = (ROUND_REG ((CUM), (MODE)) \
|
|
+ ((NAMED) * mcore_num_arg_regs (MODE, TYPE)))) \
|
|
|
|
/* Define where to put the arguments to a function. */
|
|
#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
|
|
mcore_function_arg (CUM, MODE, TYPE, NAMED)
|
|
|
|
/* A C expression that indicates when an argument must be passed by
|
|
reference. If nonzero for an argument, a copy of that argument is
|
|
made in memory and a pointer to the argument is passed instead of
|
|
the argument itself. The pointer is passed in whatever way is
|
|
appropriate for passing a pointer to that type. */
|
|
#define FUNCTION_ARG_PASS_BY_REFERENCE(CUM, MODE, TYPE, NAMED) \
|
|
MUST_PASS_IN_STACK (MODE, TYPE)
|
|
|
|
/* For an arg passed partly in registers and partly in memory,
|
|
this is the number of registers used.
|
|
For args passed entirely in registers or entirely in memory, zero.
|
|
Any arg that starts in the first NPARM_REGS regs but won't entirely
|
|
fit in them needs partial registers on the MCore. */
|
|
#define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \
|
|
mcore_function_arg_partial_nregs (CUM, MODE, TYPE, NAMED)
|
|
|
|
/* Perform any needed actions needed for a function that is receiving a
|
|
variable number of arguments. */
|
|
#define SETUP_INCOMING_VARARGS(ASF, MODE, TYPE, PAS, ST) \
|
|
mcore_setup_incoming_varargs (ASF, MODE, TYPE, & PAS)
|
|
|
|
/* Call the function profiler with a given profile label. */
|
|
#define FUNCTION_PROFILER(STREAM,LABELNO) \
|
|
{ \
|
|
fprintf (STREAM, " trap 1\n"); \
|
|
fprintf (STREAM, " .align 2\n"); \
|
|
fprintf (STREAM, " .long LP%d\n", (LABELNO)); \
|
|
}
|
|
|
|
/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
|
|
the stack pointer does not matter. The value is tested only in
|
|
functions that have frame pointers.
|
|
No definition is equivalent to always zero. */
|
|
#define EXIT_IGNORE_STACK 0
|
|
|
|
/* Output assembler code for a block containing the constant parts
|
|
of a trampoline, leaving space for the variable parts.
|
|
|
|
On the MCore, the trapoline looks like:
|
|
lrw r1, function
|
|
lrw r13, area
|
|
jmp r13
|
|
or r0, r0
|
|
.literals */
|
|
#define TRAMPOLINE_TEMPLATE(FILE) \
|
|
{ \
|
|
fprintf ((FILE), " .short 0x7102\n"); \
|
|
fprintf ((FILE), " .short 0x7d02\n"); \
|
|
fprintf ((FILE), " .short 0x00cd\n"); \
|
|
fprintf ((FILE), " .short 0x1e00\n"); \
|
|
fprintf ((FILE), " .long 0\n"); \
|
|
fprintf ((FILE), " .long 0\n"); \
|
|
}
|
|
|
|
/* Length in units of the trampoline for entering a nested function. */
|
|
#define TRAMPOLINE_SIZE 12
|
|
|
|
/* Alignment required for a trampoline in units. */
|
|
#define TRAMPOLINE_ALIGN 4
|
|
|
|
/* Emit RTL insns to initialize the variable parts of a trampoline.
|
|
FNADDR is an RTX for the address of the function's pure code.
|
|
CXT is an RTX for the static chain value for the function. */
|
|
#define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
|
|
{ \
|
|
emit_move_insn (gen_rtx (MEM, SImode, plus_constant ((TRAMP), 8)), \
|
|
(CXT)); \
|
|
emit_move_insn (gen_rtx (MEM, SImode, plus_constant ((TRAMP), 12)), \
|
|
(FNADDR)); \
|
|
}
|
|
|
|
/* Macros to check register numbers against specific register classes. */
|
|
|
|
/* These assume that REGNO is a hard or pseudo reg number.
|
|
They give nonzero only if REGNO is a hard reg of the suitable class
|
|
or a pseudo reg currently allocated to a suitable hard reg.
