// Methods for type_info for -*- C++ -*- Run Time Type Identification. // Copyright (C) 1994, 1996, 1998, 1999, 2000 Free Software Foundation // This file is part of GNU CC. // GNU CC is free software; you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation; either version 2, or (at your option) // any later version. // GNU CC is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with GNU CC; see the file COPYING. If not, write to // the Free Software Foundation, 59 Temple Place - Suite 330, // Boston, MA 02111-1307, USA. // As a special exception, you may use this file as part of a free software // library without restriction. Specifically, if other files instantiate // templates or use macros or inline functions from this file, or you compile // this file and link it with other files to produce an executable, this // file does not by itself cause the resulting executable to be covered by // the GNU General Public License. This exception does not however // invalidate any other reasons why the executable file might be covered by // the GNU General Public License. #pragma implementation "typeinfo" #include #include "tinfo.h" #include "new" // for placement new // This file contains the minimal working set necessary to link with code // that uses virtual functions and -frtti but does not actually use RTTI // functionality. std::type_info:: ~type_info () { } #if !__GXX_MERGED_TYPEINFO_NAMES // We can't rely on common symbols being shared between shared objects. bool std::type_info:: operator== (const std::type_info& arg) const { return (&arg == this) || (__builtin_strcmp (name (), arg.name ()) == 0); } #endif #if !defined(__GXX_ABI_VERSION) || __GXX_ABI_VERSION < 100 // original (old) abi namespace { // ADDR is a pointer to an object. Convert it to a pointer to a base, // using OFFSET. inline void* convert_to_base (void *addr, bool is_virtual, myint32 offset) { if (!addr) return NULL; if (!is_virtual) return (char *) addr + offset; // Under the old ABI, the offset gives us the address of a pointer // to the virtual base. return *((void **) ((char *) addr + offset)); } } extern "C" void __rtti_class (void *addr, const char *name, const __class_type_info::base_info *bl, std::size_t bn) { new (addr) __class_type_info (name, bl, bn); } extern "C" void __rtti_si (void *addr, const char *n, const std::type_info *ti) { new (addr) __si_type_info (n, static_cast (*ti)); } extern "C" void __rtti_user (void *addr, const char *name) { new (addr) __user_type_info (name); } // Upcast for catch checking. OBJPTR points to the thrown object and might be // NULL. Return 0 on failure, non-zero on success. Set *ADJPTR to adjusted // object pointer. int __user_type_info:: upcast (const type_info &target, void *objptr, void **adjptr) const { upcast_result result; if (do_upcast (contained_public, target, objptr, result)) return 0; *adjptr = result.target_obj; return contained_public_p (result.whole2target); } // Down or cross cast for dynamic_cast. OBJPTR points to the most derrived // object, SUBPTR points to the static base object. Both must not be NULL. // TARGET specifies the desired target type, SUBTYPE specifies the static // type. Both must be defined. Returns adjusted object pointer on success, // NULL on failure. [expr.dynamic.cast]/8 says 'unambiguous public base'. This // itself is an ambiguous statement. We choose it to mean the base must be // separately unambiguous and public, rather than unambiguous considering only // public bases. void *__user_type_info:: dyncast (int boff, const type_info &target, void *objptr, const type_info &subtype, void *subptr) const { dyncast_result result; do_dyncast (boff, contained_public, target, objptr, subtype, subptr, result); if (!result.target_obj) return NULL; if (contained_public_p (result.target2sub)) return result.target_obj; if (contained_public_p (sub_kind (result.whole2sub & result.whole2target))) // Found a valid cross cast return result.target_obj; if (contained_nonvirtual_p (result.whole2sub)) // Found an invalid cross cast, which cannot also be a down cast return NULL; if (result.target2sub == unknown) result.target2sub = static_cast (target) .find_public_subobj (boff, subtype, result.target_obj, subptr); if (contained_public_p (result.target2sub)) // Found a valid down cast return result.target_obj; // Must be an invalid down cast, or the cross cast wasn't bettered return NULL; } // Catch cast helper. ACCESS_PATH is the