;; GCC machine description for Intel X86. ;; Copyright (C) 1988, 1994 Free Software Foundation, Inc. ;; Mostly by William Schelter. ;; This file is part of GNU CC. ;; GNU CC is free software; you can redistribute it and/or modify ;; it under the terms of the GNU General Public License as published by ;; the Free Software Foundation; either version 2, or (at your option) ;; any later version. ;; GNU CC is distributed in the hope that it will be useful, ;; but WITHOUT ANY WARRANTY; without even the implied warranty of ;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ;; GNU General Public License for more details. ;; You should have received a copy of the GNU General Public License ;; along with GNU CC; see the file COPYING. If not, write to ;; the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. ;; The original PO technology requires these to be ordered by speed, ;; so that assigner will pick the fastest. ;; See file "rtl.def" for documentation on define_insn, match_*, et. al. ;; Macro #define NOTICE_UPDATE_CC in file i386.h handles condition code ;; updates for most instructions. ;; Macro REG_CLASS_FROM_LETTER in file i386.h defines the register ;; constraint letters. ;; the special asm out single letter directives following a '%' are: ;; 'z' mov%z1 would be movl, movw, or movb depending on the mode of ;; operands[1]. ;; 'L' Print the opcode suffix for a 32-bit integer opcode. ;; 'W' Print the opcode suffix for a 16-bit integer opcode. ;; 'B' Print the opcode suffix for an 8-bit integer opcode. ;; 'S' Print the opcode suffix for a 32-bit float opcode. ;; 'Q' Print the opcode suffix for a 64-bit float opcode. ;; 'b' Print the QImode name of the register for the indicated operand. ;; %b0 would print %al if operands[0] is reg 0. ;; 'w' Likewise, print the HImode name of the register. ;; 'k' Likewise, print the SImode name of the register. ;; 'h' Print the QImode name for a "high" register, either ah, bh, ch or dh. ;; 'y' Print "st(0)" instead of "st" as a register. ;; 'T' Print the opcode suffix for an 80-bit extended real XFmode float opcode. ;; UNSPEC usage: ;; 0 This is a `scas' operation. The mode of the UNSPEC is always SImode. ;; operand 0 is the memory address to scan. ;; operand 1 is a register containing the value to scan for. The mode ;; of the scas opcode will be the same as the mode of this operand. ;; operand 2 is the known alignment of operand 0. ;; 1 This is a `sin' operation. The mode of the UNSPEC is MODE_FLOAT. ;; operand 0 is the argument for `sin'. ;; 2 This is a `cos' operation. The mode of the UNSPEC is MODE_FLOAT. ;; operand 0 is the argument for `cos'. ;; "movl MEM,REG / testl REG,REG" is faster on a 486 than "cmpl $0,MEM". ;; But restricting MEM here would mean that gcc could not remove a redundant ;; test in cases like "incl MEM / je TARGET". ;; ;; We don't want to allow a constant operand for test insns because ;; (set (cc0) (const_int foo)) has no mode information. Such insns will ;; be folded while optimizing anyway. ;; All test insns have expanders that save the operands away without ;; actually generating RTL. The bCOND or sCOND (emitted immediately ;; after the tstM or cmp) will actually emit the tstM or cmpM. (define_insn "tstsi_1" [(set (cc0) (match_operand:SI 0 "nonimmediate_operand" "rm"))] "" "* { if (REG_P (operands[0])) return AS2 (test%L0,%0,%0); operands[1] = const0_rtx; return AS2 (cmp%L0,%1,%0); }") (define_expand "tstsi" [(set (cc0) (match_operand:SI 0 "nonimmediate_operand" ""))] "" " { i386_compare_gen = gen_tstsi_1; i386_compare_op0 = operands[0]; DONE; }") (define_insn "tsthi_1" [(set (cc0) (match_operand:HI 0 "nonimmediate_operand" "rm"))] "" "* { if (REG_P (operands[0])) return AS2 (test%W0,%0,%0); operands[1] = const0_rtx; return AS2 (cmp%W0,%1,%0); }") (define_expand "tsthi" [(set (cc0) (match_operand:HI 0 "nonimmediate_operand" ""))] "" " { i386_compare_gen = gen_tsthi_1; i386_compare_op0 = operands[0]; DONE; }") (define_insn "tstqi_1" [(set (cc0) (match_operand:QI 0 "nonimmediate_operand" "qm"))] "" "* { if (REG_P (operands[0])) return AS2 (test%B0,%0,%0); operands[1] = const0_rtx; return AS2 (cmp%B0,%1,%0); }") (define_expand "tstqi" [(set (cc0) (match_operand:QI 0 "nonimmediate_operand" ""))] "" " { i386_compare_gen = gen_tstqi_1; i386_compare_op0 = operands[0]; DONE; }") (define_insn "tstsf_cc" [(set (cc0) (match_operand:SF 0 "register_operand" "f")) (clobber (match_scratch:HI 1 "=a"))] "TARGET_80387 && ! TARGET_IEEE_FP" "* { if (! STACK_TOP_P (operands[0])) abort (); output_asm_insn (\"ftst\", operands); if (find_regno_note (insn, REG_DEAD, FIRST_STACK_REG)) output_asm_insn (AS1 (fstp,%y0), operands); return output_fp_cc0_set (insn); }") ;; Don't generate tstsf if generating IEEE code, since the `ftst' opcode ;; isn't IEEE compliant. (define_expand "tstsf" [(parallel [(set (cc0) (match_operand:SF 0 "register_operand" "")) (clobber (match_scratch:HI 1 ""))])] "TARGET_80387 && ! TARGET_IEEE_FP" " { i386_compare_gen = gen_tstsf_cc; i386_compare_op0 = operands[0]; DONE; }") (define_insn "tstdf_cc" [(set (cc0) (match_operand:DF 0 "register_operand" "f")) (clobber (match_scratch:HI 1 "=a"))] "TARGET_80387 && ! TARGET_IEEE_FP" "* { if (! STACK_TOP_P (operands[0])) abort (); output_asm_insn (\"ftst\", operands); if (find_regno_note (insn, REG_DEAD, FIRST_STACK_REG)) output_asm_insn (AS1 (fstp,%y0), operands); return output_fp_cc0_set (insn); }") ;; Don't generate tstdf if generating IEEE code, since the `ftst' opcode ;; isn't IEEE compliant. (define_expand "tstdf" [(parallel [(set (cc0) (match_operand:DF 0 "register_operand" "")) (clobber (match_scratch:HI 1 ""))])] "TARGET_80387 && ! TARGET_IEEE_FP" " { i386_compare_gen = gen_tstdf_cc; i386_compare_op0 = operands[0]; DONE; }") (define_insn "tstxf_cc" [(set (cc0) (match_operand:XF 0 "register_operand" "f")) (clobber (match_scratch:HI 1 "=a"))] "TARGET_80387 && ! TARGET_IEEE_FP" "* { if (! STACK_TOP_P (operands[0])) abort (); output_asm_insn (\"ftst\", operands); if (find_regno_note (insn, REG_DEAD, FIRST_STACK_REG)) output_asm_insn (AS1 (fstp,%y0), operands); return output_fp_cc0_set (insn); }") ;; Don't generate tstdf if generating IEEE code, since the `ftst' opcode ;; isn't IEEE compliant. (define_expand "tstxf" [(parallel [(set (cc0) (match_operand:XF 0 "register_operand" "")) (clobber (match_scratch:HI 1 ""))])] "TARGET_80387 && ! TARGET_IEEE_FP" " { i386_compare_gen = gen_tstxf_cc; i386_compare_op0 = operands[0]; DONE; }") ;;- compare instructions. See comments above tstM patterns about ;; expansion of these insns. (define_insn "cmpsi_1" [(set (cc0) (compare (match_operand:SI 0 "nonimmediate_operand" "mr,r") (match_operand:SI 1 "general_operand" "ri,mr")))] "GET_CODE (operands[0]) != MEM || GET_CODE (operands[1]) != MEM" "* { if (CONSTANT_P (operands[0]) || GET_CODE (operands[1]) == MEM) { cc_status.flags |= CC_REVERSED; return AS2 (cmp%L0,%0,%1); } return AS2 (cmp%L0,%1,%0); }") (define_expand "cmpsi" [(set (cc0) (compare (match_operand:SI 0 "nonimmediate_operand" "") (match_operand:SI 1 "general_operand" "")))] "" " { if (GET_CODE (operands[0]) == MEM && GET_CODE (operands[1]) == MEM) operands[0] = force_reg (SImode, operands[0]); i386_compare_gen = gen_cmpsi_1; i386_compare_op0 = operands[0]; i386_compare_op1 = operands[1]; DONE; }") (define_insn "cmphi_1" [(set (cc0) (compare (match_operand:HI 0 "nonimmediate_operand" "mr,r") (match_operand:HI 1 "general_operand" "ri,mr")))] "GET_CODE (operands[0]) != MEM || GET_CODE (operands[1]) != MEM" "* { if (CONSTANT_P (operands[0]) || GET_CODE (operands[1]) == MEM) { cc_status.flags |= CC_REVERSED; return AS2 (cmp%W0,%0,%1); } return AS2 (cmp%W0,%1,%0); }") (define_expand "cmphi" [(set (cc0) (compare (match_operand:HI 0 "nonimmediate_operand" "") (match_operand:HI 1 "general_operand" "")))] "" " { if (GET_CODE (operands[0]) == MEM && GET_CODE (operands[1]) == MEM) operands[0] = force_reg (HImode, operands[0]); i386_compare_gen = gen_cmphi_1; i386_compare_op0 = operands[0]; i386_compare_op1 = operands[1]; DONE; }") (define_insn "cmpqi_1" [(set (cc0) (compare (match_operand:QI 0 "nonimmediate_operand" "q,mq") (match_operand:QI 1 "general_operand" "qm,nq")))] "GET_CODE (operands[0]) != MEM || GET_CODE (operands[1]) != MEM" "* { if (CONSTANT_P (operands[0]) || GET_CODE (operands[1]) == MEM) { cc_status.flags |= CC_REVERSED; return AS2 (cmp%B0,%0,%1); } return AS2 (cmp%B0,%1,%0); }") (define_expand "cmpqi" [(set (cc0) (compare (match_operand:QI 0 "nonimmediate_operand" "") (match_operand:QI 1 "general_operand" "")))] "" " { if (GET_CODE (operands[0]) == MEM && GET_CODE (operands[1]) == MEM) operands[0] = force_reg (QImode, operands[0]); i386_compare_gen = gen_cmpqi_1; i386_compare_op0 = operands[0]; i386_compare_op1 = operands[1]; DONE; }") ;; These implement float point compares. For each of DFmode and ;; SFmode, there is the normal insn, and an insn where the second operand ;; is converted to the desired mode. (define_insn "" [(set (cc0) (match_operator 2 "VOIDmode_compare_op" [(match_operand:XF 0 "nonimmediate_operand" "f") (match_operand:XF 1 "nonimmediate_operand" "f")])) (clobber (match_scratch:HI 3 "=a"))] "TARGET_80387 && (GET_CODE (operands[0]) != MEM || GET_CODE (operands[1]) != MEM)" "* return output_float_compare (insn, operands);") (define_insn "" [(set (cc0) (match_operator 2 "VOIDmode_compare_op" [(match_operand:XF 0 "register_operand" "f") (float:XF (match_operand:SI 1 "nonimmediate_operand" "rm"))])) (clobber (match_scratch:HI 3 "=a"))] "TARGET_80387" "* return output_float_compare (insn, operands);") (define_insn "" [(set (cc0) (match_operator 2 "VOIDmode_compare_op" [(float:XF (match_operand:SI 0 "nonimmediate_operand" "rm")) (match_operand:XF 1 "register_operand" "f")])) (clobber (match_scratch:HI 3 "=a"))] "TARGET_80387" "* return output_float_compare (insn, operands);") (define_insn "" [(set (cc0) (match_operator 2 "VOIDmode_compare_op" [(match_operand:XF 0 "register_operand" "f") (float_extend:XF (match_operand:DF 1 "nonimmediate_operand" "fm"))])) (clobber (match_scratch:HI 3 "=a"))] "TARGET_80387" "* return output_float_compare (insn, operands);") (define_insn "" [(set (cc0) (match_operator 2 "VOIDmode_compare_op" [(match_operand:XF 0 "register_operand" "f") (float_extend:XF (match_operand:SF 1 "nonimmediate_operand" "fm"))])) (clobber (match_scratch:HI 3 "=a"))] "TARGET_80387" "* return output_float_compare (insn, operands);") (define_insn "" [(set (cc0) (compare:CCFPEQ (match_operand:XF 0 "register_operand" "f") (match_operand:XF 1 "register_operand" "f"))) (clobber (match_scratch:HI 2 "=a"))] "TARGET_80387" "* return output_float_compare (insn, operands);") (define_insn "" [(set (cc0) (match_operator 