|
|
Since they use reg_renumber, they are safe only once reg_renumber
|
|
has been allocated, which happens in local-alloc.c. */
|
|
#define REGNO_OK_FOR_BASE_P(REGNO) \
|
|
((REGNO) < AP_REG || (unsigned) reg_renumber[(REGNO)] < AP_REG)
|
|
|
|
#define REGNO_OK_FOR_INDEX_P(REGNO) 0
|
|
|
|
/* Maximum number of registers that can appear in a valid memory
|
|
address. */
|
|
#define MAX_REGS_PER_ADDRESS 1
|
|
|
|
/* Recognize any constant value that is a valid address. */
|
|
#define CONSTANT_ADDRESS_P(X) (GET_CODE (X) == LABEL_REF)
|
|
|
|
/* Nonzero if the constant value X is a legitimate general operand.
|
|
It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE.
|
|
|
|
On the MCore, allow anything but a double. */
|
|
#define LEGITIMATE_CONSTANT_P(X) (GET_CODE(X) != CONST_DOUBLE)
|
|
|
|
#define LEGITIMIZE_ADDRESS(X, OLDX, MODE, WIN)
|
|
/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
|
|
and check its validity for a certain class.
|
|
We have two alternate definitions for each of them.
|
|
The usual definition accepts all pseudo regs; the other rejects
|
|
them unless they have been allocated suitable hard regs.
|
|
The symbol REG_OK_STRICT causes the latter definition to be used. */
|
|
#ifndef REG_OK_STRICT
|
|
|
|
/* Nonzero if X is a hard reg that can be used as a base reg
|
|
or if it is a pseudo reg. */
|
|
#define REG_OK_FOR_BASE_P(X) \
|
|
(REGNO (X) <= 16 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
|
|
|
|
/* Nonzero if X is a hard reg that can be used as an index
|
|
or if it is a pseudo reg. */
|
|
#define REG_OK_FOR_INDEX_P(X) 0
|
|
|
|
#else
|
|
|
|
/* Nonzero if X is a hard reg that can be used as a base reg. */
|
|
#define REG_OK_FOR_BASE_P(X) \
|
|
REGNO_OK_FOR_BASE_P (REGNO (X))
|
|
|
|
/* Nonzero if X is a hard reg that can be used as an index. */
|
|
#define REG_OK_FOR_INDEX_P(X) 0
|
|
|
|
#endif
|
|
/* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
|
|
that is a valid memory address for an instruction.
|
|
The MODE argument is the machine mode for the MEM expression
|
|
that wants to use this address.
|
|
|
|
The other macros defined here are used only in GO_IF_LEGITIMATE_ADDRESS. */
|
|
#define BASE_REGISTER_RTX_P(X) \
|
|
(GET_CODE (X) == REG && REG_OK_FOR_BASE_P (X))
|
|
|
|
#define INDEX_REGISTER_RTX_P(X) \
|
|
(GET_CODE (X) == REG && REG_OK_FOR_INDEX_P (X))
|
|
|
|
|
|
/* Jump to LABEL if X is a valid address RTX. This must also take
|
|
REG_OK_STRICT into account when deciding about valid registers, but it uses
|
|
the above macros so we are in luck.
|
|
|
|
Allow REG
|
|
REG+disp
|
|
|
|
A legitimate index for a QI is 0..15, for HI is 0..30, for SI is 0..60,
|
|
and for DI is 0..56 because we use two SI loads, etc. */
|
|
#define GO_IF_LEGITIMATE_INDEX(MODE, REGNO, OP, LABEL) \
|
|
do \
|
|
{ \
|
|
if (GET_CODE (OP) == CONST_INT) \
|
|
{ \
|
|
if (GET_MODE_SIZE (MODE) >= 4 \
|
|
&& (((unsigned)INTVAL (OP)) % 4) == 0 \
|
|
&& ((unsigned)INTVAL (OP)) <= 64 - GET_MODE_SIZE (MODE)) \
|
|
goto LABEL; \
|
|
if (GET_MODE_SIZE (MODE) == 2 \
|
|
&& (((unsigned)INTVAL (OP)) % 2) == 0 \
|
|
&& ((unsigned)INTVAL (OP)) <= 30) \
|
|
goto LABEL; \
|
|
if (GET_MODE_SIZE (MODE) == 1 \
|
|
&& ((unsigned)INTVAL (OP)) <= 15) \
|
|
goto LABEL; \
|
|
} \
|
|
} \
|
|
while (0)
|
|
|
|