access from the complete thrown // object to this base. TARGET is the desired type we want to catch. OBJPTR // points to this base within the throw object, it might be NULL. Fill in // RESULT with what we find. Return true, should we determine catch must fail. bool __user_type_info:: do_upcast (sub_kind access_path, const type_info &target, void *objptr, upcast_result &__restrict result) const { if (*this == target) { result.target_obj = objptr; result.base_type = nonvirtual_base_type; result.whole2target = access_path; return contained_nonpublic_p (access_path); } return false; } // dynamic cast helper. ACCESS_PATH gives the access from the most derived // object to this base. TARGET indicates the desired type we want. OBJPTR // points to this base within the object. SUBTYPE indicates the static type // started from and SUBPTR points to that base within the most derived object. // Fill in RESULT with what we find. Return true if we have located an // ambiguous match. bool __user_type_info:: do_dyncast (int, sub_kind access_path, const type_info &target, void *objptr, const type_info &subtype, void *subptr, dyncast_result &__restrict result) const { if (objptr == subptr && *this == subtype) { // The subobject we started from. Indicate how we are accessible from // the most derived object. result.whole2sub = access_path; return false; } if (*this == target) { result.target_obj = objptr; result.whole2target = access_path; result.target2sub = not_contained; return false; } return false; } // find_public_subobj helper. Return contained_public if we are the desired // subtype. OBJPTR points to this base type, SUBPTR points to the desired base // object. __user_type_info::sub_kind __user_type_info:: do_find_public_subobj (int, const type_info &, void *objptr, void *subptr) const { if (subptr == objptr) // Must be our type, as the pointers match. return contained_public; return not_contained; } // catch helper for single public inheritance types. See // __user_type_info::do_upcast for semantics. bool __si_type_info:: do_upcast (sub_kind access_path, const type_info &target, void *objptr, upcast_result &__restrict result) const { if (*this == target) { result.target_obj = objptr; result.base_type = nonvirtual_base_type; result.whole2target = access_path; return contained_nonpublic_p (access_path); } return base.do_upcast (access_path, target, objptr, result); } // dynamic cast helper for single public inheritance types. See // __user_type_info::do_dyncast for semantics. BOFF indicates how SUBTYPE // types are inherited by TARGET types. bool __si_type_info:: do_dyncast (int boff, sub_kind access_path, const type_info &target, void *objptr, const type_info &subtype, void *subptr, dyncast_result &__restrict result) const { if (objptr == subptr && *this == subtype) { // The subobject we started from. Indicate how we are accessible from // the most derived object. result.whole2sub = access_path; return false; } if (*this == target) { result.target_obj = objptr; result.whole2target = access_path; if (boff >= 0) result.target2sub = ((char *)subptr - (char *)objptr) == boff ? contained_public : not_contained; else if (boff == -2) result.target2sub = not_contained; return false; } return base.do_dyncast (boff, access_path, target, objptr, subtype, subptr, result); } // find_public_subobj helper. See __user_type_info::do_find_public_subobj or // semantics. BOFF indicates how SUBTYPE types are inherited by the original // target object. __user_type_info::sub_kind __si_type_info:: do_find_public_subobj (int boff, const type_info &subtype, void *objptr, void *subptr) const { if (subptr == objptr && subtype == *this) return contained_public; return base.do_find_public_subobj (boff, subtype, objptr, subptr); } // catch helper for multiple or non-public inheritance types. See // __user_type_info::do_upcast for semantics. bool __class_type_info:: do_upcast (sub_kind access_path, const type_info &target, void *objptr, upcast_result &__restrict result) const { if (*this == target) { result.target_obj = objptr; result.base_type = nonvirtual_base_type; result.whole2target = access_path; return contained_nonpublic_p (access_path); } for (std::size_t i = n_bases; i--;) { upcast_result result2; void *p = objptr; sub_kind sub_access = access_path; p = convert_to_base (p, base_list[i].is_virtual, base_list[i].offset); if (base_list[i].is_virtual) sub_access = sub_kind (sub_access | contained_virtual_mask); if (base_list[i].access != PUBLIC) sub_access = sub_kind (sub_access & ~contained_public_mask); if (base_list[i].base->do_upcast (sub_access, target, p, result2) && !contained_virtual_p (result2.whole2target)) return true; // must fail if (result2.base_type) { if (result2.base_type == nonvirtual_base_type && base_list[i].is_virtual) result2.base_type = base_list[i].base; if (!result.base_type) result = result2; else if (result.target_obj != result2.target_obj) { // Found an ambiguity. result.target_obj = NULL; result.whole2target = contained_ambig; return true; } else if (result.target_obj) { // Ok, found real object via a virtual path. result.whole2target = sub_kind (result.whole2target | result2.whole2target); } else { // Dealing with a null pointer, need to check vbase // containing each of the two choices. if (result2.base_type == nonvirtual_base_type || result.base_type == nonvirtual_base_type || !(*result2.base_type == *result.base_type)) { // Already ambiguous, not virtual or via different virtuals. // Cannot match. result.whole2target = contained_ambig; return true; } result.whole2target = sub_kind (result.whole2target | result2.whole2target); } } } return false; } // dynamic cast helper for non-public or multiple inheritance types. See // __user_type_info::do_dyncast for overall semantics. // This is a big hairy function. Although the run-time behaviour of // dynamic_cast is simple to describe, it gives rise to some non-obvious // behaviour. We also desire to determine as early as possible any definite // answer we can get. Because it is unknown what the run-time ratio of // succeeding to failing dynamic casts is, we do not know in which direction // to bias any optimizations. To that end we make no particular effort towards // early fail answers or early success answers. Instead we try to minimize // work by filling in things lazily (when we know we need the information), // and opportunisticly take early success or failure results. bool __class_type_info:: do_dyncast (int boff, sub_kind access_path, const type_info &target, void *objptr, const type_info &subtype, void *subptr, dyncast_result &__restrict result) const { if (objptr == subptr && *this == subtype) { // The subobject we started from. Indicate how we are accessible from // the most derived object. result.whole2sub = access_path; return false; } if (*this == target) { result.target_obj = objptr; result.whole2target = access_path; if (boff >= 0) result.target2sub = ((char *)subptr - (char *)objptr) == boff ? contained_public : not_contained; else if (boff == -2) result.target2sub = not_contained; return false; } bool result_ambig = false; for (std::size_t i = n_bases; i--;) { dyncast_result result2; void *p; sub_kind sub_access = access_path; p = convert_to_base (objptr, base_list[i].is_virtual, base_list[i].offset); if (base_list[i].is_virtual) sub_access = sub_kind (sub_access | contained_virtual_mask); if (base_list[i].access != PUBLIC) sub_access = sub_kind (sub_access & ~contained_public_mask); bool result2_ambig = base_list[i].base->do_dyncast (boff, sub_access, target, p, subtype, subptr, result2); result.whole2sub = sub_kind (result.whole2sub | result2.whole2sub); if (result2.target2sub == contained_public || result2.target2sub == contained_ambig) { result.target_obj = result2.target_obj; result.whole2target = result2.whole2target; result.target2sub = result2.target2sub; // Found a downcast which can't be bettered or an ambiguous downcast // which can't be disambiguated return result2_ambig; } if (!result_ambig && !result.target_obj) { // Not found anything yet. result.target_obj = result2.target_obj; result.whole2target = result2.whole2target; result_ambig = result2_ambig; } else if (result.target_obj && result.target_obj == result2.target_obj) { // Found at same address, must be via virtual. Pick the most // accessible path. result.whole2target = sub_kind (result.whole2target | result2.whole2target); } else if ((result.target_obj && result2.target_obj) || (result_ambig && result2.target_obj) || (result2_ambig && result.target_obj)) { // Found two different TARGET bases, or a valid one and a set of // ambiguous ones, must disambiguate. See whether SUBOBJ is // contained publicly within one of the non-ambiguous choices. // If it is in only one, then that's the choice. If it is in // both, then we're ambiguous and fail. If it is in neither, // we're ambiguous, but don't yet fail as we