/* Subroutines for insn-output.c for AT&T we32000 Family. Copyright (C) 1991, 1992, 1997, 1998, 1999, 2000, 2001 Free Software Foundation, Inc. Contributed by John Wehle (john@feith1.uucp) This file is part of GNU CC. GNU CC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2, or (at your option) any later version. GNU CC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GNU CC; see the file COPYING. If not, write to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ #include "config.h" #include "system.h" #include "insn-config.h" #include "rtl.h" #include "function.h" #include "real.h" #include "recog.h" #include "output.h" #include "regs.h" #include "tree.h" #include "tm_p.h" #include "target.h" #include "target-def.h" static void we32k_output_function_prologue PARAMS ((FILE *, HOST_WIDE_INT)); static void we32k_output_function_epilogue PARAMS ((FILE *, HOST_WIDE_INT)); /* Initialize the GCC target structure. */ #undef TARGET_ASM_FUNCTION_PROLOGUE #define TARGET_ASM_FUNCTION_PROLOGUE we32k_output_function_prologue #undef TARGET_ASM_FUNCTION_EPILOGUE #define TARGET_ASM_FUNCTION_EPILOGUE we32k_output_function_epilogue struct gcc_target targetm = TARGET_INITIALIZER; /* Generate the assembly code for function entry. FILE is a stdio stream to output the code to. SIZE is an int: how many units of temporary storage to allocate. Refer to the array `regs_ever_live' to determine which registers to save; `regs_ever_live[I]' is nonzero if register number I is ever used in the function. This function is responsible for knowing which registers should not be saved even if used. */ static void we32k_output_function_prologue (file, size) FILE *file; HOST_WIDE_INT size; { register int nregs_to_save; register int regno; extern char call_used_regs[]; nregs_to_save = 0; for (regno = 8; regno > 2; regno--) if (regs_ever_live[regno] && ! call_used_regs[regno]) nregs_to_save = (9 - regno); fprintf (file, "\tsave &%d\n", nregs_to_save); if (size) fprintf (file, "\taddw2 &%d,%%sp\n", (size + 3) & ~3); } /* This function generates the assembly code for function exit. Args are as for output_function_prologue (). The function epilogue should not depend on the current stack pointer! It should use the frame pointer only. This is mandatory because of alloca; we also take advantage of it to omit stack adjustments before returning. */ static void we32k_output_function_epilogue (file, size) FILE *file; HOST_WIDE_INT size ATTRIBUTE_UNUSED; { register int nregs_to_restore; register int regno; extern char call_used_regs[]; nregs_to_restore = 0; for (regno = 8; regno > 2; regno--) if (regs_ever_live[regno] && ! call_used_regs[regno]) nregs_to_restore = (9 - regno); fprintf (file, "\tret &%d\n", nregs_to_restore); } void output_move_double (operands) rtx *operands; { rtx lsw_operands[2]; rtx lsw_sreg = NULL; rtx msw_dreg = NULL; if (GET_CODE (operands[0]) == REG) { lsw_operands[0] = gen_rtx_REG (SImode, REGNO (operands[0]) + 1); msw_dreg = operands[0]; } else if (GET_CODE (operands[0]) == MEM && offsettable_memref_p (operands[0])) lsw_operands[0] = adjust_address (operands[0], SImode, 4); else abort (); if (GET_CODE (operands[1]) == REG) { lsw_operands[1] = gen_rtx_REG (SImode, REGNO (operands[1]) + 1); lsw_sreg = lsw_operands[1]; } else if (GET_CODE (operands[1]) == MEM && offsettable_memref_p (operands[1])) { lsw_operands[1] = adjust_address (operands[1], SImode, 4); lsw_sreg = operands[1]; for ( ; ; ) { if (REG_P (lsw_sreg)) break; if (CONSTANT_ADDRESS_P (lsw_sreg)) { lsw_sreg = NULL; break; } if (GET_CODE (lsw_sreg) == MEM) { lsw_sreg = XEXP (lsw_sreg, 0); continue; } if (GET_CODE (lsw_sreg) == PLUS) { if (CONSTANT_ADDRESS_P (XEXP (lsw_sreg, 1))) { lsw_sreg = XEXP (lsw_sreg, 0); continue; } else if (CONSTANT_ADDRESS_P (XEXP (lsw_sreg, 0))) { lsw_sreg = XEXP (lsw_sreg, 1); continue; } } abort (); } } else if (GET_CODE (operands[1]) == CONST_DOUBLE) { lsw_operands[1] = GEN_INT (CONST_DOUBLE_HIGH (operands[1])); operands[1] = GEN_INT (CONST_DOUBLE_LOW (operands[1])); } else if (GET_CODE (operands[1]) == CONST_INT) { lsw_operands[1] = operands[1]; operands[1] = const0_rtx; } else abort (); if (!msw_dreg || !lsw_sreg || REGNO (msw_dreg) != REGNO (lsw_sreg)) { output_asm_insn ("movw %1, %0", operands); output_asm_insn ("movw %1, %0", lsw_operands); } else { output_asm_insn ("movw %1, %0", lsw_operands); output_asm_insn ("movw %1, %0", operands); } } void output_push_double (operands) rtx *operands; { rtx lsw_operands[1]; if (GET_CODE (operands[0]) == REG) lsw_operands[0] = gen_rtx_REG (SImode, REGNO (operands[0]) + 1); else if (GET_CODE (operands[0]) == MEM && offsettable_memref_p (operands[0])) lsw_operands[0] = adjust_address (operands[0], SImode, 4); else if (GET_CODE (operands[0]) == CONST_DOUBLE) { lsw_operands[0] = GEN_INT (CONST_DOUBLE_HIGH (operands[0])); operands[0] = GEN_INT (CONST_DOUBLE_LOW (operands[0])); } else if (GET_CODE (operands[0]) == CONST_INT) { lsw_operands[0] = operands[0]; operands[0] = const0_rtx; } else abort (); output_asm_insn ("pushw %0", operands); output_asm_insn ("pushw %0", lsw_operands); }