#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, LABEL) \
|
|
{ \
|
|
if (BASE_REGISTER_RTX_P (X)) \
|
|
goto LABEL; \
|
|
else if (GET_CODE (X) == PLUS || GET_CODE (X) == LO_SUM) \
|
|
{ \
|
|
rtx xop0 = XEXP (X,0); \
|
|
rtx xop1 = XEXP (X,1); \
|
|
if (BASE_REGISTER_RTX_P (xop0)) \
|
|
GO_IF_LEGITIMATE_INDEX (MODE, REGNO (xop0), xop1, LABEL); \
|
|
if (BASE_REGISTER_RTX_P (xop1)) \
|
|
GO_IF_LEGITIMATE_INDEX (MODE, REGNO (xop1), xop0, LABEL); \
|
|
} \
|
|
}
|
|
|
|
/* Go to LABEL if ADDR (a legitimate address expression)
|
|
has an effect that depends on the machine mode it is used for. */
|
|
#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) \
|
|
{ \
|
|
if ( GET_CODE (ADDR) == PRE_DEC || GET_CODE (ADDR) == POST_DEC \
|
|
|| GET_CODE (ADDR) == PRE_INC || GET_CODE (ADDR) == POST_INC) \
|
|
goto LABEL; \
|
|
}
|
|
|
|
/* Specify the machine mode that this machine uses
|
|
for the index in the tablejump instruction. */
|
|
#define CASE_VECTOR_MODE SImode
|
|
|
|
/* Define this if the tablejump instruction expects the table
|
|
to contain offsets from the address of the table.
|
|
Do not define this if the table should contain absolute addresses. */
|
|
/* #define CASE_VECTOR_PC_RELATIVE */
|
|
|
|
/* Specify the tree operation to be used to convert reals to integers. */
|
|
#define IMPLICIT_FIX_EXPR FIX_ROUND_EXPR
|
|
|
|
/* This is the kind of divide that is easiest to do in the general case. */
|
|
#define EASY_DIV_EXPR TRUNC_DIV_EXPR
|
|
|
|
/* 'char' is signed by default. */
|
|
#define DEFAULT_SIGNED_CHAR 0
|
|
|
|
/* The type of size_t unsigned int. */
|
|
#define SIZE_TYPE "unsigned int"
|
|
|
|
/* Don't cse the address of the function being compiled. */
|
|
#define NO_RECURSIVE_FUNCTION_CSE 1
|
|
|
|
/* Max number of bytes we can move from memory to memory
|
|
in one reasonably fast instruction. */
|
|
#define MOVE_MAX 4
|
|
|
|
/* Define if operations between registers always perform the operation
|
|
on the full register even if a narrower mode is specified. */
|
|
#define WORD_REGISTER_OPERATIONS
|
|
|
|
/* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
|
|
will either zero-extend or sign-extend. The value of this macro should
|
|
be the code that says which one of the two operations is implicitly
|
|
done, NIL if none. */
|
|
#define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
|
|
|
|
/* Nonzero if access to memory by bytes is slow and undesirable. */
|
|
#define SLOW_BYTE_ACCESS TARGET_SLOW_BYTES
|
|
|
|
/* We assume that the store-condition-codes instructions store 0 for false
|
|
and some other value for true. This is the value stored for true. */
|
|
#define STORE_FLAG_VALUE 1
|
|
|
|
/* Immediate shift counts are truncated by the output routines (or was it
|
|
the assembler?). Shift counts in a register are truncated by ARM. Note
|
|
that the native compiler puts too large (> 32) immediate shift counts
|
|
into a register and shifts by the register, letting the ARM decide what
|
|
to do instead of doing that itself. */
|
|
#define SHIFT_COUNT_TRUNCATED 1
|
|
|
|
/* All integers have the same format so truncation is easy. */
|
|
#define TRULY_NOOP_TRUNCATION(OUTPREC,INPREC) 1
|
|
|
|
/* Define this if addresses of constant functions
|
|
shouldn't be put through pseudo regs where they can be cse'd.