might later find a // third base which does contain SUBPTR. sub_kind new_sub_kind = result2.target2sub; sub_kind old_sub_kind = result.target2sub; if (contained_nonvirtual_p (result.whole2sub)) { // We already found SUBOBJ as a non-virtual base of most // derived. Therefore if it is in either choice, it can only be // in one of them, and we will already know. if (old_sub_kind == unknown) old_sub_kind = not_contained; if (new_sub_kind == unknown) new_sub_kind = not_contained; } else { const __user_type_info &t = static_cast (target); if (old_sub_kind >= not_contained) ;// already calculated else if (contained_nonvirtual_p (new_sub_kind)) // Already found non-virtually inside the other choice, // cannot be in this. old_sub_kind = not_contained; else old_sub_kind = t.find_public_subobj (boff, subtype, result.target_obj, subptr); if (new_sub_kind >= not_contained) ;// already calculated else if (contained_nonvirtual_p (old_sub_kind)) // Already found non-virtually inside the other choice, // cannot be in this. new_sub_kind = not_contained; else new_sub_kind = t.find_public_subobj (boff, subtype, result2.target_obj, subptr); } // Neither sub_kind can be contained_ambig -- we bail out early // when we find those. if (contained_p (sub_kind (new_sub_kind ^ old_sub_kind))) { // Only on one choice, not ambiguous. if (contained_p (new_sub_kind)) { // Only in new. result.target_obj = result2.target_obj; result.whole2target = result2.whole2target; result_ambig = false; old_sub_kind = new_sub_kind; } result.target2sub = old_sub_kind; if (result.target2sub == contained_public) return false; // Can't be an ambiguating downcast for later discovery. } else if (contained_p (sub_kind (new_sub_kind & old_sub_kind))) { // In both. result.target_obj = NULL; result.target2sub = contained_ambig; return true; // Fail. } else { // In neither publicly, ambiguous for the moment, but keep // looking. It is possible that it was private in one or // both and therefore we should fail, but that's just tough. result.target_obj = NULL; result.target2sub = not_contained; result_ambig = true; } } if (result.whole2sub == contained_private) // We found SUBOBJ as a private non-virtual base, therefore all // cross casts will fail. We have already found a down cast, if // there is one. return result_ambig; } return result_ambig; } // find_public_subobj helper for non-public or multiple inheritance types. See // __user_type_info::do_find_public_subobj for semantics. We make use of BOFF // to prune the base class walk. __user_type_info::sub_kind __class_type_info:: do_find_public_subobj (int boff, const type_info &subtype, void *objptr, void *subptr) const { if (objptr == subptr && subtype == *this) return contained_public; for (std::size_t i = n_bases; i--;) { if (base_list[i].access != PUBLIC) continue; // Not public, can't be here. void *p; if (base_list[i].is_virtual && boff == -3) // Not a virtual base, so can't be here. continue; p = convert_to_base (objptr, base_list[i].is_virtual, base_list[i].offset); sub_kind base_kind = base_list[i].base->do_find_public_subobj (boff, subtype, p, subptr); if (contained_p (base_kind)) { if (base_list[i].is_virtual) base_kind = sub_kind (base_kind | contained_virtual_mask); return base_kind; } } return not_contained; } #else // new abi namespace std { // return true if this is a type_info for a pointer type bool type_info:: __is_pointer_p () const { return false; } // return true if this is a type_info for a function type bool type_info:: __is_function_p () const { return false; } // try and catch a thrown object. bool type_info:: __do_catch (const type_info *thr_type, void **, unsigned) const { return *this == *thr_type; } // upcast from this type to the target. __class_type_info will override bool type_info:: __do_upcast (const abi::__class_type_info *, void **) const { return false; } }; namespace { using namespace std; using namespace abi; // initial part of a vtable, this structure is used with offsetof, so we don't // have to keep alignments consistent manually. struct vtable_prefix { ptrdiff_t whole_object; // offset to most derived object const __class_type_info *whole_type; // pointer to most derived type_info const void *origin; // what a class's vptr points to }; template inline const T * adjust_pointer (const void *base, ptrdiff_t offset) { return reinterpret_cast (reinterpret_cast (base) + offset); } // ADDR is a pointer to an object. Convert it to a pointer