/* Subroutines for insn-output.c for Clipper Copyright (C) 1987, 1988, 1991, 1997, 1998, 1999, 2000, 2001 Free Software Foundation, Inc. Contributed by Holger Teutsch (holger@hotbso.rhein-main.de) This file is part of GNU CC. GNU CC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2, or (at your option) any later version. GNU CC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GNU CC; see the file COPYING. If not, write to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ #include "config.h" #include "system.h" #include "rtl.h" #include "regs.h" #include "hard-reg-set.h" #include "real.h" #include "insn-config.h" #include "conditions.h" #include "output.h" #include "insn-attr.h" #include "tree.h" #include "expr.h" #include "c-tree.h" #include "function.h" #include "flags.h" #include "recog.h" #include "tm_p.h" #include "target.h" #include "target-def.h" static void clipper_output_function_prologue PARAMS ((FILE *, HOST_WIDE_INT)); static void clipper_output_function_epilogue PARAMS ((FILE *, HOST_WIDE_INT)); extern char regs_ever_live[]; extern int frame_pointer_needed; static int frame_size; /* Initialize the GCC target structure. */ #undef TARGET_ASM_FUNCTION_PROLOGUE #define TARGET_ASM_FUNCTION_PROLOGUE clipper_output_function_prologue #undef TARGET_ASM_FUNCTION_EPILOGUE #define TARGET_ASM_FUNCTION_EPILOGUE clipper_output_function_epilogue struct gcc_target targetm = TARGET_INITIALIZER; /* Compute size of a clipper stack frame where 'lsize' is the required space for local variables. */ int clipper_frame_size (lsize) int lsize; { int i, size; /* total size of frame */ int save_size; save_size = 0; /* compute size for reg saves */ for (i = 16; i < 32; i++) if (regs_ever_live[i] && !call_used_regs[i]) save_size += 8; for (i = 0; i < 16; i++) if (regs_ever_live[i] && !call_used_regs[i]) save_size += 4; size = lsize + save_size; size = (size + 7) & ~7; /* align to 64 Bit */ return size; } /* Prologue and epilogue output Function is entered with pc pushed, i.e. stack is 32 bit aligned current_function_args_size == 0 means that the current function's args are passed totally in registers i.e fp is not used as ap. If frame_size is also 0 the current function does not push anything and can run with misaligned stack -> subq $4,sp / add $4,sp on entry and exit can be omitted. */ static void clipper_output_function_prologue (file, lsize) FILE *file; HOST_WIDE_INT lsize; /* size for locals */ { int i, offset; int size; frame_size = size = clipper_frame_size (lsize); if (frame_pointer_needed) { fputs ("\tpushw fp,sp\n", file); fputs ("\tmovw sp,fp\n", file); } else if (size != 0 || current_function_args_size != 0) { size += 4; /* keep stack aligned */ frame_size = size; /* must push data or access args */ } if (size) { if (size < 16) fprintf (file, "\tsubq $%d,sp\n", size); else fprintf (file, "\tsubi $%d,sp\n", size); /* register save slots are relative to sp, because we have small positive displacements and this works whether we have a frame pointer or not */ offset = 0; for (i = 16; i < 32; i++) if (regs_ever_live[i] && !call_used_regs[i]) { if (offset == 0) fprintf (file, "\tstord f%d,(sp)\n", i-16); else fprintf (file, "\tstord