|
|
Desirable on machines where ordinary constants are expensive
|
|
but a CALL with constant address is cheap. */
|
|
/* why is this defined??? -- dac */
|
|
#define NO_FUNCTION_CSE 1
|
|
|
|
/* Chars and shorts should be passed as ints. */
|
|
#define PROMOTE_PROTOTYPES 1
|
|
|
|
/* The machine modes of pointers and functions. */
|
|
#define Pmode SImode
|
|
#define FUNCTION_MODE Pmode
|
|
|
|
/* The relative costs of various types of constants. Note that cse.c defines
|
|
REG = 1, SUBREG = 2, any node = (2 + sum of subnodes). */
|
|
#define CONST_COSTS(RTX, CODE, OUTER_CODE) \
|
|
case CONST_INT: \
|
|
return mcore_const_costs (RTX, OUTER_CODE); \
|
|
case CONST: \
|
|
case LABEL_REF: \
|
|
case SYMBOL_REF: \
|
|
return 5; \
|
|
case CONST_DOUBLE: \
|
|
return 10;
|
|
|
|
/* provide the cost for an address calculation.
|
|
All addressing modes cost the same on the MCore. */
|
|
#define ADDRESS_COST(RTX) 1
|
|
|
|
/* Provide the cost of an rtl expression. */
|
|
#define RTX_COSTS(X, CODE, OUTER_CODE) \
|
|
case AND: \
|
|
return COSTS_N_INSNS (mcore_and_cost (X)); \
|
|
case IOR: \
|
|
return COSTS_N_INSNS (mcore_ior_cost (X)); \
|
|
case DIV: \
|
|
case UDIV: \
|
|
case MOD: \
|
|
case UMOD: \
|
|
return COSTS_N_INSNS (100); \
|
|
case FLOAT: \
|
|
case FIX: \
|
|
return 100;
|
|
|
|
/* Compute extra cost of moving data between one register class
|
|
and another. All register moves are cheap. */
|
|
#define REGISTER_MOVE_COST(MODE, SRCCLASS, DSTCLASS) 2
|
|
|
|
#define WORD_REGISTER_OPERATIONS
|
|
|
|
/* Implicit library calls should use memcpy, not bcopy, etc. */
|
|
#define TARGET_MEM_FUNCTIONS
|
|
|
|
/* Assembler output control. */
|
|
#define ASM_COMMENT_START "\t//"
|
|
|
|
#define ASM_APP_ON "// inline asm begin\n"
|
|
#define ASM_APP_OFF "// inline asm end\n"
|
|
|
|
#define FILE_ASM_OP "\t.file\n"
|
|
|
|
/* Switch to the text or data segment. */
|
|
#define TEXT_SECTION_ASM_OP "\t.text"
|
|
#define DATA_SECTION_ASM_OP "\t.data"
|
|
|
|
#undef EXTRA_SECTIONS
|
|
#define EXTRA_SECTIONS in_ctors, in_dtors, SUBTARGET_EXTRA_SECTIONS
|
|
|
|
#undef EXTRA_SECTION_FUNCTIONS
|
|
#define EXTRA_SECTION_FUNCTIONS \
|
|
CTORS_SECTION_FUNCTION \
|
|
DTORS_SECTION_FUNCTION \
|
|
SUBTARGET_EXTRA_SECTION_FUNCTIONS \
|
|
SWITCH_SECTION_FUNCTION
|
|
|
|
#ifndef CTORS_SECTION_FUNCTION
|
|
#define CTORS_SECTION_FUNCTION \
|
|
void \
|
|
ctors_section () \
|
|
{ \
|
|
if (in_section != in_ctors) \
|
|
{ \
|
|
fprintf (asm_out_file, "%s\n", CTORS_SECTION_ASM_OP); \
|
|
in_section = in_ctors; \
|
|
} \
|
|
}
|
|
|
|
#define DTORS_SECTION_FUNCTION \
|
|
void \
|
|
dtors_section () \
|
|
{ \
|
|
if (in_section != in_dtors) \
|
|
{ \
|
|
fprintf (asm_out_file, "%s\n", DTORS_SECTION_ASM_OP); \
|
|
in_section = in_dtors; \
|
|
} \
|
|
}
|
|
#endif
|
|
|
|
/* Switch to SECTION (an `enum in_section').
|
|
|
|
??? This facility should be provided by GCC proper.