to a base, // using OFFSET. IS_VIRTUAL is true, if we are getting a virtual base. inline void const * convert_to_base (void const *addr, bool is_virtual, ptrdiff_t offset) { if (is_virtual) { const void *vtable = *static_cast (addr); offset = *adjust_pointer (vtable, offset); } return adjust_pointer (addr, offset); } // some predicate functions for __class_type_info::__sub_kind inline bool contained_p (__class_type_info::__sub_kind access_path) { return access_path >= __class_type_info::__contained_mask; } inline bool public_p (__class_type_info::__sub_kind access_path) { return access_path & __class_type_info::__contained_public_mask; } inline bool virtual_p (__class_type_info::__sub_kind access_path) { return (access_path & __class_type_info::__contained_virtual_mask); } inline bool contained_public_p (__class_type_info::__sub_kind access_path) { return ((access_path & __class_type_info::__contained_public) == __class_type_info::__contained_public); } inline bool contained_nonpublic_p (__class_type_info::__sub_kind access_path) { return ((access_path & __class_type_info::__contained_public) == __class_type_info::__contained_mask); } inline bool contained_nonvirtual_p (__class_type_info::__sub_kind access_path) { return ((access_path & (__class_type_info::__contained_mask | __class_type_info::__contained_virtual_mask)) == __class_type_info::__contained_mask); } static const __class_type_info *const nonvirtual_base_type = static_cast (0) + 1; }; // namespace namespace __cxxabiv1 { __class_type_info:: ~__class_type_info () {} __si_class_type_info:: ~__si_class_type_info () {} __vmi_class_type_info:: ~__vmi_class_type_info () {} // __upcast_result is used to hold information during traversal of a class // heirarchy when catch matching. struct __class_type_info::__upcast_result { const void *dst_ptr; // pointer to caught object __sub_kind part2dst; // path from current base to target int src_details; // hints about the source type heirarchy const __class_type_info *base_type; // where we found the target, // if in vbase the __class_type_info of vbase // if a non-virtual base then 1 // else NULL public: __upcast_result (int d) :dst_ptr (NULL), part2dst (__unknown), src_details (d), base_type (NULL) {} }; // __dyncast_result is used to hold information during traversal of a class // heirarchy when dynamic casting. struct __class_type_info::__dyncast_result { const void *dst_ptr; // pointer to target object or NULL __sub_kind whole2dst; // path from most derived object to target __sub_kind whole2src; // path from most derived object to sub object __sub_kind dst2src; // path from target to sub object int whole_details; // details of the whole class heirarchy public: __dyncast_result (int details_ = __vmi_class_type_info::__flags_unknown_mask) :dst_ptr (NULL), whole2dst (__unknown), whole2src (__unknown), dst2src (__unknown), whole_details (details_) {} }; bool __class_type_info:: __do_catch (const type_info *thr_type, void **thr_obj, unsigned outer) const { if (*this == *thr_type) return true; if (outer >= 4) // Neither `A' nor `A *'. return false; return thr_type->__do_upcast (this, thr_obj); } bool __class_type_info:: __do_upcast (const __class_type_info *dst_type, void **obj_ptr) const { __upcast_result result (__vmi_class_type_info::__flags_unknown_mask); __do_upcast (dst_type, *obj_ptr, result); if (!contained_public_p (result.part2dst)) return false; *obj_ptr = const_cast (result.dst_ptr); return true; } inline __class_type_info::__sub_kind __class_type_info:: __find_public_src (ptrdiff_t src2dst, const void *obj_ptr, const __class_type_info *src_type, const void *src_ptr) const { if (src2dst >= 0) return adjust_pointer (obj_ptr, src2dst) == src_ptr ? __contained_public : __not_contained; if (src2dst == -2) return __not_contained; return __do_find_public_src (src2dst, obj_ptr, src_type, src_ptr); } __class_type_info::__sub_kind __class_type_info:: __do_find_public_src (ptrdiff_t, const void *obj_ptr, const __class_type_info *, const void *src_ptr) const { if (src_ptr == obj_ptr) // Must be our type, as the pointers match. return __contained_public; return __not_contained; } __class_type_info::__sub_kind __si_class_type_info:: __do_find_public_src (ptrdiff_t src2dst, const void *obj_ptr, const __class_type_info *src_type, const void *src_ptr) const { if (src_ptr == obj_ptr && *this == *src_type) return __contained_public; return __base_type->__do_find_public_src (src2dst, obj_ptr, src_type, src_ptr); } __class_type_info::__sub_kind __vmi_class_type_info:: __do_find_public_src (ptrdiff_t src2dst, const void *obj_ptr, const __class_type_info *src_type, const void *src_ptr) const { if (obj_ptr == src_ptr && *this == *src_type) return __contained_public; for (std::size_t i = __base_count; i--;) { if (!