2 "VOIDmode_compare_op" [(match_operand:DF 0 "nonimmediate_operand" "f,fm") (match_operand:DF 1 "nonimmediate_operand" "fm,f")])) (clobber (match_scratch:HI 3 "=a,a"))] "TARGET_80387 && (GET_CODE (operands[0]) != MEM || GET_CODE (operands[1]) != MEM)" "* return output_float_compare (insn, operands);") (define_insn "" [(set (cc0) (match_operator 2 "VOIDmode_compare_op" [(match_operand:DF 0 "register_operand" "f") (float:DF (match_operand:SI 1 "nonimmediate_operand" "rm"))])) (clobber (match_scratch:HI 3 "=a"))] "TARGET_80387" "* return output_float_compare (insn, operands);") (define_insn "" [(set (cc0) (match_operator 2 "VOIDmode_compare_op" [(float:DF (match_operand:SI 0 "nonimmediate_operand" "rm")) (match_operand:DF 1 "register_operand" "f")])) (clobber (match_scratch:HI 3 "=a"))] "TARGET_80387" "* return output_float_compare (insn, operands);") (define_insn "" [(set (cc0) (match_operator 2 "VOIDmode_compare_op" [(match_operand:DF 0 "register_operand" "f") (float_extend:DF (match_operand:SF 1 "nonimmediate_operand" "fm"))])) (clobber (match_scratch:HI 3 "=a"))] "TARGET_80387" "* return output_float_compare (insn, operands);") (define_insn "" [(set (cc0) (match_operator 2 "VOIDmode_compare_op" [(float_extend:DF (match_operand:SF 0 "nonimmediate_operand" "fm")) (match_operand:DF 1 "register_operand" "f")])) (clobber (match_scratch:HI 3 "=a"))] "TARGET_80387" "* return output_float_compare (insn, operands);") (define_insn "" [(set (cc0) (compare:CCFPEQ (match_operand:DF 0 "register_operand" "f") (match_operand:DF 1 "register_operand" "f"))) (clobber (match_scratch:HI 2 "=a"))] "TARGET_80387" "* return output_float_compare (insn, operands);") ;; These two insns will never be generated by combine due to the mode of ;; the COMPARE. ;(define_insn "" ; [(set (cc0) ; (compare:CCFPEQ (match_operand:DF 0 "register_operand" "f") ; (float_extend:DF ; (match_operand:SF 1 "register_operand" "f")))) ; (clobber (match_scratch:HI 2 "=a"))] ; "TARGET_80387" ; "* return output_float_compare (insn, operands);") ; ;(define_insn "" ; [(set (cc0) ; (compare:CCFPEQ (float_extend:DF ; (match_operand:SF 0 "register_operand" "f")) ; (match_operand:DF 1 "register_operand" "f"))) ; (clobber (match_scratch:HI 2 "=a"))] ; "TARGET_80387" ; "* return output_float_compare (insn, operands);") (define_insn "cmpsf_cc_1" [(set (cc0) (match_operator 2 "VOIDmode_compare_op" [(match_operand:SF 0 "nonimmediate_operand" "f,fm") (match_operand:SF 1 "nonimmediate_operand" "fm,f")])) (clobber (match_scratch:HI 3 "=a,a"))] "TARGET_80387 && (GET_CODE (operands[0]) != MEM || GET_CODE (operands[1]) != MEM)" "* return output_float_compare (insn, operands);") (define_insn "" [(set (cc0) (match_operator 2 "VOIDmode_compare_op" [(match_operand:SF 0 "register_operand" "f") (float:SF (match_operand:SI 1 "nonimmediate_operand" "rm"))])) (clobber (match_scratch:HI 3 "=a"))] "TARGET_80387" "* return output_float_compare (insn, operands);") (define_insn "" [(set (cc0) (match_operator 2 "VOIDmode_compare_op" [(float:SF (match_operand:SI 0 "nonimmediate_operand" "rm")) (match_operand:SF 1 "register_operand" "f")])) (clobber (match_scratch:HI 3 "=a"))] "TARGET_80387" "* return output_float_compare (insn, operands);") (define_insn "" [(set (cc0) (compare:CCFPEQ (match_operand:SF 0 "register_operand" "f") (match_operand:SF 1 "register_operand" "f"))) (clobber (match_scratch:HI 2 "=a"))] "TARGET_80387" "* return output_float_compare (insn, operands);") (define_expand "cmpxf" [(set (cc0) (compare (match_operand:XF 0 "register_operand" "") (match_operand:XF 1 "nonimmediate_operand" "")))] "TARGET_80387" " { i386_compare_gen = gen_cmpxf_cc; i386_compare_gen_eq = gen_cmpxf_ccfpeq; i386_compare_op0 = operands[0]; i386_compare_op1 = operands[1]; DONE; }") (define_expand "cmpdf" [(set (cc0) (compare (match_operand:DF 0 "register_operand" "") (match_operand:DF 1 "nonimmediate_operand" "")))] "TARGET_80387" " { i386_compare_gen = gen_cmpdf_cc; i386_compare_gen_eq = gen_cmpdf_ccfpeq; i386_compare_op0 = operands[0]; i386_compare_op1 = operands[1]; DONE; }") (define_expand "cmpsf" [(set (cc0) (compare (match_operand:SF 0 "register_operand" "") (match_operand:SF 1 "nonimmediate_operand" "")))] "TARGET_80387" " { i386_compare_gen = gen_cmpsf_cc; i386_compare_gen_eq = gen_cmpsf_ccfpeq; i386_compare_op0 = operands[0]; i386_compare_op1 = operands[1]; DONE; }") (define_expand "cmpxf_cc" [(parallel [(set (cc0) (compare (match_operand:XF 0 "register_operand" "") (match_operand:XF 1 "register_operand" ""))) (clobber (match_scratch:HI 2 ""))])] "TARGET_80387" "") (define_expand "cmpxf_ccfpeq" [(parallel [(set (cc0) (compare:CCFPEQ (match_operand:XF 0 "register_operand" "") (match_operand:XF 1 "register_operand" ""))) (clobber (match_scratch:HI 2 ""))])] "TARGET_80387" " { if (! register_operand (operands[1], XFmode)) operands[1] = copy_to_mode_reg (XFmode, operands[1]); }") (define_expand "cmpdf_cc" [(parallel [(set (cc0) (compare (match_operand:DF 0 "register_operand" "") (match_operand:DF 1 "register_operand" ""))) (clobber (match_scratch:HI 2 ""))])] "TARGET_80387" "") (define_expand "cmpdf_ccfpeq" [(parallel [(set (cc0) (compare:CCFPEQ (match_operand:DF 0 "register_operand" "") (match_operand:DF 1 "register_operand" ""))) (clobber (match_scratch:HI 2 ""))])] "TARGET_80387" " { if (! register_operand (operands[1], DFmode)) operands[1] = copy_to_mode_reg (DFmode, operands[1]); }") (define_expand "cmpsf_cc" [(parallel [(set (cc0) (compare (match_operand:SF 0 "register_operand" "") (match_operand:SF 1 "register_operand" ""))) (clobber (match_scratch:HI 2 ""))])] "TARGET_80387" "") (define_expand "cmpsf_ccfpeq" [(parallel [(set (cc0) (compare:CCFPEQ (match_operand:SF 0 "register_operand" "") (match_operand:SF 1 "register_operand" ""))) (clobber (match_scratch:HI 2 ""))])] "TARGET_80387" " { if (! register_operand (operands[1], SFmode)) operands[1] = copy_to_mode_reg (SFmode, operands[1]); }") ;; logical compare (define_insn "" [(set (cc0) (and:SI (match_operand:SI 0 "general_operand" "%ro") (match_operand:SI 1 "general_operand" "ri")))] "" "* { /* For small integers, we may actually use testb. */ if (GET_CODE (operands[1]) == CONST_INT && ! (GET_CODE (operands[0]) == MEM && MEM_VOLATILE_P (operands[0])) && (! REG_P (operands[0]) || QI_REG_P (operands[0]))) { /* We may set the sign bit spuriously. */ if ((INTVAL (operands[1]) & ~0xff) == 0) { cc_status.flags |= CC_NOT_NEGATIVE; return AS2 (test%B0,%1,%b0); } if ((INTVAL (operands[1]) & ~0xff00) == 0) { cc_status.flags |= CC_NOT_NEGATIVE; operands[1] = GEN_INT (INTVAL (operands[1]) >> 8); if (QI_REG_P (operands[0])) return AS2 (test%B0,%1,%h0); else { operands[0] = adj_offsettable_operand (operands[0], 1); return AS2 (test%B0,%1,%b0); } } if (GET_CODE (operands[0]) == MEM && (INTVAL (operands[1]) & ~0xff0000) == 0) { cc_status.flags |= CC_NOT_NEGATIVE; operands[1] = GEN_INT (INTVAL (operands[1]) >> 16); operands[0] = adj_offsettable_operand (operands[0], 2); return AS2 (test%B0,%1,%b0); } if (GET_CODE (operands[0]) == MEM && (INTVAL (operands[1]) & ~0xff000000) == 0) { operands[1] = GEN_INT ((INTVAL (operands[1]) >> 24) & 0xff); operands[0] = adj_offsettable_operand (operands[0], 3); return AS2 (test%B0,%1,%b0); } } if (CONSTANT_P (operands[1]) || GET_CODE (operands[0]) == MEM) return AS2 (test%L0,%1,%0); return AS2 (test%L1,%0,%1); }") (define_insn "" [(set (cc0) (and:HI (match_operand:HI 0 "general_operand" "%ro") (match_operand:HI 1 "general_operand" "ri")))] "" "* { if (GET_CODE (operands[1]) == CONST_INT && ! (GET_CODE (operands[0]) == MEM && MEM_VOLATILE_P (operands[0])) && (! REG_P (operands[0]) || QI_REG_P (operands[0]))) { if ((INTVAL (operands[1]) & 0xff00) == 0) { /* ??? This might not be necessary. */ if (INTVAL (operands[1]) & 0xffff0000) operands[1] = GEN_INT (INTVAL (operands[1]) & 0xff); /* We may set the sign bit spuriously. */ cc_status.flags |= CC_NOT_NEGATIVE; return AS2 (test%B0,%1,%b0); } if ((INTVAL (operands[1]) & 0xff) == 0) { operands[1] = GEN_INT ((INTVAL (operands[1]) >> 8) & 0xff); if (QI_REG_P (operands[0])) return AS2 (test%B0,%1,%h0); else { operands[0] = adj_offsettable_operand (operands[0], 1); return AS2 (test%B0,%1,%b0); } } } if (CONSTANT_P (operands[1]) || GET_CODE (operands[0]) == MEM) return AS2 (test%W0,%1,%0); return AS2 (test%W1,%0,%1); }") (define_insn "" [(set (cc0) (and:QI (match_operand:QI 0 "general_operand" "%qm") (match_operand:QI 1 "general_operand" "qi")))] "" "* { if (CONSTANT_P (operands[1]) || GET_CODE (operands[0]) == MEM) return AS2 (test%B0,%1,%0); return AS2 (test%B1,%0,%1); }") ;; move instructions. ;; There is one for each machine mode, ;; and each is preceded by a corresponding push-insn pattern ;; (since pushes are not general_operands on the 386). (define_insn "" [(set (match_operand:SI 0 "push_operand" "=<") (match_operand:SI 1 "general_operand" "g"))] "TARGET_386" "push%L0 %1") ;; On a 486, it is faster to move MEM to a REG and then push, rather than ;; push MEM directly. (define_insn "" [(set (match_operand:SI 0 "push_operand" "=<") (match_operand:SI 1 "nonmemory_operand" "ri"))] "!TARGET_386 && TARGET_MOVE" "push%L0 %1") (define_insn "" [(set (match_operand:SI 0 "push_operand" "=<") (match_operand:SI 1 "general_operand" "ri"))] "!TARGET_386 && !TARGET_MOVE" "push%L0 %1") ;; General case of fullword move. ;; If generating PIC code and operands[1] is a symbolic CONST, emit a ;; move to get the address of the symbolic object from the GOT. (define_expand "movsi" [(set (match_operand:SI 0 "general_operand" "") (match_operand:SI 1 "general_operand" ""))] "" " { extern int flag_pic; if (flag_pic && SYMBOLIC_CONST (operands[1])) emit_pic_move (operands, SImode); /* Don't generate memory->memory moves, go through a register */ else if (TARGET_MOVE && (reload_in_progress | reload_completed) == 0 && GET_CODE (operands[0]) == MEM && GET_CODE (operands[1]) == MEM) { operands[1] = force_reg (SImode, operands[1]); } }") ;; On i486, incl reg is faster than movl $1,reg. (define_insn "" [(set (match_operand:SI 0 "general_operand" "=g,r") (match_operand:SI 1 "general_operand" "ri,m"))] "(!TARGET_MOVE || GET_CODE (operands[0]) != MEM) || (GET_CODE (operands[1]) != MEM)" "* { rtx link; if (operands[1] == const0_rtx && REG_P (operands[0])) return AS2 (xor%L0,%0,%0); if (operands[1] == const1_rtx && (link = find_reg_note (insn, REG_WAS_0, 0)) /* Make sure the insn that stored the 0 is still present. */ && ! INSN_DELETED_P (XEXP (link, 0)) && GET_CODE (XEXP (link, 0)) != NOTE /* Make sure cross jumping didn't happen here. */ && no_labels_between_p (XEXP (link, 0), insn) /* Make sure the reg hasn't been clobbered. */ && ! reg_set_between_p (operands[0], XEXP (link, 