|
|
The problem is that we want to temporarily switch sections in
|
|
ASM_DECLARE_OBJECT_NAME and then switch back to the original section
|
|
afterwards. */
|
|
#define SWITCH_SECTION_FUNCTION \
|
|
void \
|
|
switch_to_section (section, decl) \
|
|
enum in_section section; \
|
|
tree decl; \
|
|
{ \
|
|
switch (section) \
|
|
{ \
|
|
case in_text: text_section (); break; \
|
|
case in_data: data_section (); break; \
|
|
case in_named: named_section (decl, NULL, 0); break; \
|
|
case in_ctors: ctors_section (); break; \
|
|
case in_dtors: dtors_section (); break; \
|
|
SUBTARGET_SWITCH_SECTIONS \
|
|
default: abort (); break; \
|
|
} \
|
|
}
|
|
|
|
|
|
#define ASM_OUTPUT_SECTION(file, nam) \
|
|
do { fprintf (file, "\t.section\t%s\n", nam); } while (0)
|
|
|
|
/* This is how to output an insn to push a register on the stack.
|
|
It need not be very fast code. */
|
|
#define ASM_OUTPUT_REG_PUSH(FILE,REGNO) \
|
|
fprintf (FILE, "\tsubi\t %s,%d\n\tstw\t %s,(%s)\n", \
|
|
reg_names[STACK_POINTER_REGNUM], \
|
|
(STACK_BOUNDARY / BITS_PER_UNIT), \
|
|
reg_names[REGNO], \
|
|
reg_names[STACK_POINTER_REGNUM])
|
|
|
|
/* Length in instructions of the code output by ASM_OUTPUT_REG_PUSH. */
|
|
#define REG_PUSH_LENGTH 2
|
|
|
|
/* This is how to output an insn to pop a register from the stack. */
|
|
#define ASM_OUTPUT_REG_POP(FILE,REGNO) \
|
|
fprintf (FILE, "\tldw\t %s,(%s)\n\taddi\t %s,%d\n", \
|
|
reg_names[REGNO], \
|
|
reg_names[STACK_POINTER_REGNUM], \
|
|
reg_names[STACK_POINTER_REGNUM], \
|
|
(STACK_BOUNDARY / BITS_PER_UNIT))
|
|
|
|
|
|
/* DBX register number for a given compiler register number. */
|
|
#define DBX_REGISTER_NUMBER(REGNO) (REGNO)
|
|
|
|
/* Output a label definition. */
|
|
#define ASM_OUTPUT_LABEL(FILE,NAME) \
|
|
do { assemble_name (FILE, NAME); fputs (":\n", FILE); } while (0)
|
|
|
|
/* Output a reference to a label. */
|
|
#undef ASM_OUTPUT_LABELREF
|
|
#define ASM_OUTPUT_LABELREF(STREAM, NAME) \
|
|
fprintf (STREAM, "%s%s", USER_LABEL_PREFIX, MCORE_STRIP_NAME_ENCODING (NAME))
|
|
|
|
|
|
/* This is how to output an assembler line
|
|
that says to advance the location counter
|
|
to a multiple of 2**LOG bytes. */
|
|
#define ASM_OUTPUT_ALIGN(FILE,LOG) \
|
|
if ((LOG) != 0) \
|
|
fprintf (FILE, "\t.align\t%d\n", LOG)
|
|
|
|
#ifndef ASM_DECLARE_RESULT
|
|
#define ASM_DECLARE_RESULT(FILE, RESULT)
|
|
#endif
|
|
|
|
/* Strip export encoding from a function name. */
|
|
#define MCORE_STRIP_NAME_ENCODING(SYM_NAME) \
|
|
((SYM_NAME) + ((SYM_NAME)[0] == '@' ? 3 : 0))
|
|
|
|
/* Strip any text from SYM_NAME added by ENCODE_SECTION_INFO and store
|
|
the result in VAR. */
|
|
#undef STRIP_NAME_ENCODING
|
|
#define STRIP_NAME_ENCODING(VAR, SYM_NAME) \
|
|
(VAR) = MCORE_STRIP_NAME_ENCODING (SYM_NAME)
|
|
|
|
#undef UNIQUE_SECTION
|
|
#define UNIQUE_SECTION(DECL, RELOC) mcore_unique_section (DECL, RELOC)
|
|
|
|
#define REDO_SECTION_INFO_P(DECL) 1
|
|
|
|
#define MULTIPLE_SYMBOL_SPACES 1
|
|
|
|
#define SUPPORTS_ONE_ONLY 1
|
|
|
|
/* A pair of macros to output things for the callgraph data.