f%d,%d(sp)\n", i-16, offset); offset += 8; } for (i = 0; i < 16; i++) if (regs_ever_live[i] && !call_used_regs[i]) { if (offset == 0) fprintf (file, "\tstorw r%d,(sp)\n", i); else fprintf (file, "\tstorw r%d,%d(sp)\n", i, offset); offset += 4; } } } static void clipper_output_function_epilogue (file, size) FILE *file; HOST_WIDE_INT size ATTRIBUTE_UNUSED; { int i, offset; if (frame_pointer_needed) { offset = -frame_size; for (i = 16; i < 32; i++) if (regs_ever_live[i] && !call_used_regs[i]) { fprintf (file, "\tloadd %d(fp),f%d\n", offset, i-16); offset += 8; } for (i = 0; i < 16; i++) if (regs_ever_live[i] && !call_used_regs[i]) { fprintf (file, "\tloadw %d(fp),r%d\n", offset, i); offset += 4; } fputs ("\tmovw fp,sp\n\tpopw sp,fp\n\tret sp\n", file); } else /* no frame pointer */ { offset = 0; for (i = 16; i < 32; i++) if (regs_ever_live[i] && !call_used_regs[i]) { if (offset == 0) fprintf (file, "\tloadd (sp),f%d\n", i-16); else fprintf (file, "\tloadd %d(sp),f%d\n", offset, i-16); offset += 8; } for (i = 0; i < 16; i++) if (regs_ever_live[i] && !call_used_regs[i]) { if (offset == 0) fprintf (file, "\tloadw (sp),r%d\n", i); else fprintf (file, "\tloadw %d(sp),r%d\n", offset, i); offset += 4; } if (frame_size > 0) { if (frame_size < 16) fprintf (file, "\taddq $%d,sp\n", frame_size); else fprintf (file, "\taddi $%d,sp\n", frame_size); } fputs ("\tret sp\n", file); } } /* * blockmove * * clipper_movstr () */ void clipper_movstr (operands) rtx *operands; { rtx dst,src,cnt,tmp,top,bottom,xops[3]; int align; int fixed; extern FILE *asm_out_file; dst = operands[0]; src = operands[1]; /* don't change this operands[2]; gcc 2.3.3 doesn't honor clobber note */ align = INTVAL (operands[3]); tmp = operands[4]; cnt = operands[5]; if (GET_CODE (operands[2]) == CONST_INT) /* fixed size move */ { if ((fixed = INTVAL (operands[2])) <= 0) abort (); if (fixed <16) output_asm_insn ("loadq %2,%5", operands); else output_asm_insn ("loadi %2,%5", operands); } else { fixed = 0; bottom = (rtx)gen_label_rtx (); /* need a bottom label */ xops[0] = cnt; xops[1] = bottom; output_asm_insn ("movw %2,%5", operands); /* count is scratch reg 5 */ output_asm_insn ("brle %l1", xops); } top = (rtx)gen_label_rtx (); /* top of loop label */ ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, "L", CODE_LABEL_NUMBER (top)); xops[0] = src; xops[1] = tmp; xops[2] = dst; if (fixed && (align & 0x3) == 0) /* word aligned move with known size */ { if (fixed >= 4) { rtx xops1[2]; output_asm_insn( "loadw %a0,%1\n\taddq $4,%0\n\tstorw %1,%a2\n\taddq $4,%2", xops); xops1[0] = cnt; xops1[1] = top; output_asm_insn ("subq $4,%0\n\tbrgt %l1", xops1); } if (fixed & 0x2) { output_asm_insn ("loadh %a0,%1\n\tstorh %1,%a2", xops); if (fixed & 0x1) output_asm_insn ("loadb 2%a0,%1\n\tstorb %1,2%a2", xops); } else if (fixed & 0x1) output_asm_insn ("loadb %a0,%1\n\tstorb %1,%a2", xops); } else { output_asm_insn( "loadb %a0,%1\n\taddq $1,%0\n\tstorb %1,%a2\n\taddq $1,%2", xops); xops[0] = cnt; xops[1] = top; output_asm_insn ("subq $1,%0\n\tbrgt %l1", xops); } if (fixed == 0) ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, "L", CODE_LABEL_NUMBER (bottom)); } void print_operand_address (file, addr) FILE *file; register rtx addr; { rtx op0,op1; switch (GET_CODE (addr)) { case REG: fprintf (file, "(%s)", reg_names[REGNO (addr)]); break; case PLUS: /* can be 'symbol + reg' or 'reg + reg' */ op0 = XEXP (addr, 0); op1 = XEXP (addr, 1); if (GET_CODE (op0) == REG && GET_CODE (op1) == REG) { fprintf (file, "[%s](%s)", reg_names[REGNO (op0)], reg_names[REGNO (op1)]); break; } if (GET_CODE (op0) == REG && CONSTANT_ADDRESS_P (op1)) { output_addr_const (file, op1); fprintf (file, "(%s)", reg_names[REGNO (op0)]); break; } if (GET_CODE (op1) == REG && CONSTANT_ADDRESS_P (op0)) { output_addr_const (file, op0); fprintf (file, "(%s)", reg_names[REGNO (op1)]); break; } abort (); /* Oh no */ default: output_addr_const (file, addr); } } const char * rev_cond_name (op) rtx op; { switch (GET_CODE (op)) { case EQ: return "ne"; case NE: return "eq"; case LT: return "ge"; case LE: return "gt"; case GT: return "le"; case GE: return "lt"; case LTU: return "geu"; case LEU: return "gtu"; case GTU: return "leu"; case GEU: return "ltu"; default: abort (); } } /* Dump the argument register to the stack; return the location of the block. */ struct rtx_def * clipper_builtin_saveregs () { rtx block, addr, r0_addr, r1_addr, f0_addr, f1_addr, mem; int set = get_varargs_alias_set (); /* Allocate the save area for r0,r1,f0,f1 */ block = assign_stack_local (BLKmode, 6 * UNITS_PER_WORD, 2 * BITS_PER_WORD); RTX_UNCHANGING_P (block) = 1; RTX_UNCHANGING_P (XEXP (block, 0)) = 1; addr = XEXP (block, 0); r0_addr = addr; r1_addr = plus_constant (addr, 4); f0_addr = plus_constant (addr, 8); f1_addr = plus_constant (addr, 16); /* Store int regs */ mem = gen_rtx_MEM (SImode, r0_addr); set_mem_alias_set (mem, set); emit_move_insn (mem, gen_rtx_REG (SImode, 0)); mem = gen_rtx_MEM (SImode, r1_addr); set_mem_alias_set (mem, set); emit_move_insn (mem, gen_rtx_REG (SImode, 1)); /* Store float regs */ mem = gen_rtx_MEM (DFmode, f0_addr); set_mem_alias_set (mem, set); emit_move_insn (mem, gen_rtx_REG (DFmode, 16)); mem = gen_rtx_MEM (DFmode, f1_addr); set_mem_alias_set (mem, set); emit_move_insn (mem, gen_rtx_REG (DFmode, 17)); if (current_function_check_memory_usage) { emit_library_call (chkr_set_right_libfunc, 1, VOIDmode, 3, f0_addr, ptr_mode, GEN_INT (GET_MODE_SIZE (DFmode)), TYPE_MODE (sizetype), GEN_INT (MEMORY_USE_RW), TYPE_MODE (integer_type_node)); emit_library_call (chkr_set_right_libfunc, 1, VOIDmode, 3, f1_addr, ptr_mode, GEN_INT (GET_MODE_SIZE (DFmode)), TYPE_MODE (sizetype), GEN_INT (MEMORY_USE_RW), TYPE_MODE (integer_type_node)); emit_library_call (chkr_set_right_libfunc, 1, VOIDmode, 3, r0_addr, ptr_mode, GEN_INT (GET_MODE_SIZE (SImode)), TYPE_MODE (sizetype), GEN_INT (MEMORY_USE_RW), TYPE_MODE (integer_type_node)); emit_library_call (chkr_set_right_libfunc, 1, VOIDmode, 3, r1_addr, ptr_mode, GEN_INT (GET_MODE_SIZE (SImode)), TYPE_MODE (sizetype), GEN_INT (MEMORY_USE_RW), TYPE_MODE (integer_type_node)); } return addr; } tree clipper_build_va_list () { tree record, ap, reg, num; /* struct { int __va_ap; // pointer to stack args void *__va_reg[4]; // pointer to r0,f0,r1,f1 int __va_num; // number of args processed }; */ record = make_node (RECORD_TYPE); num = build_decl (FIELD_DECL, get_identifier ("__va_num"), integer_type_node); DECL_FIELD_CONTEXT (num) = record; reg = build_decl (FIELD_DECL, get_identifier ("__va_reg"), build_array_type (ptr_type_node, build_index_type (build_int_2 (3, 0)))); DECL_FIELD_CONTEXT (reg) = record; TREE_CHAIN (reg) = num; ap = build_decl (FIELD_DECL, get_identifier ("__va_ap"), integer_type_node); DECL_FIELD_CONTEXT (ap) = record; TREE_CHAIN (ap) = reg; TYPE_FIELDS (record) = ap; layout_type (record); return record; } void clipper_va_start (stdarg_p, valist, nextarg) int stdarg_p; tree valist; rtx nextarg ATTRIBUTE_UNUSED; { tree ap_field, reg_field, num_field; tree t, u, save_area; ap_field = TYPE_FIELDS (TREE_TYPE (valist)); reg_field = TREE_CHAIN (ap_field); num_field = TREE_CHAIN (reg_field); ap_field = build (COMPONENT_REF, TREE_TYPE (ap_field), valist, ap_field); reg_field = build (COMPONENT_REF, TREE_TYPE (reg_field), valist, reg_field); num_field = build (COMPONENT_REF, TREE_TYPE (num_field), valist, num_field); /* Call __builtin_saveregs to save r0, r1, f0, and f1 in a block. */ save_area = make_tree (integer_type_node, expand_builtin_saveregs ()); /* Set __va_ap. */ t = make_tree (ptr_type_node, virtual_incoming_args_rtx); if (stdarg_p && current_function_args_info.size != 0) t = build (PLUS_EXPR, ptr_type_node, t, build_int_2 (current_function_args_info.size, 0)); t = build (MODIFY_EXPR, TREE_TYPE (ap_field), ap_field, t); TREE_SIDE_EFFECTS (t) = 1; expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL); /* Set the four entries of __va_reg. */ t = build1 (NOP_EXPR, ptr_type_node, save_area); u = build (ARRAY_REF, ptr_type_node, reg_field, build_int_2 (0, 0)); t = build (MODIFY_EXPR, ptr_type_node, u, t); TREE_SIDE_EFFECTS (t) = 1; expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL); t = fold (build (PLUS_EXPR, integer_type_node, save_area, build_int_2 (8, 0))); t = build1 (NOP_EXPR, ptr_type_node, save_area); u = build (ARRAY_REF, ptr_type_node, reg_field, build_int_2 (1, 0)); t = build (MODIFY_EXPR, ptr_type_node, u, t); TREE_SIDE_EFFECTS (t) = 1; expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL); t = fold (build (PLUS_EXPR, integer_type_node, save_area, build_int_2 (4, 0))); t = build1 (NOP_EXPR, ptr_type_node, save_area); u = build (ARRAY_REF, ptr_type_node, reg_field, build_int_2 (2, 0)); t = build (MODIFY_EXPR, ptr_type_node, u, t); TREE_SIDE_EFFECTS (t) = 1; expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL); t = fold (build (PLUS_EXPR, integer_type_node, save_area, build_int_2 (16, 0))); t = build1 (NOP_EXPR, ptr_type_node, save_area); u = build (ARRAY_REF, ptr_type_node, reg_field, build_int_2 (3, 0)); t = build (MODIFY_EXPR, ptr_type_node, u, t); TREE_SIDE_EFFECTS (t) = 1; expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL); /* Set __va_num. */ t = build_int_2 (current_function_args_info.num, 0); t = build (MODIFY_EXPR, TREE_TYPE (num_field), num_field, t); TREE_SIDE_EFFECTS (t) = 1; expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL); } rtx clipper_va_arg (valist, type) tree valist, type; { tree ap_field, reg_field, num_field; tree addr, t; HOST_WIDE_INT align; rtx addr_rtx, over_label = NULL_RTX, tr; /* Integers: if (VA.