0), insn)) /* Fastest way to change a 0 to a 1. */ return AS1 (inc%L0,%0); return AS2 (mov%L0,%1,%0); }") (define_insn "" [(set (match_operand:HI 0 "push_operand" "=<") (match_operand:HI 1 "general_operand" "g"))] "TARGET_386" "push%W0 %1") (define_insn "" [(set (match_operand:HI 0 "push_operand" "=<") (match_operand:HI 1 "nonmemory_operand" "ri"))] "!TARGET_386 && TARGET_MOVE" "push%W0 %1") (define_insn "" [(set (match_operand:HI 0 "push_operand" "=<") (match_operand:HI 1 "general_operand" "ri"))] "!TARGET_386 && !TARGET_MOVE" "push%W0 %1") ;; On i486, an incl and movl are both faster than incw and movw. (define_expand "movhi" [(set (match_operand:HI 0 "general_operand" "") (match_operand:HI 1 "general_operand" ""))] "" " { /* Don't generate memory->memory moves, go through a register */ if (TARGET_MOVE && (reload_in_progress | reload_completed) == 0 && GET_CODE (operands[0]) == MEM && GET_CODE (operands[1]) == MEM) { operands[1] = force_reg (HImode, operands[1]); } }") (define_insn "" [(set (match_operand:HI 0 "general_operand" "=g,r") (match_operand:HI 1 "general_operand" "ri,m"))] "(!TARGET_MOVE || GET_CODE (operands[0]) != MEM) || (GET_CODE (operands[1]) != MEM)" "* { rtx link; if (REG_P (operands[0]) && operands[1] == const0_rtx) return AS2 (xor%L0,%k0,%k0); if (REG_P (operands[0]) && operands[1] == const1_rtx && (link = find_reg_note (insn, REG_WAS_0, 0)) /* Make sure the insn that stored the 0 is still present. */ && ! INSN_DELETED_P (XEXP (link, 0)) && GET_CODE (XEXP (link, 0)) != NOTE /* Make sure cross jumping didn't happen here. */ && no_labels_between_p (XEXP (link, 0), insn) /* Make sure the reg hasn't been clobbered. */ && ! reg_set_between_p (operands[0], XEXP (link, 0), insn)) /* Fastest way to change a 0 to a 1. */ return AS1 (inc%L0,%k0); if (REG_P (operands[0])) { if (REG_P (operands[1])) return AS2 (mov%L0,%k1,%k0); else if (CONSTANT_P (operands[1])) return AS2 (mov%L0,%1,%k0); } return AS2 (mov%W0,%1,%0); }") (define_expand "movstricthi" [(set (strict_low_part (match_operand:HI 0 "general_operand" "")) (match_operand:HI 1 "general_operand" ""))] "" " { /* Don't generate memory->memory moves, go through a register */ if (TARGET_MOVE && (reload_in_progress | reload_completed) == 0 && GET_CODE (operands[0]) == MEM && GET_CODE (operands[1]) == MEM) { operands[1] = force_reg (HImode, operands[1]); } }") (define_insn "" [(set (strict_low_part (match_operand:HI 0 "general_operand" "+g,r")) (match_operand:HI 1 "general_operand" "ri,m"))] "(!TARGET_MOVE || GET_CODE (operands[0]) != MEM) || (GET_CODE (operands[1]) != MEM)" "* { rtx link; if (operands[1] == const0_rtx && REG_P (operands[0])) return AS2 (xor%W0,%0,%0); if (operands[1] == const1_rtx && (link = find_reg_note (insn, REG_WAS_0, 0)) /* Make sure the insn that stored the 0 is still present. */ && ! INSN_DELETED_P (XEXP (link, 0)) && GET_CODE (XEXP (link, 0)) != NOTE /* Make sure cross jumping didn't happen here. */ && no_labels_between_p (XEXP (link, 0), insn) /* Make sure the reg hasn't been clobbered. */ && ! reg_set_between_p (operands[0], XEXP (link, 0), insn)) /* Fastest way to change a 0 to a 1. */ return AS1 (inc%W0,%0); return AS2 (mov%W0,%1,%0); }") ;; emit_push_insn when it calls move_by_pieces ;; requires an insn to "push a byte". ;; But actually we use pushw, which has the effect of rounding ;; the amount pushed up to a halfword. (define_insn "" [(set (match_operand:QI 0 "push_operand" "=<") (match_operand:QI 1 "immediate_operand" "n"))] "" "* return AS1 (push%W0,%1);") (define_insn "" [(set (match_operand:QI 0 "push_operand" "=<") (match_operand:QI 1 "nonimmediate_operand" "q"))] "!TARGET_MOVE" "* { operands[1] = gen_rtx (REG, HImode, REGNO (operands[1])); return AS1 (push%W0,%1); }") (define_insn "" [(set (match_operand:QI 0 "push_operand" "=<") (match_operand:QI 1 "register_operand" "q"))] "TARGET_MOVE" "* { operands[1] = gen_rtx (REG, HImode, REGNO (operands[1])); return AS1 (push%W0,%1); }") ;; On i486, incb reg is faster than movb $1,reg. ;; ??? Do a recognizer for zero_extract that looks just like this, but reads ;; or writes %ah, %bh, %ch, %dh. (define_expand "movqi" [(set (match_operand:QI 0 "general_operand" "") (match_operand:QI 1 "general_operand" ""))] "" " { /* Don't generate memory->memory moves, go through a register */ if (TARGET_MOVE && (reload_in_progress | reload_completed) == 0 && GET_CODE (operands[0]) == MEM && GET_CODE (operands[1]) == MEM) { operands[1] = force_reg (QImode, operands[1]); } }") (define_insn "" [(set (match_operand:QI 0 "general_operand" "=q,*r,qm") (match_operand:QI 1 "general_operand" "*g,q,qn"))] "(!TARGET_MOVE || GET_CODE (operands[0]) != MEM) || (GET_CODE (operands[1]) != MEM)" "* { rtx link; if (operands[1] == const0_rtx && REG_P (operands[0])) return AS2 (xor%B0,%0,%0); if (operands[1] == const1_rtx && (link = find_reg_note (insn, REG_WAS_0, 0)) /* Make sure the insn that stored the 0 is still present. */ && ! INSN_DELETED_P (XEXP (link, 0)) && GET_CODE (XEXP (link, 0)) != NOTE /* Make sure cross jumping didn't happen here. */ && no_labels_between_p (XEXP (link, 0), insn) /* Make sure the reg hasn't been clobbered. */ && ! reg_set_between_p (operands[0], XEXP (link, 0), insn)) /* Fastest way to change a 0 to a 1. */ return AS1 (inc%B0,%0); /* If mov%B0 isn't allowed for one of these regs, use mov%L0. */ if (NON_QI_REG_P (operands[0]) || NON_QI_REG_P (operands[1])) return (AS2 (mov%L0,%k1,%k0)); return (AS2 (mov%B0,%1,%0)); }") ;; If it becomes necessary to support movstrictqi into %esi or %edi, ;; use the insn sequence: ;; ;; shrdl $8,srcreg,dstreg ;; rorl $24,dstreg ;; ;; If operands[1] is a constant, then an andl/orl sequence would be ;; faster. (define_expand "movstrictqi" [(set (strict_low_part (match_operand:QI 0 "general_operand" "")) (match_operand:QI 1 "general_operand" ""))] "" " { /* Don't generate memory->memory moves, go through a register */ if (TARGET_MOVE && (reload_in_progress | reload_completed) == 0 && GET_CODE (operands[0]) == MEM && GET_CODE (operands[1]) == MEM) { operands[1] = force_reg (QImode, operands[1]); } }") (define_insn "" [(set (strict_low_part (match_operand:QI 0 "general_operand" "+qm,q")) (match_operand:QI 1 "general_operand" "*qn,m"))] "(!TARGET_MOVE || GET_CODE (operands[0]) != MEM) || (GET_CODE (operands[1]) != MEM)" "* { rtx link; if (operands[1] == const0_rtx && REG_P (operands[0])) return AS2 (xor%B0,%0,%0); if (operands[1] == const1_rtx && (link = find_reg_note (insn, REG_WAS_0, 0)) /* Make sure the insn that stored the 0 is still present. */ && ! INSN_DELETED_P (XEXP (link, 0)) && GET_CODE (XEXP (link, 0)) != NOTE /* Make sure cross jumping didn't happen here. */ && no_labels_between_p (XEXP (link, 0), insn) /* Make sure the reg hasn't been clobbered. */ && ! reg_set_between_p (operands[0], XEXP (link, 0), insn)) /* Fastest way to change a 0 to a 1. */ return AS1 (inc%B0,%0); /* If mov%B0 isn't allowed for one of these regs, use mov%L0. */ if (NON_QI_REG_P (operands[0]) || NON_QI_REG_P (operands[1])) { abort (); return (AS2 (mov%L0,%k1,%k0)); } return AS2 (mov%B0,%1,%0); }") (define_expand "movsf" [(set (match_operand:SF 0 "general_operand" "") (match_operand:SF 1 "general_operand" ""))] "" " { /* Special case memory->memory moves and pushes */ if (TARGET_MOVE && (reload_in_progress | reload_completed) == 0 && GET_CODE (operands[0]) == MEM && (GET_CODE (operands[1]) == MEM || push_operand (operands[0], SFmode))) { rtx (*genfunc) PROTO((rtx, rtx)) = (push_operand (operands[0], SFmode)) ? gen_movsf_push : gen_movsf_mem; emit_insn ((*genfunc) (operands[0], operands[1])); DONE; } }") (define_insn "movsf_push386" [(set (match_operand:SF 0 "push_operand" "=<,<") (match_operand:SF 1 "general_operand" "gF,f"))] "!TARGET_MOVE" "* { if (STACK_REG_P (operands[1])) { rtx xops[3]; if (! STACK_TOP_P (operands[1])) abort (); xops[0] = AT_SP (SFmode); xops[1] = GEN_INT (4); xops[2] = stack_pointer_rtx; output_asm_insn (AS2 (sub%L2,%1,%2), xops); if (find_regno_note (insn, REG_DEAD, FIRST_STACK_REG)) output_asm_insn (AS1 (fstp%S0,%0), xops); else output_asm_insn (AS1 (fst%S0,%0), xops); RET; } return AS1 (push%L1,%1); }") (define_insn "movsf_push" [(set (match_operand:SF 0 "push_operand" "=<,<,<") (match_operand:SF 1 "general_operand" "rF,f,m")) (clobber (match_scratch:SI 2 "=X,X,r"))] "" "* { if (STACK_REG_P (operands[1])) { rtx xops[3]; if (! STACK_TOP_P (operands[1])) abort (); xops[0] = AT_SP (SFmode); xops[1] = GEN_INT (4); xops[2] = stack_pointer_rtx; output_asm_insn (AS2 (sub%L2,%1,%2), xops); if (find_regno_note (insn, REG_DEAD, FIRST_STACK_REG)) output_asm_insn (AS1 (fstp%S0,%0), xops); else output_asm_insn (AS1 (fst%S0,%0), xops); RET; } else if (GET_CODE (operands[1]) != MEM) return AS1 (push%L1,%1); else { output_asm_insn (AS2 (mov%L2,%1,%2), operands); return AS1 (push%L2,%2); } }") ;; Special memory<->memory pattern that combine will recreate from the ;; moves to pseudos. (define_insn "movsf_mem" [(set (match_operand:SF 0 "memory_operand" "=m") (match_operand:SF 1 "memory_operand" "m")) (clobber (match_scratch:SI 2 "=r"))] "" "* { output_asm_insn (AS2 (mov%L2,%1,%2), operands); return AS2 (mov%L0,%2,%0); }") ;; For the purposes of regclass, prefer FLOAT_REGS. (define_insn "movsf_normal" [(set (match_operand:SF 0 "general_operand" "=*rfm,*rf,f,!