|
|
VALUE means (to the tools that reads this info later):
|
|
0 a call from src to dst
|
|
1 the call is special (e.g. dst is "unknown" or "alloca")
|
|
2 the call is special (e.g., the src is a table instead of routine)
|
|
|
|
Frame sizes are augmented with timestamps to help later tools
|
|
differentiate between static entities with same names in different
|
|
files. */
|
|
extern long mcore_current_compilation_timestamp;
|
|
#define ASM_OUTPUT_CG_NODE(FILE,SRCNAME,VALUE) \
|
|
do \
|
|
{ \
|
|
if (mcore_current_compilation_timestamp == 0) \
|
|
mcore_current_compilation_timestamp = time (0); \
|
|
fprintf ((FILE),"\t.equ\t__$frame$size$_%s_$_%08lx,%d\n", \
|
|
(SRCNAME), mcore_current_compilation_timestamp, (VALUE)); \
|
|
} \
|
|
while (0)
|
|
|
|
#define ASM_OUTPUT_CG_EDGE(FILE,SRCNAME,DSTNAME,VALUE) \
|
|
do \
|
|
{ \
|
|
fprintf ((FILE),"\t.equ\t__$function$call$_%s_$_%s,%d\n", \
|
|
(SRCNAME), (DSTNAME), (VALUE)); \
|
|
} \
|
|
while (0)
|
|
|
|
/* Output a globalising directive for a label. */
|
|
#define ASM_GLOBALIZE_LABEL(STREAM,NAME) \
|
|
(fprintf (STREAM, "\t.export\t"), \
|
|
assemble_name (STREAM, NAME), \
|
|
fputc ('\n',STREAM)) \
|
|
|
|
/* The prefix to add to user-visible assembler symbols. */
|
|
#undef USER_LABEL_PREFIX
|
|
#define USER_LABEL_PREFIX ""
|
|
|
|
/* Make an internal label into a string. */
|
|
#undef ASM_GENERATE_INTERNAL_LABEL
|
|
#define ASM_GENERATE_INTERNAL_LABEL(STRING, PREFIX, NUM) \
|
|
sprintf (STRING, "*.%s%ld", PREFIX, (long) NUM)
|
|
|
|
/* Output an internal label definition. */
|
|
#undef ASM_OUTPUT_INTERNAL_LABEL
|
|
#define ASM_OUTPUT_INTERNAL_LABEL(FILE,PREFIX,NUM) \
|
|
fprintf (FILE, ".%s%d:\n", PREFIX, NUM)
|
|
|
|
/* Construct a private name. */
|
|
#define ASM_FORMAT_PRIVATE_NAME(OUTVAR,NAME,NUMBER) \
|
|
((OUTVAR) = (char *) alloca (strlen (NAME) + 10), \
|
|
sprintf ((OUTVAR), "%s.%d", (NAME), (NUMBER)))
|
|
|
|
/* Jump tables must be 32 bit aligned. */
|
|
#undef ASM_OUTPUT_CASE_LABEL
|
|
#define ASM_OUTPUT_CASE_LABEL(STREAM,PREFIX,NUM,TABLE) \
|
|
fprintf (STREAM, "\t.align 2\n.%s%d:\n", PREFIX, NUM);
|
|
|
|
/* Output a relative address. Not needed since jump tables are absolute
|
|
but we must define it anyway. */
|
|
#define ASM_OUTPUT_ADDR_DIFF_ELT(STREAM,BODY,VALUE,REL) \
|
|
fputs ("- - - ASM_OUTPUT_ADDR_DIFF_ELT called!\n", STREAM)
|
|
|
|
/* Output an element of a dispatch table. */
|
|
#define ASM_OUTPUT_ADDR_VEC_ELT(STREAM,VALUE) \
|
|
fprintf (STREAM, "\t.long\t.L%d\n", VALUE)
|
|
|
|
/* Output various types of constants. */
