/* Target definitions for GNU compiler for Intel 80386 running Dynix/ptx v4 Copyright (C) 1996 Free Software Foundation, Inc. Modified from sysv4.h Originally written by Ron Guilmette (rfg@netcom.com). Modified by Tim Wright (timw@sequent.com). This file is part of GNU CC. GNU CC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2, or (at your option) any later version. GNU CC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GNU CC; see the file COPYING. If not, write to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ #include "i386/i386.h" /* Base i386 target machine definitions */ #include "i386/att.h" /* Use the i386 AT&T assembler syntax */ #include "ptx4.h" /* Rest of definitions (non architecture dependent) */ #undef TARGET_VERSION #define TARGET_VERSION fprintf (stderr, " (i386 Sequent Dynix/ptx Version 4)"); /* The svr4 ABI for the i386 says that records and unions are returned in memory. */ #undef RETURN_IN_MEMORY #define RETURN_IN_MEMORY(TYPE) \ (TYPE_MODE (TYPE) == BLKmode \ || (VECTOR_MODE_P (TYPE_MODE (TYPE)) && int_size_in_bytes (TYPE) == 8)) /* Define which macros to predefine. _SEQUENT_ is our extension. */ /* This used to define X86, but james@bigtex.cactus.org says that is supposed to be defined optionally by user programs--not by default. */ #define CPP_PREDEFINES \ "-Dunix -D_SEQUENT_ -Asystem=unix -Asystem=ptx4" /* This is how to output assembly code to define a `float' constant. We always have to use a .long pseudo-op to do this because the native SVR4 ELF assembler is buggy and it generates incorrect values when we try to use the .float pseudo-op instead. */ #undef ASM_OUTPUT_FLOAT #define ASM_OUTPUT_FLOAT(FILE,VALUE) \ do { long value; \ REAL_VALUE_TO_TARGET_SINGLE ((VALUE), value); \ if (sizeof (int) == sizeof (long)) \ fprintf((FILE), "%s0x%x\n", ASM_LONG, value); \ else \ fprintf((FILE), "%s0x%lx\n", ASM_LONG, value); \ } while (0) /* This is how to output assembly code to define a `double' constant. We always have to use a pair of .long pseudo-ops to do this because the native SVR4 ELF assembler is buggy and it generates incorrect values when we try to use the .double pseudo-op instead. */ #undef ASM_OUTPUT_DOUBLE #define ASM_OUTPUT_DOUBLE(FILE,VALUE) \ do { long value[2]; \ REAL_VALUE_TO_TARGET_DOUBLE ((VALUE), value); \ if (sizeof (int) == sizeof (long)) \ { \ fprintf((FILE), "%s0x%x\n", ASM_LONG, value[0]); \ fprintf((FILE), "%s0x%x\n", ASM_LONG, value[1]); \ } \ else \ { \ fprintf((FILE), "%s0x%lx\n", ASM_LONG, value[0]); \ fprintf((FILE), "%s0x%lx\n", ASM_LONG, value[1]); \ } \ } while (0) #undef ASM_OUTPUT_LONG_DOUBLE #define ASM_OUTPUT_LONG_DOUBLE(FILE,VALUE) \ do { long value[3]; \ REAL_VALUE_TO_TARGET_LONG_DOUBLE ((VALUE), value); \ if (sizeof (int) == sizeof (long)) \ { \ fprintf((FILE), "%s0x%x\n", ASM_LONG, value[0]); \ fprintf((FILE), "%s0x%x\n", ASM_LONG, value[1]); \ fprintf((FILE), "%s0x%x\n", ASM_LONG, value[2]); \ } \ else \ { \ fprintf((FILE), "%s0x%lx\n", ASM_LONG, value[0]); \ fprintf((FILE), "%s0x%lx\n", ASM_LONG, value[1]); \ fprintf((FILE), "%s0x%lx\n", ASM_LONG, value[2]); \ } \ } while (0) #undef DBX_REGISTER_NUMBER #define DBX_REGISTER_NUMBER(n) svr4_dbx_register_map[n] /* The routine used to output sequences of byte values. We use a special version of this for most svr4 targets because doing so makes the generated assembly code more compact (and thus faster to assemble) as well as more readable. Note that if we find subparts of the character sequence which end with NUL (and which are shorter than STRING_LIMIT) we output those using ASM_OUTPUT_LIMITED_STRING. */ #undef ASM_OUTPUT_ASCII #define ASM_OUTPUT_ASCII(FILE, STR, LENGTH) \ do \ { \ register const unsigned char *_ascii_bytes = \ (const unsigned char *) (STR); \ register const unsigned char *limit = _ascii_bytes + (LENGTH); \ register unsigned bytes_in_chunk = 0; \ for (; _ascii_bytes < limit; _ascii_bytes++) \ { \ register const unsigned char *p; \ if (bytes_in_chunk >= 64) \ { \ fputc ('\n', (FILE)); \ bytes_in_chunk = 0; \ } \ for (p = _ascii_bytes; p < limit && *p != '\0'; p++) \ continue; \ if (p < limit && (p - _ascii_bytes) <= STRING_LIMIT) \ { \ if (bytes_in_chunk > 0) \ { \ fputc ('\n', (FILE)); \ bytes_in_chunk = 0; \ } \ ASM_OUTPUT_LIMITED_STRING ((FILE), _ascii_bytes); \ _ascii_bytes = p; \ } \ else \ { \ if (bytes_in_chunk == 0) \ fprintf ((FILE), "\t.byte\t"); \ else \ fputc (',', (FILE)); \ fprintf ((FILE), "0x%02x", *_ascii_bytes); \ bytes_in_chunk += 5; \ } \ } \ if (bytes_in_chunk > 0) \ fprintf ((FILE), "\n"); \ } \ while (0) /* This is how to output an element of a case-vector that is relative. This is only used for PIC code. See comments by the `casesi' insn in i386.md for an explanation of the expression this outputs. */ #undef ASM_OUTPUT_ADDR_DIFF_ELT #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \ fprintf (FILE, "\t.long _GLOBAL_OFFSET_TABLE_+[.-%s%d]\n", LPREFIX, VALUE) /* Indicate that jump tables go in the text section. This is necessary when compiling PIC code. */ #define JUMP_TABLES_IN_TEXT_SECTION 1