*rm") (match_operand:SF 1 "general_operand" "*rf,*rfm,fG,fF"))] "(!TARGET_MOVE || GET_CODE (operands[0]) != MEM) || (GET_CODE (operands[1]) != MEM)" "* { int stack_top_dies = find_regno_note (insn, REG_DEAD, FIRST_STACK_REG) != 0; /* First handle a `pop' insn or a `fld %st(0)' */ if (STACK_TOP_P (operands[0]) && STACK_TOP_P (operands[1])) { if (stack_top_dies) return AS1 (fstp,%y0); else return AS1 (fld,%y0); } /* Handle a transfer between the 387 and a 386 register */ if (STACK_TOP_P (operands[0]) && NON_STACK_REG_P (operands[1])) { output_op_from_reg (operands[1], AS1 (fld%z0,%y1)); RET; } if (STACK_TOP_P (operands[1]) && NON_STACK_REG_P (operands[0])) { output_to_reg (operands[0], stack_top_dies); RET; } /* Handle other kinds of writes from the 387 */ if (STACK_TOP_P (operands[1])) { if (stack_top_dies) return AS1 (fstp%z0,%y0); else return AS1 (fst%z0,%y0); } /* Handle other kinds of reads to the 387 */ if (STACK_TOP_P (operands[0]) && GET_CODE (operands[1]) == CONST_DOUBLE) return output_move_const_single (operands); if (STACK_TOP_P (operands[0])) return AS1 (fld%z1,%y1); /* Handle all SFmode moves not involving the 387 */ return singlemove_string (operands); }") (define_insn "swapsf" [(set (match_operand:SF 0 "register_operand" "f") (match_operand:SF 1 "register_operand" "f")) (set (match_dup 1) (match_dup 0))] "" "* { if (STACK_TOP_P (operands[0])) return AS1 (fxch,%1); else return AS1 (fxch,%0); }") (define_expand "movdf" [(set (match_operand:DF 0 "general_operand" "") (match_operand:DF 1 "general_operand" ""))] "" " { /* Special case memory->memory moves and pushes */ if (TARGET_MOVE && (reload_in_progress | reload_completed) == 0 && GET_CODE (operands[0]) == MEM && (GET_CODE (operands[1]) == MEM || push_operand (operands[0], DFmode))) { rtx (*genfunc) PROTO((rtx, rtx)) = (push_operand (operands[0], DFmode)) ? gen_movdf_push : gen_movdf_mem; emit_insn ((*genfunc) (operands[0], operands[1])); DONE; } }") (define_insn "movdf_push_nomove" [(set (match_operand:DF 0 "push_operand" "=<,<") (match_operand:DF 1 "general_operand" "gF,f"))] "!TARGET_MOVE" "* { if (STACK_REG_P (operands[1])) { rtx xops[3]; xops[0] = AT_SP (SFmode); xops[1] = GEN_INT (8); xops[2] = stack_pointer_rtx; output_asm_insn (AS2 (sub%L2,%1,%2), xops); if (find_regno_note (insn, REG_DEAD, FIRST_STACK_REG)) output_asm_insn (AS1 (fstp%Q0,%0), xops); else output_asm_insn (AS1 (fst%Q0,%0), xops); RET; } else return output_move_double (operands); }") (define_insn "movdf_push" [(set (match_operand:DF 0 "push_operand" "=<,<,<,<,<") (match_operand:DF 1 "general_operand" "rF,f,o,o,o")) (clobber (match_scratch:SI 2 "=X,X,&r,&r,X")) (clobber (match_scratch:SI 3 "=X,X,&r,X,X"))] "" "* { if (STACK_REG_P (operands[1])) { rtx xops[3]; xops[0] = AT_SP (SFmode); xops[1] = GEN_INT (8); xops[2] = stack_pointer_rtx; output_asm_insn (AS2 (sub%L2,%1,%2), xops); if (find_regno_note (insn, REG_DEAD, FIRST_STACK_REG)) output_asm_insn (AS1 (fstp%Q0,%0), xops); else output_asm_insn (AS1 (fst%Q0,%0), xops); RET; } else if (GET_CODE (operands[1]) != MEM || GET_CODE (operands[2]) != REG) return output_move_double (operands); else { rtx low[1], high[1], xop[4]; split_di (&operands[1], 1, low, high); xop[0] = operands[2]; xop[1] = operands[3]; xop[2] = high[0]; xop[3] = low[0]; if (GET_CODE (operands[3]) == REG) { /* 2 scratch registers available */ output_asm_insn (AS2 (mov%L0,%2,%0), xop); output_asm_insn (AS2 (mov%L0,%3,%1), xop); output_asm_insn (AS1 (push%L0,%0), xop); output_asm_insn (AS1 (push%L0,%1), xop); } else { /* 1 scratch register */ output_asm_insn (AS2 (mov%L0,%2,%0), xop); output_asm_insn (AS1 (push%L0,%0), xop); /* account for push above */ if (reg_mentioned_p (stack_pointer_rtx, XEXP (xop[3], 0))) xop[3] = adj_offsettable_operand (xop[3], 4); output_asm_insn (AS2 (mov%L0,%3,%0), xop); output_asm_insn (AS1 (push%L0,%0), xop); } RET; } }") (define_insn "movdf_mem" [(set (match_operand:DF 0 "memory_operand" "=o,o") (match_operand:DF 1 "memory_operand" "o,o")) (clobber (match_scratch:SI 2 "=&r,&r")) (clobber (match_scratch:SI 3 "=&r,X"))] "" "* { rtx low[2], high[2], xop[6]; split_di (operands, 2, low, high); xop[0] = operands[2]; xop[1] = operands[3]; xop[2] = high[0]; xop[3] = high[1]; xop[4] = low[0]; xop[5] = low[1]; if (GET_CODE (operands[3]) == REG) { /* 2 scratch registers available */ output_asm_insn (AS2 (mov%L0,%5,%0), xop); output_asm_insn (AS2 (mov%L0,%3,%1), xop); output_asm_insn (AS2 (mov%L0,%0,%4), xop); output_asm_insn (AS2 (mov%L0,%1,%2), xop); } else { /* 1 scratch register */ output_asm_insn (AS2 (mov%L0,%5,%0), xop); output_asm_insn (AS2 (mov%L0,%0,%4), xop); output_asm_insn (AS2 (mov%L0,%3,%0), xop); output_asm_insn (AS2 (mov%L0,%0,%2), xop); } RET; }") ;; For the purposes of regclass, prefer FLOAT_REGS. (define_insn "movdf_normal" [(set (match_operand:DF 0 "general_operand" "=*rfm,*rf,f,!*rm") (match_operand:DF 1 "general_operand" "*rf,*rfm,fG,fF"))] "(!TARGET_MOVE || GET_CODE (operands[0]) != MEM) || (GET_CODE (operands[1]) != MEM)" "* { int stack_top_dies = find_regno_note (insn, REG_DEAD, FIRST_STACK_REG) != 0; /* First handle a `pop' insn or a `fld %st(0)' */ if (STACK_TOP_P (operands[0]) && STACK_TOP_P (operands[1])) { if (stack_top_dies) return AS1 (fstp,%y0); else return AS1 (fld,%y0); } /* Handle a transfer between the 387 and a 386 register */ if (STACK_TOP_P (operands[0]) && NON_STACK_REG_P (operands[1])) { output_op_from_reg (operands[1], AS1 (fld%z0,%y1)); RET; } if (STACK_TOP_P (operands[1]) && NON_STACK_REG_P (operands[0])) { output_to_reg (operands[0], stack_top_dies); RET; } /* Handle other kinds of writes from the 387 */ if (STACK_TOP_P (operands[1])) { if (stack_top_dies) return AS1 (fstp%z0,%y0); else return AS1 (fst%z0,%y0); } /* Handle other kinds of reads to the 387 */ if (STACK_TOP_P (operands[0]) && GET_CODE (operands[1]) == CONST_DOUBLE) return output_move_const_single (operands); if (STACK_TOP_P (operands[0])) return AS1 (fld%z1,%y1); /* Handle all DFmode moves not involving the 387 */ return output_move_double (operands); }") (define_insn "swapdf" [(set (match_operand:DF 0 "register_operand" "f") (match_operand:DF 1 "register_operand" "f")) (set (match_dup 1) (match_dup 0))] "" "* { if (STACK_TOP_P (operands[0])) return AS1 (fxch,%1); else return AS1 (fxch,%0); }") (define_expand "movxf" [(set (match_operand:XF 0 "general_operand" "") (match_operand:XF 1 "general_operand" ""))] "" " { /* Special case memory->memory moves and pushes */ if (TARGET_MOVE && (reload_in_progress | reload_completed) == 0 && GET_CODE (operands[0]) == MEM && (GET_CODE (operands[1]) == MEM || push_operand (operands[0], XFmode))) { rtx (*genfunc) PROTO((rtx, rtx)) = (push_operand (operands[0], XFmode)) ? gen_movxf_push : gen_movxf_mem; emit_insn ((*genfunc) (operands[0], operands[1])); DONE; } }") (define_insn "movxf_push_nomove" [(set (match_operand:XF 0 "push_operand" "=<,<") (match_operand:XF 1 "general_operand" "gF,f"))] "!TARGET_MOVE" "* { if (STACK_REG_P (operands[1])) { rtx xops[3]; xops[0] = AT_SP (SFmode); xops[1] = GEN_INT (12); xops[2] = stack_pointer_rtx; output_asm_insn (AS2 (sub%L2,%1,%2), xops); output_asm_insn (AS1 (fstp%T0,%0), xops); if (! find_regno_note (insn, REG_DEAD, FIRST_STACK_REG)) output_asm_insn (AS1 (fld%T0,%0), xops); RET; } else return output_move_double (operands); }") (define_insn "movxf_push" [(set (match_operand:XF 0 "push_operand" "=<,<,<,<,<") (match_operand:XF 1 "general_operand" "rF,f,o,o,o")) (clobber (match_scratch:SI 2 "=X,X,&r,&r,X")) (clobber (match_scratch:SI 3 "=X,X,&r,X,X"))] "" "* { if (STACK_REG_P (operands[1])) { rtx xops[3]; xops[0] = AT_SP (SFmode); xops[1] = GEN_INT (12); xops[2] = stack_pointer_rtx; output_asm_insn (AS2 (sub%L2,%1,%2), xops); output_asm_insn (AS1 (fstp%T0,%0), xops); if (! find_regno_note (insn, REG_DEAD, FIRST_STACK_REG)) output_asm_insn (AS1 (fld%T0,%0), xops); RET; } else if (GET_CODE (operands[1]) != MEM || GET_CODE (operands[2]) != REG) return output_move_double (operands); else { rtx xop[5]; xop[0] = operands[2]; xop[1] = operands[3]; xop[2] = adj_offsettable_operand (operands[1], 8); xop[3] = adj_offsettable_operand (operands[1], 4); xop[4] = operands[1]; if (GET_CODE (operands[3]) == REG) { /* 2 scratch registers available */ output_asm_insn (AS2 (mov%L0,%2,%0), xop); output_asm_insn (AS2 (mov%L0,%3,%1), xop); output_asm_insn (AS1 (push%L0,%0), xop); output_asm_insn (AS1 (push%L0,%1), xop); /* account for 2 pushes above */ if (reg_mentioned_p (stack_pointer_rtx, XEXP (xop[4], 0))) xop[4] = adj_offsettable_operand (xop[4], 8); output_asm_insn (AS2 (mov%L0,%4,%0), xop); output_asm_insn (AS1 (push%L0,%0), xop); } else { /* 1 scratch register */ output_asm_insn (AS2 (mov%L0,%2,%0), xop); output_asm_insn (AS1 (push%L0,%0), xop); /* account for 1 push above */ if (reg_mentioned_p (stack_pointer_rtx, XEXP (xop[3], 0))) xop[3] = adj_offsettable_operand (xop[3], 4); output_asm_insn (AS2 (mov%L0,%3,%0), xop); output_asm_insn (AS1 (push%L0,%0), xop); /* account for 2 pushes above */ if (reg_mentioned_p (stack_pointer_rtx, XEXP (xop[4], 0))) xop[4] = adj_offsettable_operand (xop[4], 8); output_asm_insn (AS2 (mov%L0,%4,%0), xop); output_asm_insn (AS1 (push%L0,%0), xop); } RET; } }") (define_insn "movxf_mem" [(set (match_operand:XF 0 "memory_operand" "=o,o") (match_operand:XF 1 "memory_operand" "o,o")) (clobber (match_scratch:SI 2 "=&r,&r")) (clobber (match_scratch:SI 3 "=&r,X"))] "" "* { rtx xop[8]; xop[0] = operands[2]; xop[1] = operands[3]; xop[2] = adj_offsettable_operand (operands[1], 8); xop[3] = adj_offsettable_operand (operands[1], 4); xop[4] = operands[1]; xop[5] = adj_offsettable_operand (operands[0], 8); xop[6] = adj_offsettable_operand (operands[0], 4); xop[7] = operands[0]; if (GET_CODE (operands[3]) == REG) { /* 2 scratch registers available */ output_asm_insn (AS2 (mov%L0,%2,%0), xop); output_asm_insn (AS2 (mov%L0,%3,%1), xop); output_asm_insn (AS2 (mov%L5,%0,%5), xop); output_asm_insn (AS2 (mov%L6,%1,%6), xop); output_asm_insn (AS2 (mov%L0,%4,%0), xop); output_asm_insn (AS2 (mov%L7,%0,%7), xop); } else { /* 1 scratch register */ output_asm_insn (AS2 (mov%L0,%2,%0), xop); output_asm_insn (AS2 (mov%L0,%0,%5), xop); output_asm_insn (AS2 (mov%L0,%3,%0), xop); output_asm_insn (AS2 (mov%L0,%0,%6), xop); output_asm_insn (AS2 (mov%L0,%4,%0), xop); output_asm_insn (AS2 (mov%L7,%0,%7), xop); } RET; }") (define_insn "movxf_normal" [(set (match_operand:XF 0 "general_operand" "=f,fm,!*rf,!*rm") (match_operand:XF 1 "general_operand" "fmG,f,*rfm,*rfF"))] "(!TARGET_MOVE || GET_CODE (operands[0]) != MEM) || (GET_CODE (operands[1]) != MEM)" "* { int stack_top_dies = find_regno_note (insn, REG_DEAD, FIRST_STACK_REG) != 0; /* First handle a `pop' insn or a `fld %st(0)' */ if (STACK_TOP_P (operands[0]) && STACK_TOP_P (operands[1])) { if (stack_top_dies) return AS1 (fstp,%y0); else return AS1 (fld,%y0); } /* Handle a transfer between the 387 and a 386 register */ if (STACK_TOP_P (operands[0]) && NON_STACK_REG_P (operands[1])) { output_op_from_reg (operands[1], AS1 (fld%z0,%y1)); RET; } if (STACK_TOP_P (operands[1]) && NON_STACK_REG_P (operands[0])) { output_to_reg (operands[0], stack_top_dies); RET; } /* Handle other kinds of writes from the 387 */ if (STACK_TOP_P (operands[1])) { output_asm_insn (AS1 (fstp%z0,%y0), operands); if (! stack_top_dies) return AS1 (fld%z0,%y0); RET; } /* Handle other kinds of reads to the 387 */ if (STACK_TOP_P (operands[0]) && GET_CODE (operands[1]) == CONST_DOUBLE) return output_move_const_single (operands); if (STACK_TOP_P (operands[0])) return AS1 (fld%z1,%y1); /* Handle all XFmode moves not involving the 387 */ return output_move_double (operands); }") (define_insn "swapxf" [(set (match_operand:XF 0 "register_operand" "f") (match_operand:XF 1 "register_operand" "f")) (set (match_dup 1) (match_dup 0))] "" "* { if (STACK_TOP_P (operands[0])) return AS1 (fxch,%1); else return AS1 (fxch,%0); }") (define_expand "movdi" [(set (match_operand:DI 0 "general_operand" "") (match_operand:DI 1 "general_operand" ""))] "" " { /* Special case memory->memory moves and pushes */ if (TARGET_MOVE && (reload_in_progress | reload_completed) == 0 && GET_CODE (operands[0]) == MEM && (GET_CODE (operands[1]) == MEM || push_operand (operands[0], DImode))) { rtx (*genfunc) PROTO((rtx, rtx)) = (push_operand (operands[0], DImode)) ? gen_movdi_push : gen_movdi_mem; emit_insn ((*genfunc) (operands[0], operands[1])); DONE; } }") (define_insn "movdi_push_nomove" [(set (match_operand:DI 0 "push_operand" "=<") (match_operand:DI 1 "general_operand" "roiF"))] "!TARGET_MOVE" "* return output_move_double (operands);") (define_insn "movdi_push" [(set (match_operand:DI 0 "push_operand" "=<,<,<,<") (match_operand:DI 1 "general_operand" "riF,o,o,o")) (clobber (match_scratch:SI 2 "=X,&r,&r,X")) (clobber (match_scratch:SI 3 "=X,&r,X,X"))] "" "* { if (GET_CODE (operands[1]) != MEM || GET_CODE (operands[2]) != REG) return output_move_double (operands); else { rtx low[1], high[1], xop[4]; split_di (&operands[1], 1, low, high); xop[0] = operands[2]; xop[1] = operands[3]; xop[2] = high[0]; xop[3] = low[0]; if (GET_CODE (operands[3]) == REG) { /* 2 scratch registers available */ output_asm_insn (AS2 (mov%L0,%2,%0), xop); output_asm_insn (AS2 (mov%L0,%3,%1), xop); output_asm_insn (AS1 (push%L0,%0), xop); output_asm_insn (AS1 (push%L0,%1), xop); } else { /* 1 scratch register */ output_asm_insn (AS2 (mov%L0,%2,%0), xop); output_asm_insn (AS1 (push%L0,%0), xop); /* account for push above */ if (reg_mentioned_p (stack_pointer_rtx, XEXP (xop[3], 0))) xop[3] = adj_offsettable_operand (xop[3], 4); output_asm_insn (AS2 (mov%L0,%3,%0), xop); output_asm_insn (AS1 (push%L0,%0), xop); } RET; } }") (define_insn "movdi_mem" [(set (match_operand:DI 0 "memory_operand" "=o,o") (match_operand:DI 1 "memory_operand" "o,o")) (clobber (match_scratch:SI 2 "=&r,&r")) (clobber (match_scratch:SI 3 "=&r,X"))] "" "* { rtx low[2], high[2], xop[6]; split_di (operands, 2, low, high); xop[0] = operands[2]; xop[1] = operands[3]; xop[2] = high[0]; xop[3] = high[1]; xop[4] = low[0]; xop[5] = low[1]; if (GET_CODE (operands[3]) == REG) { /* 2 scratch registers available */ output_asm_insn (AS2 (mov%L0,%5,%0), xop); output_asm_insn (AS2 (mov%L0,%3,%1), xop); output_asm_insn (AS2 (mov%L0,%0,%4), xop); output_asm_insn (AS2 (mov%L0,%1,%2), xop); } else { /* 1 scratch register */ output_asm_insn (AS2 (mov%L0,%5,%0), xop); output_asm_insn (AS2 (mov%L0,%0,%4), xop); output_asm_insn (AS2 (mov%L0,%3,%0), xop); output_asm_insn (AS2 (mov%L0,%0,%2), xop); } RET; }") (define_insn "movdi_normal" [(set (match_operand:DI 0 "general_operand" "=r,rm") (match_operand:DI 1 "general_operand" "m,riF"))] "(!TARGET_MOVE || GET_CODE (operands[0]) != MEM) || (GET_CODE (operands[1]) != MEM)" "* return output_move_double (operands);") ;;- conversion instructions ;;- NONE ;;- zero extension instructions ;; See comments by `andsi' for when andl is faster than movzx. (define_insn "zero_extendhisi2" [(set (match_operand:SI 0 "general_operand" "=r") (zero_extend:SI (match_operand:HI 1 "nonimmediate_operand" "rm")))] "" "* { if ((!TARGET_386 || REGNO (operands[0]) == 0) && REG_P (operands[1]) && REGNO (operands[0]) == REGNO (operands[1])) { rtx xops[2]; xops[0] = operands[0]; xops[1] = GEN_INT (0xffff); output_asm_insn (AS2 (and%L0,%1,%k0), xops); RET; } #ifdef INTEL_SYNTAX return AS2 (movzx,%1,%0); #else return AS2 (movz%W0%L0,%1,%0); #endif }") (define_insn "zero_extendqihi2" [(set (match_operand:HI 0 "general_operand" "=r") (zero_extend:HI (match_operand:QI 1 "nonimmediate_operand" "qm")))] "" "* { if ((!TARGET_386 || REGNO (operands[0]) == 0) && REG_P (operands[1]) && REGNO (operands[0]) == REGNO (operands[1])) { rtx xops[2]; xops[0] = operands[0]; xops[1] = GEN_INT (0xff); output_asm_insn (AS2 (and%L0,%1,%k0), xops); RET; } #ifdef INTEL_SYNTAX return AS2 (movzx,%1,%0); #else return AS2 (movz%B0%W0,%1,%0); #endif }") (define_insn "zero_extendqisi2" [(set (match_operand:SI 0 "general_operand" "=r") (zero_extend:SI (match_operand:QI 1 "nonimmediate_operand" "qm")))] "" "* { if ((!TARGET_386 || REGNO (operands[0]) == 0) && REG_P (operands[1]) && REGNO (operands[0]) == REGNO (operands[1])) { rtx xops[2]; xops[0] = operands[0]; xops[1] = GEN_INT (0xff); output_asm_insn (AS2 (and%L0,%1,%k0), xops); RET; } #ifdef INTEL_SYNTAX return AS2 (movzx,%1,%0); #else return AS2 (movz%B0%L0,%1,%0); #endif }") (define_insn "zero_extendsidi2" [(set (match_operand:DI 0 "register_operand" "=r") (zero_extend:DI (match_operand:SI 1 "register_operand" "0")))] "" "* { operands[0] = gen_rtx (REG, SImode, REGNO (operands[0]) + 1); return AS2 (xor%L0,%0,%0); }") ;;- sign extension instructions (define_insn "extendsidi2" [(set (match_operand:DI 0 "register_operand" "=r") (sign_extend:DI (match_operand:SI 1 "register_operand" "0")))] "" "* { if (REGNO (operands[0]) == 0) { /* This used to be cwtl, but that extends HI to SI somehow. */ #ifdef INTEL_SYNTAX return \"cdq\"; #else return \"cltd\"; #endif } operands[1] = gen_rtx (REG, SImode, REGNO (operands[0]) + 1); output_asm_insn (AS2 (mov%L0,%0,%1), operands); operands[0] = GEN_INT (31); return AS2 (sar%L1,%0,%1); }") ;; Note that the i386 programmers' manual says that the opcodes ;; are named movsx..., but the assembler on Unix does not accept that. ;; We use what the Unix assembler expects. (define_insn "extendhisi2" [(set (match_operand:SI 0 "general_operand" "=r") (sign_extend:SI (match_operand:HI 1 "nonimmediate_operand" "rm")))] "" "* { if (REGNO (operands[0]) == 0 && REG_P (operands[1]) && REGNO (operands[1]) == 0) #ifdef INTEL_SYNTAX return \"cwde\"; #else return \"cwtl\"; #endif #ifdef INTEL_SYNTAX return AS2 (movsx,%1,%0); #else return AS2 (movs%W0%L0,%1,%0); #endif }") (define_insn "extendqihi2" [(set (match_operand:HI 0 "general_operand" "=r") (sign_extend:HI (match_operand:QI 1 "nonimmediate_operand" "qm")))] "" "* { if (REGNO (operands[0]) == 0 && REG_P (operands[1]) && REGNO (operands[1]) == 0) return \"cbtw\"; #ifdef INTEL_SYNTAX return AS2 (movsx,%1,%0); #else return AS2 (movs%B0%W0,%1,%0); #endif }") (define_insn "extendqisi2" [(set (match_operand:SI 0 "general_operand" "=r") (sign_extend:SI (match_operand:QI 1 "nonimmediate_operand" "qm")))] "" "* { #ifdef INTEL_SYNTAX return AS2 (movsx,%1,%0); #else return AS2 (movs%B0%L0,%1,%0); #endif }") ;; Conversions between float and double. (define_insn "extendsfdf2" [(set (match_operand:DF 0 "general_operand" "=fm,f") (float_extend:DF (match_operand:SF 1 "general_operand" "f,fm")))] "TARGET_80387" "* { int stack_top_dies = find_regno_note (insn, REG_DEAD, FIRST_STACK_REG) != 0; if (NON_STACK_REG_P (operands[1])) { output_op_from_reg (operands[1], AS1 (fld%z0,%y1)); RET; } if (NON_STACK_REG_P (operands[0])) { output_to_reg (operands[0], stack_top_dies); RET; } if (STACK_TOP_P (operands[0])) return AS1 (fld%z1,%y1); if (GET_CODE (operands[0]) == MEM) { if (stack_top_dies) return AS1 (fstp%z0,%y0); else return AS1 (fst%z0,%y0); } abort (); }") (define_insn "extenddfxf2" [(set (match_operand:XF 0 "general_operand" "=fm,f,f,!*r") (float_extend:XF (match_operand:DF 1 "general_operand" "f,fm,!*r,f")))] "TARGET_80387" "* { int stack_top_dies = find_regno_note (insn, REG_DEAD, FIRST_STACK_REG) != 0; if (NON_STACK_REG_P (operands[1])) { output_op_from_reg (operands[1], AS1 (fld%z0,%y1)); RET; } if (NON_STACK_REG_P (operands[0])) { output_to_reg (operands[0], stack_top_dies); RET; } if (STACK_TOP_P (operands[0])) return AS1 (fld%z1,%y1); if (GET_CODE (operands[0]) == MEM) { output_asm_insn (AS1 (fstp%z0,%y0), operands); if (! stack_top_dies) return AS1 (fld%z0,%y0); RET; } abort (); }") (define_insn "extendsfxf2" [(set (match_operand:XF 0 "general_operand" "=fm,f,f,!*r") (float_extend:XF (match_operand:SF 1 "general_operand" "f,fm,!*r,f")))] "TARGET_80387" "* { int stack_top_dies = find_regno_note (insn, REG_DEAD, FIRST_STACK_REG) != 0; if (NON_STACK_REG_P (operands[1])) { output_op_from_reg (operands[1], AS1 (fld%z0,%y1)); RET; } if (NON_STACK_REG_P (operands[0])) { output_to_reg (operands[0], stack_top_dies); RET; } if (STACK_TOP_P (operands[0])) return AS1 (fld%z1,%y1); if (GET_CODE (operands[0]) == MEM) { output_asm_insn (AS1 (fstp%z0,%y0), operands); if (! stack_top_dies) return AS1 (fld%z0,%y0); RET; } abort (); }") (define_expand "truncdfsf2" [(parallel [(set (match_operand:SF 0 "nonimmediate_operand" "") (float_truncate:SF (match_operand:DF 1 "register_operand" ""))) (clobber (match_dup 2))])] "TARGET_80387" " { operands[2] = (rtx) assign_386_stack_local (SFmode, 0); }") ;; This cannot output into an f-reg because there is no way to be sure ;; of truncating in that case. Otherwise this is just like a simple move ;; insn. So we pretend we can output to a reg in order to get better ;; register preferencing, but we really use a stack slot. (define_insn "" [(set (match_operand:SF 0 "nonimmediate_operand" "=f,m") (float_truncate:SF (match_operand:DF 1 "register_operand" "0,f"))) (clobber (match_operand:SF 2 "memory_operand" "m,m"))] "TARGET_80387" "* { int stack_top_dies = find_regno_note (insn, REG_DEAD, FIRST_STACK_REG) != 0; if (GET_CODE (operands[0]) == MEM) { if (stack_top_dies) return AS1 (fstp%z0,%0); else return AS1 (fst%z0,%0); } else if (STACK_TOP_P (operands[0])) { output_asm_insn (AS1 (fstp%z2,%y2), operands); return AS1 (fld%z2,%y2); } else abort (); }") (define_insn "truncxfsf2" [(set (match_operand:SF 0 "general_operand" "=m,!*r") (float_truncate:SF (match_operand:XF 1 "register_operand" "f,f")))] "TARGET_80387" "* { int stack_top_dies = find_regno_note (insn, REG_DEAD, FIRST_STACK_REG) != 0; if (NON_STACK_REG_P (operands[0])) { if (stack_top_dies == 0) { output_asm_insn (AS1 (fld,%y1), operands); stack_top_dies = 1; } output_to_reg (operands[0], stack_top_dies); RET; } else if (GET_CODE (operands[0]) == MEM) { if (stack_top_dies) return AS1 (fstp%z0,%0); else { output_asm_insn (AS1 (fld,%y1), operands); return AS1 (fstp%z0,%0); } } else abort (); }") (define_insn "truncxfdf2" [(set (match_operand:DF 0 "general_operand" "=m,!