__base_info[i].__is_public_p ()) continue; // Not public, can't be here. const void *base = obj_ptr; ptrdiff_t offset = __base_info[i].__offset (); bool is_virtual = __base_info[i].__is_virtual_p (); if (is_virtual) { if (src2dst == -3) continue; // Not a virtual base, so can't be here. } base = convert_to_base (base, is_virtual, offset); __sub_kind base_kind = __base_info[i].__base->__do_find_public_src (src2dst, base, src_type, src_ptr); if (contained_p (base_kind)) { if (is_virtual) base_kind = __sub_kind (base_kind | __contained_virtual_mask); return base_kind; } } return __not_contained; } bool __class_type_info:: __do_dyncast (ptrdiff_t, __sub_kind access_path, const __class_type_info *dst_type, const void *obj_ptr, const __class_type_info *src_type, const void *src_ptr, __dyncast_result &__restrict result) const { if (obj_ptr == src_ptr && *this == *src_type) { // The src object we started from. Indicate how we are accessible from // the most derived object. result.whole2src = access_path; return false; } if (*this == *dst_type) { result.dst_ptr = obj_ptr; result.whole2dst = access_path; result.dst2src = __not_contained; return false; } return false; } bool __si_class_type_info:: __do_dyncast (ptrdiff_t src2dst, __sub_kind access_path, const __class_type_info *dst_type, const void *obj_ptr, const __class_type_info *src_type, const void *src_ptr, __dyncast_result &__restrict result) const { if (*this == *dst_type) { result.dst_ptr = obj_ptr; result.whole2dst = access_path; if (src2dst >= 0) result.dst2src = adjust_pointer (obj_ptr, src2dst) == src_ptr ? __contained_public : __not_contained; else if (src2dst == -2) result.dst2src = __not_contained; return false; } if (obj_ptr == src_ptr && *this == *src_type) { // The src object we started from. Indicate how we are accessible from // the most derived object. result.whole2src = access_path; return false; } return __base_type->__do_dyncast (src2dst, access_path, dst_type, obj_ptr, src_type, src_ptr, result); } // This is a big hairy function. Although the run-time behaviour of // dynamic_cast is simple to describe, it gives rise to some non-obvious // behaviour. We also desire to determine as early as possible any definite // answer we can get. Because it is unknown what the run-time ratio of // succeeding to failing dynamic casts is, we do not know in which direction // to bias any optimizations. To that end we make no particular effort towards // early fail answers or early success answers. Instead we try to minimize // work by filling in things lazily (when we know we need the information), // and opportunisticly take early success or failure results. bool __vmi_class_type_info:: __do_dyncast (ptrdiff_t src2dst, __sub_kind access_path, const __class_type_info *dst_type, const void *obj_ptr, const __class_type_info *src_type, const void *src_ptr, __dyncast_result &__restrict result) const { if (result.whole_details & __flags_unknown_mask) result.whole_details = __flags; if (obj_ptr == src_ptr && *this == *src_type) { // The src object we started from. Indicate how we are accessible from // the most derived object. result.whole2src = access_path; return false; } if (*this == *dst_type) { result.dst_ptr = obj_ptr; result.whole2dst = access_path; if (src2dst >= 0) result.dst2src = adjust_pointer (obj_ptr, src2dst) == src_ptr ? __contained_public : __not_contained; else if (src2dst == -2) result.dst2src = __not_contained; return false; } bool result_ambig = false; for (std::size_t i = __base_count; i--;) { __dyncast_result result2 (result.whole_details); void const *base = obj_ptr; __sub_kind base_access = access_path; ptrdiff_t offset = __base_info[i].__offset (); bool is_virtual = __base_info[i].__is_virtual_p (); if (is_virtual) base_access = __sub_kind (base_access | __contained_virtual_mask); base = convert_to_base (base, is_virtual, offset); if (!__base_info[i].__is_public_p ()) { if (src2dst == -2 && !