|
|
|
|
/* This is how to output an assembler line defining a `double'. */
|
|
#define ASM_OUTPUT_DOUBLE(FILE,VALUE) \
|
|
do \
|
|
{ \
|
|
char dstr[30]; \
|
|
REAL_VALUE_TO_DECIMAL ((VALUE), "%.20e", dstr); \
|
|
fprintf (FILE, "\t.double %s\n", dstr); \
|
|
} \
|
|
while (0)
|
|
|
|
|
|
/* This is how to output an assembler line defining a `float' constant. */
|
|
#define ASM_OUTPUT_FLOAT(FILE,VALUE) \
|
|
do \
|
|
{ \
|
|
char dstr[30]; \
|
|
REAL_VALUE_TO_DECIMAL ((VALUE), "%.20e", dstr); \
|
|
fprintf (FILE, "\t.float %s\n", dstr); \
|
|
} \
|
|
while (0)
|
|
|
|
#define ASM_OUTPUT_INT(STREAM, EXP) \
|
|
(fprintf (STREAM, "\t.long\t"), \
|
|
output_addr_const (STREAM, (EXP)), \
|
|
fputc ('\n', STREAM))
|
|
|
|
#define ASM_OUTPUT_SHORT(STREAM, EXP) \
|
|
(fprintf (STREAM, "\t.short\t"), \
|
|
output_addr_const (STREAM, (EXP)), \
|
|
fputc ('\n', STREAM))
|
|
|
|
#define ASM_OUTPUT_CHAR(STREAM, EXP) \
|
|
(fprintf (STREAM, "\t.byte\t"), \
|
|
output_addr_const (STREAM, (EXP)), \
|
|
fputc ('\n', STREAM))
|
|
|
|
#define ASM_OUTPUT_BYTE(STREAM, VALUE) \
|
|
fprintf (STREAM, "\t.byte\t%d\n", VALUE) \
|
|
|
|
/* This is how to output an assembler line
|
|
that says to advance the location counter by SIZE bytes. */
|
|
#undef ASM_OUTPUT_SKIP
|
|
#define ASM_OUTPUT_SKIP(FILE,SIZE) \
|
|
fprintf (FILE, "\t.fill %d, 1\n", (SIZE))
|
|
|
|
/* This says how to output an assembler line
|
|
to define a global common symbol, with alignment information. */
|
|
/* XXX - for now we ignore the alignment. */
|
|
#undef ASM_OUTPUT_ALIGNED_COMMON
|
|
#define ASM_OUTPUT_ALIGNED_COMMON(FILE, NAME, SIZE, ALIGN) \
|
|
do \
|
|
{ \
|
|
if (mcore_dllexport_name_p (NAME)) \
|
|
MCORE_EXPORT_NAME (FILE, NAME) \
|
|
if (! mcore_dllimport_name_p (NAME)) \
|
|
{ \
|
|
fputs ("\t.comm\t", FILE); \
|
|
assemble_name (FILE, NAME); \
|
|
fprintf (FILE, ",%d\n", SIZE); \
|
|
} \
|
|
} \
|
|
while (0)
|
|
|
|
/* This says how to output an assembler line
|
|
to define an external symbol. */
|
|
#define ASM_OUTPUT_EXTERNAL(FILE, DECL, NAME) \
|
|
do \
|
|
{ \
|
|
fputs ("\t.import\t", (FILE)); \
|
|
assemble_name ((FILE), (NAME)); \
|
|
fputs ("\n", (FILE)); \
|
|
} \
|
|
while (0)
|
|
|
|
#undef ASM_OUTPUT_EXTERNAL
|
|
/* RBE: we undefined this and let gas do it's "undefined is imported"
|
|
games. This is because when we use this, we get a marked
|
|
reference through the call to assemble_name and this forces C++
|
|
inlined member functions (or any inlined function) to be instantiated
|
|
regardless of whether any callsites remain.