*r") (float_truncate:DF (match_operand:XF 1 "register_operand" "f,f")))] "TARGET_80387" "* { int stack_top_dies = find_regno_note (insn, REG_DEAD, FIRST_STACK_REG) != 0; if (NON_STACK_REG_P (operands[0])) { if (stack_top_dies == 0) { output_asm_insn (AS1 (fld,%y1), operands); stack_top_dies = 1; } output_to_reg (operands[0], stack_top_dies); RET; } else if (GET_CODE (operands[0]) == MEM) { if (stack_top_dies) return AS1 (fstp%z0,%0); else { output_asm_insn (AS1 (fld,%y1), operands); return AS1 (fstp%z0,%0); } } else abort (); }") ;; The 387 requires that the stack top dies after converting to DImode. ;; Represent an unsigned conversion from SImode to MODE_FLOAT by first ;; doing a signed conversion to DImode, and then taking just the low ;; part. (define_expand "fixuns_truncxfsi2" [(set (match_dup 4) (match_operand:XF 1 "register_operand" "")) (parallel [(set (match_dup 2) (fix:DI (fix:XF (match_dup 4)))) (clobber (match_dup 4)) (clobber (match_dup 5)) (clobber (match_dup 6)) (clobber (match_scratch:SI 7 ""))]) (set (match_operand:SI 0 "general_operand" "") (match_dup 3))] "TARGET_80387" " { operands[2] = gen_reg_rtx (DImode); operands[3] = gen_lowpart (SImode, operands[2]); operands[4] = gen_reg_rtx (XFmode); operands[5] = (rtx) assign_386_stack_local (SImode, 0); operands[6] = (rtx) assign_386_stack_local (SImode, 1); }") (define_expand "fixuns_truncdfsi2" [(set (match_dup 4) (match_operand:DF 1 "register_operand" "")) (parallel [(set (match_dup 2) (fix:DI (fix:DF (match_dup 4)))) (clobber (match_dup 4)) (clobber (match_dup 5)) (clobber (match_dup 6)) (clobber (match_scratch:SI 7 ""))]) (set (match_operand:SI 0 "general_operand" "") (match_dup 3))] "TARGET_80387" " { operands[2] = gen_reg_rtx (DImode); operands[3] = gen_lowpart (SImode, operands[2]); operands[4] = gen_reg_rtx (DFmode); operands[5] = (rtx) assign_386_stack_local (SImode, 0); operands[6] = (rtx) assign_386_stack_local (SImode, 1); }") (define_expand "fixuns_truncsfsi2" [(set (match_dup 4) (match_operand:SF 1 "register_operand" "")) (parallel [(set (match_dup 2) (fix:DI (fix:SF (match_dup 4)))) (clobber (match_dup 4)) (clobber (match_dup 5)) (clobber (match_dup 6)) (clobber (match_scratch:SI 7 ""))]) (set (match_operand:SI 0 "general_operand" "") (match_dup 3))] "TARGET_80387" " { operands[2] = gen_reg_rtx (DImode); operands[3] = gen_lowpart (SImode, operands[2]); operands[4] = gen_reg_rtx (SFmode); operands[5] = (rtx) assign_386_stack_local (SImode, 0); operands[6] = (rtx) assign_386_stack_local (SImode, 1); }") ;; Signed conversion to DImode. (define_expand "fix_truncxfdi2" [(set (match_dup 2) (match_operand:XF 1 "register_operand" "")) (parallel [(set (match_operand:DI 0 "general_operand" "") (fix:DI (fix:XF (match_dup 2)))) (clobber (match_dup 2)) (clobber (match_dup 3)) (clobber (match_dup 4)) (clobber (match_scratch:SI 5 ""))])] "TARGET_80387" " { operands[1] = copy_to_mode_reg (XFmode, operands[1]); operands[2] = gen_reg_rtx (XFmode); operands[3] = (rtx) assign_386_stack_local (SImode, 0); operands[4] = (rtx) assign_386_stack_local (SImode, 1); }") (define_expand "fix_truncdfdi2" [(set (match_dup 2) (match_operand:DF 1 "register_operand" "")) (parallel [(set (match_operand:DI 0 "general_operand" "") (fix:DI (fix:DF (match_dup 2)))) (clobber (match_dup 2)) (clobber (match_dup 3)) (clobber (match_dup 4)) (clobber (match_scratch:SI 5 ""))])] "TARGET_80387" " { operands[1] = copy_to_mode_reg (DFmode, operands[1]); operands[2] = gen_reg_rtx (DFmode); operands[3] = (rtx) assign_386_stack_local (SImode, 0); operands[4] = (rtx) assign_386_stack_local (SImode, 1); }") (define_expand "fix_truncsfdi2" [(set (match_dup 2) (match_operand:SF 1 "register_operand" "")) (parallel [(set (match_operand:DI 0 "general_operand" "") (fix:DI (fix:SF (match_dup 2)))) (clobber (match_dup 2)) (clobber (match_dup 3)) (clobber (match_dup 4)) (clobber (match_scratch:SI 5 ""))])] "TARGET_80387" " { operands[1] = copy_to_mode_reg (SFmode, operands[1]); operands[2] = gen_reg_rtx (SFmode); operands[3] = (rtx) assign_386_stack_local (SImode, 0); operands[4] = (rtx) assign_386_stack_local (SImode, 1); }") ;; These match a signed conversion of either DFmode or SFmode to DImode. (define_insn "" [(set (match_operand:DI 0 "general_operand" "=rm") (fix:DI (fix:XF (match_operand:XF 1 "register_operand" "f")))) (clobber (match_dup 1)) (clobber (match_operand:SI 2 "memory_operand" "m")) (clobber (match_operand:SI 3 "memory_operand" "m")) (clobber (match_scratch:SI 4 "=&q"))] "TARGET_80387" "* return output_fix_trunc (insn, operands);") (define_insn "" [(set (match_operand:DI 0 "general_operand" "=rm") (fix:DI (fix:DF (match_operand:DF 1 "register_operand" "f")))) (clobber (match_dup 1)) (clobber (match_operand:SI 2 "memory_operand" "m")) (clobber (match_operand:SI 3 "memory_operand" "m")) (clobber (match_scratch:SI 4 "=&q"))] "TARGET_80387" "* return output_fix_trunc (insn, operands);") (define_insn "" [(set (match_operand:DI 0 "general_operand" "=rm") (fix:DI (fix:SF (match_operand:SF 1 "register_operand" "f")))) (clobber (match_dup 1)) (clobber (match_operand:SI 2 "memory_operand" "m")) (clobber (match_operand:SI 3 "memory_operand" "m")) (clobber (match_scratch:SI 4 "=&q"))] "TARGET_80387" "* return output_fix_trunc (insn, operands);") ;; Signed MODE_FLOAT conversion to SImode. (define_expand "fix_truncxfsi2" [(parallel [(set (match_operand:SI 0 "general_operand" "") (fix:SI (fix:XF (match_operand:XF 1 "register_operand" "")))) (clobber (match_dup 2)) (clobber (match_dup 3)) (clobber (match_scratch:SI 4 ""))])] "TARGET_80387" " { operands[2] = (rtx) assign_386_stack_local (SImode, 0); operands[3] = (rtx) assign_386_stack_local (SImode, 1); }") (define_expand "fix_truncdfsi2" [(parallel [(set (match_operand:SI 0 "general_operand" "") (fix:SI (fix:DF (match_operand:DF 1 "register_operand" "")))) (clobber (match_dup 2)) (clobber (match_dup 3)) (clobber (match_scratch:SI 4 ""))])] "TARGET_80387" " { operands[2] = (rtx) assign_386_stack_local (SImode, 0); operands[3] = (rtx) assign_386_stack_local (SImode, 1); }") (define_expand "fix_truncsfsi2" [(parallel [(set (match_operand:SI 0 "general_operand" "") (fix:SI (fix:SF (match_operand:SF 1 "register_operand" "")))) (clobber (match_dup 2)) (clobber (match_dup 3)) (clobber (match_scratch:SI 4 ""))])] "TARGET_80387" " { operands[2] = (rtx) assign_386_stack_local (SImode, 0); operands[3] = (rtx) assign_386_stack_local (SImode, 1); }") (define_insn "" [(set (match_operand:SI 0 "general_operand" "=rm") (fix:SI (fix:XF (match_operand:XF 1 "register_operand" "f")))) (clobber (match_operand:SI 2 "memory_operand" "m")) (clobber (match_operand:SI 3 "memory_operand" "m")) (clobber (match_scratch:SI 4 "=&q"))] "TARGET_80387" "* return output_fix_trunc (insn, operands);") (define_insn "" [(set (match_operand:SI 0 "general_operand" "=rm") (fix:SI (fix:DF (match_operand:DF 1 "register_operand" "f")))) (clobber (match_operand:SI 2 "memory_operand" "m")) (clobber (match_operand:SI 3 "memory_operand" "m")) (clobber (match_scratch:SI 4 "=&q"))] "TARGET_80387" "* return output_fix_trunc (insn, operands);") (define_insn "" [(set (match_operand:SI 0 "general_operand" "=rm") (fix:SI (fix:SF (match_operand:SF 1 "register_operand" "f")))) (clobber (match_operand:SI 2 "memory_operand" "m")) (clobber (match_operand:SI 3 "memory_operand" "m")) (clobber (match_scratch:SI 4 "=&q"))] "TARGET_80387" "* return output_fix_trunc (insn, operands);") ;; Conversion between fixed point and floating point. ;; The actual pattern that matches these is at the end of this file. ;; ??? Possibly represent floatunssidf2 here in gcc2. (define_expand "floatsisf2" [(set (match_operand:SF 0 "register_operand" "") (float:SF (match_operand:SI 1 "nonimmediate_operand" "")))] "TARGET_80387" "") (define_expand "floatdisf2" [(set (match_operand:SF 0 "register_operand" "") (float:SF (match_operand:DI 1 "nonimmediate_operand" "")))] "TARGET_80387" "") (define_expand "floatsidf2" [(set (match_operand:DF 0 "register_operand" "") (float:DF (match_operand:SI 1 "nonimmediate_operand" "")))] "TARGET_80387" "") (define_expand "floatdidf2" [(set (match_operand:DF 0 "register_operand" "") (float:DF (match_operand:DI 1 "nonimmediate_operand" "")))] "TARGET_80387" "") (define_expand "floatsixf2" [(set (match_operand:XF 0 "register_operand" "") (float:XF (match_operand:SI 1 "nonimmediate_operand" "")))] "TARGET_80387" "") (define_expand "floatdixf2" [(set (match_operand:XF 0 "register_operand" "") (float:XF (match_operand:DI 1 "nonimmediate_operand" "")))] "TARGET_80387" "") ;; This will convert from SImode or DImode to MODE_FLOAT. (define_insn "" [(set (match_operand:XF 0 "register_operand" "=f") (float:XF (match_operand:DI 1 "general_operand" "rm")))] "TARGET_80387" "* { if (NON_STACK_REG_P (operands[1])) { output_op_from_reg (operands[1], AS1 (fild%z0,%1)); RET; } else if (GET_CODE (operands[1]) == MEM) return AS1 (fild%z1,%1); else abort (); }") (define_insn "" [(set (match_operand:DF 0 "register_operand" "=f") (float:DF (match_operand:DI 1 "nonimmediate_operand" "rm")))] "TARGET_80387" "* { if (NON_STACK_REG_P (operands[1])) { output_op_from_reg (operands[1], AS1 (fild%z0,%1)); RET; } else if (GET_CODE (operands[1]) == MEM) return AS1 (fild%z1,%1); else abort (); }") (define_insn "" [(set (match_operand:SF 0 "register_operand" "=f") (float:SF (match_operand:DI 1 "nonimmediate_operand" "rm")))] "TARGET_80387" "* { if (NON_STACK_REG_P (operands[1])) { output_op_from_reg (operands[1], AS1 (fild%z0,%1)); RET; } else if (GET_CODE (operands[1]) == MEM) return AS1 (fild%z1,%1); else abort (); }") (define_insn "" [(set (match_operand:DF 0 "register_operand" "=f") (float:DF (match_operand:SI 1 "nonimmediate_operand" "rm")))] "TARGET_80387" "* { if (NON_STACK_REG_P (operands[1])) { output_op_from_reg (operands[1], AS1 (fild%z0,%1)); RET; } else if (GET_CODE (operands[1]) == MEM) return AS1 (fild%z1,%1); else abort (); }") (define_insn "" [(set (match_operand:XF 0 "register_operand" "=f,f") (float:XF (match_operand:SI 1 "general_operand" "m,!