(result.whole_details & (__non_diamond_repeat_mask | __diamond_shaped_mask))) // The hierarchy has no duplicate bases (which might ambiguate // things) and where we started is not a public base of what we // want (so it cannot be a downcast). There is nothing of interest // hiding in a non-public base. continue; base_access = __sub_kind (base_access & ~__contained_public_mask); } bool result2_ambig = __base_info[i].__base->__do_dyncast (src2dst, base_access, dst_type, base, src_type, src_ptr, result2); result.whole2src = __sub_kind (result.whole2src | result2.whole2src); if (result2.dst2src == __contained_public || result2.dst2src == __contained_ambig) { result.dst_ptr = result2.dst_ptr; result.whole2dst = result2.whole2dst; result.dst2src = result2.dst2src; // Found a downcast which can't be bettered or an ambiguous downcast // which can't be disambiguated return result2_ambig; } if (!result_ambig && !result.dst_ptr) { // Not found anything yet. result.dst_ptr = result2.dst_ptr; result.whole2dst = result2.whole2dst; result_ambig = result2_ambig; if (result.dst_ptr && result.whole2src != __unknown && !(__flags & __non_diamond_repeat_mask)) // Found dst and src and we don't have repeated bases. return result_ambig; } else if (result.dst_ptr && result.dst_ptr == result2.dst_ptr) { // Found at same address, must be via virtual. Pick the most // accessible path. result.whole2dst = __sub_kind (result.whole2dst | result2.whole2dst); } else if ((result.dst_ptr != 0 | result_ambig) && (result2.dst_ptr != 0 | result2_ambig)) { // Found two different DST_TYPE bases, or a valid one and a set of // ambiguous ones, must disambiguate. See whether SRC_PTR is // contained publicly within one of the non-ambiguous choices. If it // is in only one, then that's the choice. If it is in both, then // we're ambiguous and fail. If it is in neither, we're ambiguous, // but don't yet fail as we might later find a third base which does // contain SRC_PTR. __sub_kind new_sub_kind = result2.dst2src; __sub_kind old_sub_kind = result.dst2src; if (contained_p (result.whole2src) && (!virtual_p (result.whole2src) || !(result.whole_details & __diamond_shaped_mask))) { // We already found SRC_PTR as a base of most derived, and // either it was non-virtual, or the whole heirarchy is // not-diamond shaped. Therefore if it is in either choice, it // can only be in one of them, and we will already know. if (old_sub_kind == __unknown) old_sub_kind = __not_contained; if (new_sub_kind == __unknown) new_sub_kind = __not_contained; } else { if (old_sub_kind >= __not_contained) ;// already calculated else if (contained_p (new_sub_kind) && (!virtual_p (new_sub_kind) || !(__flags & __diamond_shaped_mask))) // Already found inside the other choice, and it was // non-virtual or we are not diamond shaped. old_sub_kind = __not_contained; else old_sub_kind = dst_type->__find_public_src (src2dst, result.dst_ptr, src_type, src_ptr); if (new_sub_kind >= __not_contained) ;// already calculated else if (contained_p (old_sub_kind) && (!virtual_p (old_sub_kind) || !(__flags & __diamond_shaped_mask))) // Already found inside the other choice, and it was // non-virtual or we are not diamond shaped. new_sub_kind = __not_contained; else new_sub_kind = dst_type->__find_public_src (src2dst, result2.dst_ptr, src_type, src_ptr); } // Neither sub_kind can be contained_ambig -- we bail out early // when we find those. if (contained_p (__sub_kind (new_sub_kind ^ old_sub_kind))) { // Only on one choice, not ambiguous. if (contained_p (new_sub_kind)) { // Only in new. result.dst_ptr = result2.dst_ptr; result.whole2dst = result2.whole2dst; result_ambig = false; old_sub_kind = new_sub_kind; } result.dst2src = old_sub_kind; if (public_p (result.dst2src)) return false; // Can't be an ambiguating downcast for later discovery. if (!virtual_p (result.dst2src)) return false; // Found non-virtually can't be bettered } else if (contained_p (__sub_kind (new_sub_kind & old_sub_kind))) { // In both. result.dst_ptr = NULL; result.dst2src = __contained_ambig; return true; // Fail. } else { // In neither publicly, ambiguous for the moment, but keep // looking. It is possible that it was private in one or // both and therefore we should fail, but that's just tough. result.dst_ptr = NULL; result.dst2src = __not_contained; result_ambig = true; } } if (result.whole2src == __contained_private) // We found SRC_PTR as a private non-virtual base, therefore all // cross casts will fail. We have already found a down cast, if // there is one. return result_ambig; } return result_ambig; } bool __class_type_info:: __do_upcast (const __class_type_info *dst, const void *obj, __upcast_result &__restrict result) const { if (*this == *dst) { result.dst_ptr = obj; result.base_type = nonvirtual_base_type; result.part2dst = __contained_public; return true; } return false; } bool __si_class_type_info:: __do_upcast (const __class_type_info *dst, const void *obj_ptr, __upcast_result &__restrict result) const { if (__class_type_info::__do_upcast (dst, obj_ptr, result)) return true; return __base_type->__do_upcast (dst, obj_ptr, result); } bool __vmi_class_type_info:: __do_upcast (const __class_type_info *dst, const void *obj_ptr, __upcast_result &__restrict result) const { if (__class_type_info::__do_upcast (dst, obj_ptr, result)) return true; int src_details = result.src_details; if (src_details & __flags_unknown_mask) src_details = __flags; for (std::size_t i = __base_count; i--;) { __upcast_result result2 (src_details); const void *base = obj_ptr; ptrdiff_t offset = __base_info[i].__offset (); bool is_virtual = __base_info[i].__is_virtual_p (); bool is_public = __base_info[i].__is_public_p (); if (!is_public && !(src_details & __non_diamond_repeat_mask)) // original cannot have an ambiguous base, so skip private bases continue; if (base) base = convert_to_base (base, is_virtual, offset); if (__base_info[i].__base->__do_upcast (dst, base, result2)) { if (result2.base_type == nonvirtual_base_type && is_virtual) result2.base_type = __base_info[i].__base; if (contained_p (result2.part2dst) && !is_public) result2.part2dst = __sub_kind (result2.part2dst & ~__contained_public_mask); if (!result.base_type) { result = result2; if (!contained_p (result.part2dst)) return true; // found ambiguously if (result.part2dst & __contained_public_mask) { if (!(__flags & __non_diamond_repeat_mask)) return true; // cannot have an ambiguous other base } else { if (!virtual_p (result.part2dst)) return true; // cannot have another path if (!(__flags & __diamond_shaped_mask)) return true; // cannot have a more accessible path } } else if (result.dst_ptr != result2.dst_ptr) { // Found an ambiguity. result.dst_ptr = NULL; result.part2dst = __contained_ambig; return true; } else if (result.dst_ptr) { // Ok, found real object via a virtual path. result.part2dst = __sub_kind (result.part2dst | result2.part2dst); } else { // Dealing with a null pointer, need to check vbase // containing each of the two choices. if (result2.base_type == nonvirtual_base_type || result.base_type == nonvirtual_base_type || !(*result2.base_type == *result.base_type)) { // Already ambiguous, not virtual or via different virtuals. // Cannot match. result.part2dst = __contained_ambig; return true; } result.part2dst = __sub_kind (result.part2dst | result2.part2dst); } } } return result.part2dst != __unknown; } // this is the external interface to the dynamic cast machinery extern "C" void * __dynamic_cast (const void *src_ptr, // object started from const __class_type_info *src_type, // type of the starting object const __class_type_info *dst_type, // desired target type ptrdiff_t src2dst) // how src and dst are related { const void *vtable = *static_cast (src_ptr); const vtable_prefix *prefix = adjust_pointer (vtable, -offsetof (vtable_prefix, origin)); const void *whole_ptr = adjust_pointer (src_ptr, prefix->whole_object); const __class_type_info *whole_type = prefix->whole_type; __class_type_info::__dyncast_result result; whole_type->__do_dyncast (src2dst, __class_type_info::__contained_public, dst_type, whole_ptr, src_type, src_ptr, result); if (!result.dst_ptr) return NULL; if (contained_public_p (result.dst2src)) // Src is known to be a public base of dst. return const_cast (result.dst_ptr); if (contained_public_p (__class_type_info::__sub_kind (result.whole2src & result.whole2dst))) // Both src and dst are known to be public bases of whole. Found a valid // cross cast. return const_cast (result.dst_ptr); if (contained_nonvirtual_p (result.whole2src)) // Src is known to be a non-public nonvirtual base of whole, and not a // base of dst. Found an invalid cross cast, which cannot also be a down // cast return NULL; if (result.dst2src == __class_type_info::__unknown) result.dst2src = dst_type->__find_public_src (src2dst, result.dst_ptr, src_type, src_ptr); if (contained_public_p (result.dst2src)) // Found a valid down cast return const_cast (result.dst_ptr); // Must be an invalid down cast, or the cross cast wasn't bettered return NULL; } }; // namespace __cxxabiv1 #endif