|
|
This makes this aspect of the compiler non-ABI compliant. */
|
|
|
|
/* Similar, but for libcall. FUN is an rtx. */
|
|
#undef ASM_OUTPUT_EXTERNAL_LIBCALL
|
|
#define ASM_OUTPUT_EXTERNAL_LIBCALL(FILE, FUN) \
|
|
do \
|
|
{ \
|
|
fprintf (FILE, "\t.import\t"); \
|
|
assemble_name (FILE, XSTR (FUN, 0)); \
|
|
fprintf (FILE, "\n"); \
|
|
} \
|
|
while (0)
|
|
|
|
|
|
/* This says how to output an assembler line
|
|
to define a local common symbol... */
|
|
#undef ASM_OUTPUT_LOCAL
|
|
#define ASM_OUTPUT_LOCAL(FILE, NAME, SIZE, ROUNDED) \
|
|
(fputs ("\t.lcomm\t", FILE), \
|
|
assemble_name (FILE, NAME), \
|
|
fprintf (FILE, ",%d\n", SIZE))
|
|
|
|
/* ... and how to define a local common symbol whose alignment
|
|
we wish to specify. ALIGN comes in as bits, we have to turn
|
|
it into bytes. */
|
|
#undef ASM_OUTPUT_ALIGNED_LOCAL
|
|
#define ASM_OUTPUT_ALIGNED_LOCAL(FILE, NAME, SIZE, ALIGN) \
|
|
do \
|
|
{ \
|
|
fputs ("\t.bss\t", (FILE)); \
|
|
assemble_name ((FILE), (NAME)); \
|
|
fprintf ((FILE), ",%d,%d\n", (SIZE), (ALIGN) / BITS_PER_UNIT); \
|
|
} \
|
|
while (0)
|
|
|
|
/* We must mark dll symbols specially. Definitions of dllexport'd objects
|
|
install some info in the .drective (PE) or .exports (ELF) sections. */
|
|
#undef ENCODE_SECTION_INFO
|
|
#define ENCODE_SECTION_INFO(DECL) mcore_encode_section_info (DECL)
|
|
|
|
/* The assembler's parentheses characters. */
|
|
#define ASM_OPEN_PAREN "("
|
|
#define ASM_CLOSE_PAREN ")"
|
|
|
|
/* Target characters. */
|
|
#define TARGET_BELL 007
|
|
#define TARGET_BS 010
|
|
#define TARGET_TAB 011
|
|
#define TARGET_NEWLINE 012
|
|
#define TARGET_VT 013
|
|
#define TARGET_FF 014
|
|
#define TARGET_CR 015
|
|
|
|
/* Print operand X (an rtx) in assembler syntax to file FILE.
|
|
CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
|
|
For `%' followed by punctuation, CODE is the punctuation and X is null. */
|
|
#define PRINT_OPERAND(STREAM, X, CODE) mcore_print_operand (STREAM, X, CODE)
|
|
|
|
/* Print a memory address as an operand to reference that memory location. */
|
|
#define PRINT_OPERAND_ADDRESS(STREAM,X) mcore_print_operand_address (STREAM, X)
|
|
|
|
#define PRINT_OPERAND_PUNCT_VALID_P(CHAR) \
|
|
((CHAR)=='.' || (CHAR) == '#' || (CHAR) == '*' || (CHAR) == '^' || (CHAR) == '!')
|
|
|
|
/* This is to handle loads from the constant pool. */
|
|
#define MACHINE_DEPENDENT_REORG(X) mcore_dependent_reorg (X)
|
|
|
|
/* This handles MCore dependent rtl simplifications. */
|
|
#define MACHINE_DEPENDENT_SIMPLIFY(X,M,L,I,S) \
|
|
mcore_dependent_simplify_rtx (X, M, L, I, S)
|
|
|
|
#define PREDICATE_CODES \
|
|
{ "mcore_arith_reg_operand", { REG, SUBREG }}, \
|
|
{ "mcore_general_movsrc_operand", { MEM, CONST_INT, REG, SUBREG }},\
|
|
{ "mcore_general_movdst_operand", { MEM, CONST_INT, REG, SUBREG }},\
|
|
{ "mcore_reload_operand", { MEM, REG, SUBREG }}, \
|
|
{ "mcore_arith_J_operand", { CONST_INT, REG, SUBREG }}, \
|
|
{ "mcore_arith_K_operand", { CONST_INT, REG, SUBREG }}, \
|
|
{ "mcore_arith_K_operand_not_0", { CONST_INT, REG, SUBREG }}, \
|
|
{ "mcore_arith_M_operand", { CONST_INT, REG, SUBREG }}, \
|
|
{ "mcore_arith_K_S_operand", { CONST_INT, REG, SUBREG }}, \
|
|
{ "mcore_arith_O_operand", { CONST_INT, REG, SUBREG }}, \
|
|
{ "mcore_arith_imm_operand", { CONST_INT, REG, SUBREG }}, \
|
|
{ "mcore_arith_any_imm_operand", { CONST_INT, REG, SUBREG }}, \
|
|
{ "mcore_literal_K_operand", { CONST_INT }}, \
|
|
{ "mcore_addsub_operand", { CONST_INT, REG, SUBREG }}, \
|
|
{ "mcore_compare_operand", { CONST_INT, REG, SUBREG }}, \
|
|
{ "mcore_load_multiple_operation", { PARALLEL }}, \
|
|
{ "mcore_store_multiple_operation", { PARALLEL }}, \
|
|
{ "mcore_call_address_operand", { REG, SUBREG, CONST_INT }}, \
|
|
|
|
#endif /* __MCORE__H */
|