__va_num < 2) addr = VA.__va_reg[2 * VA.__va_num]; else addr = round(VA.__va_ap), VA.__va_ap = round(VA.__va_ap) + sizeof(TYPE); VA.__va_num++; Floats: if (VA.__va_num < 2) addr = VA.__va_reg[2 * VA.__va_num + 1]; else addr = round(VA.__va_ap), VA.__va_ap = round(VA.__va_ap) + sizeof(TYPE); VA.__va_num++; Aggregates: addr = round(VA.__va_ap), VA.__va_ap = round(VA.__va_ap) + sizeof(TYPE); VA.__va_num++; */ ap_field = TYPE_FIELDS (TREE_TYPE (valist)); reg_field = TREE_CHAIN (ap_field); num_field = TREE_CHAIN (reg_field); ap_field = build (COMPONENT_REF, TREE_TYPE (ap_field), valist, ap_field); reg_field = build (COMPONENT_REF, TREE_TYPE (reg_field), valist, reg_field); num_field = build (COMPONENT_REF, TREE_TYPE (num_field), valist, num_field); addr_rtx = gen_reg_rtx (Pmode); if (! AGGREGATE_TYPE_P (type)) { tree inreg; rtx false_label; over_label = gen_label_rtx (); false_label = gen_label_rtx (); emit_cmp_and_jump_insns (expand_expr (num_field, NULL_RTX, 0, OPTAB_LIB_WIDEN), GEN_INT (2), GE, const0_rtx, TYPE_MODE (TREE_TYPE (num_field)), TREE_UNSIGNED (num_field), 0, false_label); inreg = fold (build (MULT_EXPR, integer_type_node, num_field, build_int_2 (2, 0))); if (FLOAT_TYPE_P (type)) inreg = fold (build (PLUS_EXPR, integer_type_node, inreg, build_int_2 (1, 0))); inreg = fold (build (ARRAY_REF, ptr_type_node, reg_field, inreg)); tr = expand_expr (inreg, addr_rtx, VOIDmode, EXPAND_NORMAL); if (tr != addr_rtx) emit_move_insn (addr_rtx, tr); emit_jump_insn (gen_jump (over_label)); emit_barrier (); emit_label (false_label); } /* Round to alignment of `type', or at least integer alignment. */ align = TYPE_ALIGN (type); if (align < TYPE_ALIGN (integer_type_node)) align = TYPE_ALIGN (integer_type_node); align /= BITS_PER_UNIT; addr = fold (build (PLUS_EXPR, ptr_type_node, ap_field, build_int_2 (align-1, 0))); addr = fold (build (BIT_AND_EXPR, ptr_type_node, addr, build_int_2 (-align, -1))); addr = save_expr (addr); tr = expand_expr (addr, addr_rtx, Pmode, EXPAND_NORMAL); if (tr != addr_rtx) emit_move_insn (addr_rtx, tr); t = build (MODIFY_EXPR, TREE_TYPE (ap_field), ap_field, build (PLUS_EXPR, TREE_TYPE (ap_field), addr, build_int_2 (int_size_in_bytes (type), 0))); TREE_SIDE_EFFECTS (t) = 1; expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL); if (over_label) emit_label (over_label); t = build (MODIFY_EXPR, TREE_TYPE (num_field), num_field, build (PLUS_EXPR, TREE_TYPE (num_field), num_field, build_int_2 (1, 0))); TREE_SIDE_EFFECTS (t) = 1; expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL); return addr_rtx; } /* Return truth value of whether OP can be used as an word register operand. Reject (SUBREG:SI (REG:SF )) */ int int_reg_operand (op, mode) rtx op; enum machine_mode mode; { return (register_operand (op, mode) && (GET_CODE (op) != SUBREG || GET_MODE_CLASS (GET_MODE (SUBREG_REG (op))) == MODE_INT)); } /* Return truth value of whether OP can be used as a float register operand. Reject (SUBREG:SF (REG:SI )) )) */ int fp_reg_operand (op, mode) rtx op; enum machine_mode mode; { return (register_operand (op, mode) && (GET_CODE (op) != SUBREG || GET_MODE_CLASS (GET_MODE (SUBREG_REG (op))) == MODE_FLOAT)); }