*r")))] "TARGET_80387" "* { if (NON_STACK_REG_P (operands[1])) { output_op_from_reg (operands[1], AS1 (fild%z0,%1)); RET; } else if (GET_CODE (operands[1]) == MEM) return AS1 (fild%z1,%1); else abort (); }") (define_insn "" [(set (match_operand:SF 0 "register_operand" "=f") (float:SF (match_operand:SI 1 "nonimmediate_operand" "rm")))] "TARGET_80387" "* { if (NON_STACK_REG_P (operands[1])) { output_op_from_reg (operands[1], AS1 (fild%z0,%1)); RET; } else if (GET_CODE (operands[1]) == MEM) return AS1 (fild%z1,%1); else abort (); }") ;;- add instructions (define_insn "adddi3" [(set (match_operand:DI 0 "general_operand" "=&r,ro") (plus:DI (match_operand:DI 1 "general_operand" "%0,0") (match_operand:DI 2 "general_operand" "o,riF")))] "" "* { rtx low[3], high[3]; CC_STATUS_INIT; split_di (operands, 3, low, high); if (GET_CODE (low[2]) != CONST_INT || INTVAL (low[2]) != 0) { output_asm_insn (AS2 (add%L0,%2,%0), low); output_asm_insn (AS2 (adc%L0,%2,%0), high); } else output_asm_insn (AS2 (add%L0,%2,%0), high); RET; }") ;; On a 486, it is faster to do movl/addl than to do a single leal if ;; operands[1] and operands[2] are both registers. (define_insn "addsi3" [(set (match_operand:SI 0 "general_operand" "=?r,rm,r") (plus:SI (match_operand:SI 1 "general_operand" "%r,0,0") (match_operand:SI 2 "general_operand" "ri,ri,rm")))] "" "* { if (REG_P (operands[0]) && REGNO (operands[0]) != REGNO (operands[1])) { if (REG_P (operands[2]) && REGNO (operands[0]) == REGNO (operands[2])) return AS2 (add%L0,%1,%0); if (operands[2] == stack_pointer_rtx) { rtx temp; temp = operands[1]; operands[1] = operands[2]; operands[2] = temp; } if (operands[2] != stack_pointer_rtx) { CC_STATUS_INIT; operands[1] = SET_SRC (PATTERN (insn)); return AS2 (lea%L0,%a1,%0); } output_asm_insn (AS2 (mov%L0,%1,%0), operands); } if (operands[2] == const1_rtx) return AS1 (inc%L0,%0); if (operands[2] == constm1_rtx) return AS1 (dec%L0,%0); return AS2 (add%L0,%2,%0); }") ;; ??? `lea' here, for three operand add? If leaw is used, only %bx, ;; %si and %di can appear in SET_SRC, and output_asm_insn might not be ;; able to handle the operand. But leal always works? (define_insn "addhi3" [(set (match_operand:HI 0 "general_operand" "=rm,r") (plus:HI (match_operand:HI 1 "general_operand" "%0,0") (match_operand:HI 2 "general_operand" "ri,rm")))] "" "* { /* ??? what about offsettable memory references? */ if (QI_REG_P (operands[0]) && GET_CODE (operands[2]) == CONST_INT && (INTVAL (operands[2]) & 0xff) == 0) { int byteval = (INTVAL (operands[2]) >> 8) & 0xff; CC_STATUS_INIT; if (byteval == 1) return AS1 (inc%B0,%h0); else if (byteval == 255) return AS1 (dec%B0,%h0); operands[2] = GEN_INT (byteval); return AS2 (add%B0,%2,%h0); } if (operands[2] == const1_rtx) return AS1 (inc%W0,%0); if (operands[2] == constm1_rtx || (GET_CODE (operands[2]) == CONST_INT && INTVAL (operands[2]) == 65535)) return AS1 (dec%W0,%0); return AS2 (add%W0,%2,%0); }") (define_insn "addqi3" [(set (match_operand:QI 0 "general_operand" "=qm,q") (plus:QI (match_operand:QI 1 "general_operand" "%0,0") (match_operand:QI 2 "general_operand" "qn,qmn")))] "" "* { if (operands[2] == const1_rtx) return AS1 (inc%B0,%0); if (operands[2] == constm1_rtx || (GET_CODE (operands[2]) == CONST_INT && INTVAL (operands[2]) == 255)) return AS1 (dec%B0,%0); return AS2 (add%B0,%2,%0); }") ;Lennart Augustsson ;says this pattern just makes slower code: ; pushl %ebp ; addl $-80,(%esp) ;instead of ; leal -80(%ebp),%eax ; pushl %eax ; ;(define_insn "" ; [(set (match_operand:SI 0 "push_operand" "=<") ; (plus:SI (match_operand:SI 1 "general_operand" "%r") ; (match_operand:SI 2 "general_operand" "ri")))] ; "" ; "* ;{ ; rtx xops[4]; ; xops[0] = operands[0]; ; xops[1] = operands[1]; ; xops[2] = operands[2]; ; xops[3] = gen_rtx (MEM, SImode, stack_pointer_rtx); ; output_asm_insn (\"push%z1 %1\", xops); ; output_asm_insn (AS2 (add%z3,%2,%3), xops); ; RET; ;}") ;; addsi3 is faster, so put this after. (define_insn "" [(set (match_operand:SI 0 "register_operand" "=r") (match_operand:QI 1 "address_operand" "p"))] "" "* { CC_STATUS_INIT; /* Adding a constant to a register is faster with an add. */ /* ??? can this ever happen? */ if (GET_CODE (operands[1]) == PLUS && GET_CODE (XEXP (operands[1], 1)) == CONST_INT && rtx_equal_p (operands[0], XEXP (operands[1], 0))) { operands[1] = XEXP (operands[1], 1); if (operands[1] == const1_rtx) return AS1 (inc%L0,%0); if (operands[1] == constm1_rtx) return AS1 (dec%L0,%0); return AS2 (add%L0,%1,%0); } return AS2 (lea%L0,%a1,%0); }") ;; The patterns that match these are at the end of this file. (define_expand "addxf3" [(set (match_operand:XF 0 "register_operand" "") (plus:XF (match_operand:XF 1 "nonimmediate_operand" "") (match_operand:XF 2 "nonimmediate_operand" "")))] "TARGET_80387" "") (define_expand "adddf3" [(set (match_operand:DF 0 "register_operand" "") (plus:DF (match_operand:DF 1 "nonimmediate_operand" "") (match_operand:DF 2 "nonimmediate_operand" "")))] "TARGET_80387" "") (define_expand "addsf3" [(set (match_operand:SF 0 "register_operand" "") (plus:SF (match_operand:SF 1 "nonimmediate_operand" "") (match_operand:SF 2 "nonimmediate_operand" "")))] "TARGET_80387" "") ;;- subtract instructions (define_insn "subdi3" [(set (match_operand:DI 0 "general_operand" "=&r,ro") (minus:DI (match_operand:DI 1 "general_operand" "0,0") (match_operand:DI 2 "general_operand" "o,riF")))] "" "* { rtx low[3], high[3]; CC_STATUS_INIT; split_di (operands, 3, low, high); if (GET_CODE (low[2]) != CONST_INT || INTVAL (low[2]) != 0) { output_asm_insn (AS2 (sub%L0,%2,%0), low); output_asm_insn (AS2 (sbb%L0,%2,%0), high); } else output_asm_insn (AS2 (sub%L0,%2,%0), high); RET; }") (define_insn "subsi3" [(set (match_operand:SI 0 "general_operand" "=rm,r") (minus:SI (match_operand:SI 1 "general_operand" "0,0") (match_operand:SI 2 "general_operand" "ri,rm")))] "" "* return AS2 (sub%L0,%2,%0);") (define_insn "subhi3" [(set (match_operand:HI 0 "general_operand" "=rm,r") (minus:HI (match_operand:HI 1 "general_operand" "0,0") (match_operand:HI 2 "general_operand" "ri,rm")))] "" "* return AS2 (sub%W0,%2,%0);") (define_insn "subqi3" [(set (match_operand:QI 0 "general_operand" "=qm,q") (minus:QI (match_operand:QI 1 "general_operand" "0,0") (match_operand:QI 2 "general_operand" "qn,qmn")))] "" "* return AS2 (sub%B0,%2,%0);") ;; The patterns that match these are at the end of this file. (define_expand "subxf3" [(set (match_operand:XF 0 "register_operand" "") (minus:XF (match_operand:XF 1 "nonimmediate_operand" "") (match_operand:XF 2 "nonimmediate_operand" "")))] "TARGET_80387" "") (define_expand "subdf3" [(set (match_operand:DF 0 "register_operand" "") (minus:DF (match_operand:DF 1 "nonimmediate_operand" "") (match_operand:DF 2 "nonimmediate_operand" "")))] "TARGET_80387" "") (define_expand "subsf3" [(set (match_operand:SF 0 "register_operand" "") (minus:SF (match_operand:SF 1 "nonimmediate_operand" "") (match_operand:SF 2 "nonimmediate_operand" "")))] "TARGET_80387" "") ;;- multiply instructions ;(define_insn "mulqi3" ; [(set (match_operand:QI 0 "general_operand" "=a") ; (mult:QI (match_operand:QI 1 "general_operand" "%0") ; (match_operand:QI 2 "general_operand" "qm")))] ; "" ; "imul%B0 %2,%0") (define_insn "" [(set (match_operand:HI 0 "general_operand" "=r") (mult:HI (match_operand:HI 1 "general_operand" "%0") (match_operand:HI 2 "general_operand" "r")))] "GET_CODE (operands[2]) == CONST_INT && INTVAL (operands[2]) == 0x80" "* return AS2 (imul%W0,%2,%0);") (define_insn "mulhi3" [(set (match_operand:HI 0 "general_operand" "=r,r") (mult:HI (match_operand:HI 1 "general_operand" "%0,rm") (match_operand:HI 2 "general_operand" "g,i")))] "" "* { if (GET_CODE (operands[1]) == REG && REGNO (operands[1]) == REGNO (operands[0]) && (GET_CODE (operands[2]) == MEM || GET_CODE (operands[2]) == REG)) /* Assembler has weird restrictions. */ return AS2 (imul%W0,%2,%0); return AS3 (imul%W0,%2,%1,%0); }") (define_insn "" [(set (match_operand:SI 0 "general_operand" "=r") (mult:SI (match_operand:SI 1 "general_operand" "%0") (match_operand:SI 2 "general_operand" "r")))] "GET_CODE (operands[2]) == CONST_INT && INTVAL (operands[2]) == 0x80" "* return AS2 (imul%L0,%2,%0);") (define_insn "mulsi3" [(set (match_operand:SI 0 "general_operand" "=r,r") (mult:SI (match_operand:SI 1 "general_operand" "%0,rm") (match_operand:SI 2 "general_operand" "g,i")))] "" "* { if (GET_CODE (operands[1]) == REG && REGNO (operands[1]) == REGNO (operands[0]) && (GET_CODE (operands[2]) == MEM || GET_CODE (operands[2]) == REG)) /* Assembler has weird restrictions. */ return AS2 (imul%L0,%2,%0); return AS3 (imul%L0,%2,%1,%0); }") (define_insn "umulqihi3" [(set (match_operand:HI 0 "general_operand" "=a") (mult:HI (zero_extend:HI (match_operand:QI 1 "nonimmediate_operand" "%0")) (zero_extend:HI (match_operand:QI 2 "nonimmediate_operand" "qm"))))] "" "mul%B0 %2") (define_insn "mulqihi3" [(set (match_operand:HI 0 "general_operand" "=a") (mult:HI (sign_extend:HI (match_operand:QI 1 "nonimmediate_operand" "%0")) (sign_extend:HI (match_operand:QI 2 "nonimmediate_operand" "qm"))))] "" "imul%B0 %2") (define_insn "umulsidi3" [(set (match_operand:DI 0 "register_operand" "=A") (mult:DI (zero_extend:DI (match_operand:SI 1 "register_operand" "%0")) (zero_extend:DI (match_operand:SI 2 "nonimmediate_operand" "rm"))))] "TARGET_WIDE_MULTIPLY" "mul%L0 %2") (define_insn "mulsidi3" [(set (match_operand:DI 0 "register_operand" "=A") (mult:DI (sign_extend:DI (match_operand:SI 1 "register_operand" "%0")) (sign_extend:DI (match_operand:SI 2 "nonimmediate_operand" "rm"))))] "TARGET_WIDE_MULTIPLY" "imul%L0 %2") (define_insn "umulsi3_highpart" [(set (match_operand:SI 0 "register_operand" "=d") (truncate:SI (lshiftrt:DI (mult:DI (zero_extend:DI (match_operand:SI 1 "register_operand" "%a")) (zero_extend:DI (match_operand:SI 2 "nonimmediate_operand" "rm"))) (const_int 32)))) (clobber (match_scratch:SI 3 "=a"))] "TARGET_WIDE_MULTIPLY" "mul%L0 %2") (define_insn "smulsi3_highpart" [(set (match_operand:SI 0 "register_operand" "=d") (truncate:SI (lshiftrt:DI (mult:DI (sign_extend:DI (match_operand:SI 1 "register_operand" "%a")) (sign_extend:DI (match_operand:SI 2 "nonimmediate_operand" "rm"))) (const_int 32)))) (clobber (match_scratch:SI 3 "=a"))] "TARGET_WIDE_MULTIPLY" "imul%L0 %2") ;; The patterns that match these are at the end of this file. (define_expand "mulxf3" [(set (match_operand:XF 0 "register_operand" "") (mult:XF (match_operand:XF 1 "nonimmediate_operand" "") (match_operand:XF 2 "nonimmediate_operand" "")))] "TARGET_80387" "") (define_expand "muldf3" [(set (match_operand:DF 0 "register_operand" "") (mult:DF (match_operand:DF 1 "nonimmediate_operand" "") (match_operand:DF 2 "nonimmediate_operand" "")))] "TARGET_80387" "") (define_expand "mulsf3" [(set (match_operand:SF 0 "register_operand" "") (mult:SF (match_operand:SF 1 "nonimmediate_operand" "") (match_operand:SF 2 "nonimmediate_operand" "")))] "TARGET_80387" "") ;;- divide instructions (define_insn "divqi3" [(set (match_operand:QI 0 "general_operand" "=a") (div:QI (match_operand:HI 1 "general_operand" "0") (match_operand:QI 2 "general_operand" "qm")))] "" "idiv%B0 %2") (define_insn "udivqi3" [(set (match_operand:QI 0 "general_operand" "=a") (udiv:QI (match_operand:HI 1 "general_operand" "0") (match_operand:QI 2 "general_operand" "qm")))] "" "div%B0 %2") ;; The patterns that match these are at the end of this file. (define_expand "divxf3" [(set (match_operand:XF 0 "register_operand" "") (div:XF (match_operand:XF 1 "nonimmediate_operand" "") (match_operand:XF 2 "nonimmediate_operand" "")))] "TARGET_80387" "") (define_expand "divdf3" [(set (match_operand:DF 0 "register_operand" "") (div:DF (match_operand:DF 1 "nonimmediate_operand" "") (match_operand:DF 2 "nonimmediate_operand" "")))] "TARGET_80387" "") (define_expand "divsf3" [(set (match_operand:SF 0 "register_operand" "") (div:SF (match_operand:SF 1 "nonimmediate_operand" "") (match_operand:SF 2 "nonimmediate_operand" "")))] "TARGET_80387" "") ;; Remainder instructions. (define_insn "divmodsi4" [(set (match_operand:SI 0 "register_operand" "=a") (div:SI (match_operand:SI 1 "register_operand" "0") (match_operand:SI 2 "general_operand" "rm"))) (set (match_operand:SI 3 "register_operand" "=&d") (mod:SI (match_dup 1) (match_dup 2)))] "" "* { #ifdef INTEL_SYNTAX output_asm_insn (\"cdq\", operands); #else output_asm_insn (\"cltd\", operands); #endif return AS1 (idiv%L0,%2); }") (define_insn "divmodhi4" [(set (match_operand:HI 0 "register_operand" "=a") (div:HI (match_operand:HI 1 "register_operand" "0") (match_operand:HI 2 "general_operand" "rm"))) (set (match_operand:HI 3 "register_operand" "=&d") (mod:HI (match_dup 1) (match_dup 2)))] "" "cwtd\;idiv%W0 %2") ;; ??? Can we make gcc zero extend operand[0]? (define_insn "udivmodsi4" [(set (match_operand:SI 0 "register_operand" "=a") (udiv:SI (match_operand:SI 1 "register_operand" "0") (match_operand:SI 2 "general_operand" "rm"))) (set (match_operand:SI 3 "register_operand" "=&d") (umod:SI (match_dup 1) (match_dup 2)))] "" "* { output_asm_insn (AS2 (xor%L3,%3,%3), operands); return AS1 (div%L0,%2); }") ;; ??? Can we make gcc zero extend operand[0]? (define_insn "udivmodhi4" [(set (match_operand:HI 0 "register_operand" "=a") (udiv:HI (match_operand:HI 1 "register_operand" "0") (match_operand:HI 2 "general_operand" "rm"))) (set (match_operand:HI 3 "register_operand" "=&d") (umod:HI (match_dup 1) (match_dup 2)))] "" "* { output_asm_insn (AS2 (xor%W0,%3,%3), operands); return AS1 (div%W0,%2); }") /* ;;this should be a valid double division which we may want to add (define_insn "" [(set (match_operand:SI 0 "register_operand" "=a") (udiv:DI (match_operand:DI 1 "register_operand" "a") (match_operand:SI 2 "general_operand" "rm"))) (set (match_operand:SI 3 "register_operand" "=d") (umod:SI (match_dup 1) (match_dup 2)))] "" "div%L0 %2,%0") */ ;;- and instructions ;; On i386, ;; movzbl %bl,%ebx ;; is faster than ;; andl $255,%ebx ;; ;; but if the reg is %eax, then the "andl" is faster. ;; ;; On i486, the "andl" is always faster than the "movzbl". ;; ;; On both i386 and i486, a three operand AND is as fast with movzbl or ;; movzwl as with andl, if operands[0] != operands[1]. ;; The `r' in `rm' for operand 3 looks redundant, but it causes ;; optional reloads to be generated if op 3 is a pseudo in a stack slot. ;; ??? What if we only change one byte of an offsettable memory reference? (define_insn "andsi3" [(set (match_operand:SI 0 "general_operand" "=r,r,rm,r") (and:SI (match_operand:SI 1 "general_operand" "%rm,qm,0,0") (match_operand:SI 2 "general_operand" "L,K,ri,rm")))] "" "* { if (GET_CODE (operands[2]) == CONST_INT && ! (GET_CODE (operands[0]) == MEM && MEM_VOLATILE_P (operands[0]))) { if (INTVAL (operands[2]) == 0xffff && REG_P (operands[0]) && (! REG_P (operands[1]) || REGNO (operands[0]) != 0 || REGNO (operands[1]) != 0) && (TARGET_386 || ! rtx_equal_p (operands[0], operands[1]))) { /* ??? tege: Should forget CC_STATUS only if we clobber a remembered operand. Fix that later. */ CC_STATUS_INIT; #ifdef INTEL_SYNTAX return AS2 (movzx,%w1,%0); #else return AS2 (movz%W0%L0,%w1,%0); #endif } if (INTVAL (operands[2]) == 0xff && REG_P (operands[0]) && !(REG_P (operands[1]) && NON_QI_REG_P (operands[1])) && (! REG_P (operands[1]) || REGNO (operands[0]) != 0 || REGNO (operands[1]) != 0) && (TARGET_386 || ! rtx_equal_p (operands[0], operands[1]))) { /* ??? tege: Should forget CC_STATUS only if we clobber a remembered operand. Fix that later. */ CC_STATUS_INIT; #ifdef INTEL_SYNTAX return AS2 (movzx,%b1,%0); #else return AS2 (movz%B0%L0,%b1,%0); #endif } if (QI_REG_P (operands[0]) && ~(INTVAL (operands[2]) | 0xff) == 0) { CC_STATUS_INIT; if (INTVAL (operands[2]) == 0xffffff00) { operands[2] = const0_rtx; return AS2 (mov%B0,%2,%b0); } operands[2] = GEN_INT (INTVAL (operands[2]) & 0xff); return AS2 (and%B0,%2,%b0); } if (QI_REG_P (operands[0]) && ~(INTVAL (operands[2]) | 0xff00) == 0) { CC_STATUS_INIT; if (INTVAL (operands[2]) == 0xffff00ff) { operands[2] = const0_rtx; return AS2 (mov%B0,%2,%h0); } operands[2] = GEN_INT ((INTVAL (operands[2]) >> 8) & 0xff); return AS2 (and%B0,%2,%h0); } if (GET_CODE (operands[0]) == MEM && INTVAL (operands[2]) == 0xffff0000) { operands[2] = const0_rtx; return AS2 (mov%W0,%2,%w0); } } return AS2 (and%L0,%2,%0); }") (define_insn "andhi3" [(set (match_operand:HI 0 "general_operand" "=rm,r") (and:HI (match_operand:HI 1 "general_operand" "%0,0") (match_operand:HI 2 "general_operand" "ri,rm")))] "" "* { if (GET_CODE (operands[2]) == CONST_INT && ! (GET_CODE (operands[0]) == MEM && MEM_VOLATILE_P (operands[0]))) { /* Can we ignore the upper byte? */ if ((! REG_P (operands[0]) || QI_REG_P (operands[0])) && (INTVAL (operands[2]) & 0xff00) == 0xff00) { CC_STATUS_INIT; if ((INTVAL (operands[2]) & 0xff) == 0) { operands[2] = const0_rtx; return AS2 (mov%B0,%2,%b0); } operands[2] = GEN_INT (INTVAL (operands[2]) & 0xff); return AS2 (and%B0,%2,%b0); } /* Can we ignore the lower byte? */ /* ??? what about offsettable memory references? */ if (QI_REG_P (operands[0]) && (INTVAL (operands[2]) & 0xff) == 0xff) { CC_STATUS_INIT; if ((INTVAL (operands[2]) & 0xff00) == 0) { operands[2] = const0_rtx; return AS2 (mov%B0,%2,%h0); } operands[2] = GEN_INT ((INTVAL (operands[2]) >> 8) & 0xff); return AS2 (and%B0,%2,%h0); } } return AS2 (and%W0,%2,%0); }") (define_insn "andqi3" [(set (match_operand:QI 0 "general_operand" "=qm,q") (and:QI (match_operand:QI 1 "general_operand" "%0,0") (match_operand:QI 2 "general_operand" "qn,qmn")))] "" "* return AS2 (and%B0,%2,%0);") /* I am nervous about these two.. add them later.. ;I presume this means that we have something in say op0= eax which is small ;and we want to and it with memory so we can do this by just an ;andb m,%al and have success. (define_insn "" [(set (match_operand:SI 0 "general_operand" "=r") (and:SI (zero_extend:SI (match_operand:HI 1 "nonimmediate_operand" "rm")) (match_operand:SI 2 "general_operand" "0")))] "GET_CODE (operands[2]) == CONST_INT && (unsigned int) INTVAL (operands[2]) < (1 << GET_MODE_BITSIZE (HImode))" "and%W0 %1,%0") (define_insn "" [(set (match_operand:SI 0 "general_operand" "=q") (and:SI (zero_extend:SI (match_operand:QI 1 "nonimmediate_operand" "qm")) (match_operand:SI 2 "general_operand" "0")))] "GET_CODE (operands[2]) == CONST_INT && (unsigned int) INTVAL (operands[2]) < (1 << GET_MODE_BITSIZE (QImode))" "and%L0 %1,%0") */ ;;- Bit set (inclusive or) instructions ;; ??? What if we only change one byte of an offsettable memory reference? (define_insn "iorsi3" [(set (match_operand:SI 0 "general_operand" "=rm,r") (ior:SI (match_operand:SI 1 "general_operand" "%0,0") (match_operand:SI 2 "general_operand" "ri,rm")))] "" "* { if (GET_CODE (operands[2]) == CONST_INT && ! (GET_CODE (operands[0]) == MEM && MEM_VOLATILE_P (operands[0]))) { if ((! REG_P (operands[0]) || QI_REG_P (operands[0])) && (INTVAL (operands[2]) & ~0xff) == 0) { CC_STATUS_INIT; if (INTVAL (operands[2]) == 0xff) return AS2 (mov%B0,%2,%b0); return AS2 (or%B0,%2,%b0); } if (QI_REG_P (operands[0]) && (INTVAL (operands[2]) & ~0xff00) == 0) { CC_STATUS_INIT; operands[2] = GEN_INT (INTVAL (operands[2]) >> 8); if (INTVAL (operands[2]) == 0xff) return AS2 (mov%B0,%2,%h0); return AS2 (or%B0,%2,%h0); } } return AS2 (or%L0,%2,%0); }") (define_insn "iorhi3" [(set (match_operand:HI 0 "general_operand" "=rm,r") (ior:HI (match_operand:HI 1 "general_operand" "%0,0") (match_operand:HI 2 "general_operand" "ri,rm")))] "" "* { if (GET_CODE (operands[2]) == CONST_INT && ! (GET_CODE (operands[0]) == MEM && MEM_VOLATILE_P (operands[0]))) { /* Can we ignore the upper byte? */ if ((! REG_P (operands[0]) || QI_REG_P (operands[0])) && (INTVAL (operands[2]) & 0xff00) == 0) { CC_STATUS_INIT; if (INTVAL (operands[2]) & 0xffff0000) operands[2] = GEN_INT (INTVAL (operands[2]) & 0xffff); if (INTVAL (operands[2]) == 0xff) return AS2 (mov%B0,%2,%b0); return AS2 (or%B0,%2,%b0); } /* Can we ignore the lower byte? */ /* ??? what about offsettable memory references? */ if (QI_REG_P (operands[0]) && (INTVAL (operands[2]) & 0xff) == 0) { CC_STATUS_INIT; operands[2] = GEN_INT ((INTVAL (operands[2]) >> 8) & 0xff); if (INTVAL (operands[2]) == 0xff) return AS2 (mov%B0,%2,%h0); return AS2 (or%B0,%2,%h0); } } return AS2 (or%W0,%2,%0); }") (define_insn "iorqi3" [(set (match_operand:QI 0 "general_operand" "=qm,q") (ior:QI (match_operand:QI 1 "general_operand" "%0,0") (match_operand:QI 2 "general_operand" "qn,qmn")))] "" "* return AS2 (or%B0,%2,%0);") ;;- xor instructions ;; ??? What if we only change one byte of an offsettable memory reference? (define_insn "xorsi3" [(set (match_operand:SI 0 "general_operand" "=rm,r") (xor:SI (match_operand:SI 1 "general_operand" "%0,0") (match_operand:SI 2 "general_operand" "ri,rm")))] "" "* { if (GET_CODE (operands[2]) == CONST_INT && ! (GET_CODE (operands[0]) == MEM && MEM_VOLATILE_P (operands[0]))) { if ((! REG_P (operands[0]) || QI_REG_P (operands[0])) && (INTVAL (operands[2]) & ~0xff) == 0) { CC_STATUS_INIT; if (INTVAL (operands[2]) == 0xff) return AS1 (not%B0,%b0); return AS2 (xor%B0,%2,%b0); } if (QI_REG_P (operands[0]) && (INTVAL (operands[2]) & ~0xff00) == 0) { CC_STATUS_INIT; operands[2] = GEN_INT (INTVAL (operands[2]) >> 8); if (INTVAL (operands[2]) == 0xff) return AS1 (not%B0,%h0); return AS2 (xor%B0,%2,%h0); } } return AS2 (xor%L0,%2,%0); }") (define_insn "xorhi3" [(set (match_operand:HI 0 "general_operand" "=rm,r") (xor:HI (match_operand:HI 1 "general_operand" "%0,0") (match_operand:HI 2 "general_operand" "ri,rm")))] "" "* { if (GET_CODE (operands[2]) == CONST_INT && ! (GET_CODE (operands[0]) == MEM && MEM_VOLATILE_P (operands[0]))) { /* Can we ignore the upper byte? */ if ((! REG_P (operands[0]) || QI_REG_P (operands[0])) && (INTVAL (operands[2]) & 0xff00) == 0) { CC_STATUS_INIT; if (INTVAL (operands[2]) & 0xffff0000) operands[2] = GEN_INT (INTVAL (operands[2]) & 0xffff); if (INTVAL (operands[2]) == 0xff) return AS1 (not%B0,%b0); return AS2 (xor%B0,%2,%b0); } /* Can we ignore the lower byte? */ /* ??? what about offsettable memory references? */ if (QI_REG_P (operands[0]) && (INTVAL (operands[2]) & 0xff) == 0) { CC_STATUS_INIT; operands[2] = GEN_INT ((INTVAL (operands[2]) >> 8) & 0xff); if (INTVAL (operands[2]) == 0xff) return AS1 (not%B0,%h0); return AS2 (xor%B0,%2,%h0); } } return AS2 (xor%W0,%2,%0); }") (define_insn "xorqi3" [(set (match_operand:QI 0 "general_operand" "=qm,q") (xor:QI (match_operand:QI 1 "general_operand" "%0,0") (match_operand:QI 2 "general_operand" "qn,qm")))] "" "* return AS2 (xor%B0,%2,%0);") ;;- negation instructions (define_insn "negdi2" [(set (match_operand:DI 0 "general_operand" "=&ro") (neg:DI (match_operand:DI 1 "general_operand" "0")))] "" "* { rtx xops[2], low[1], high[1]; CC_STATUS_INIT; split_di (operands, 1, low, high); xops[0] = const0_rtx; xops[1] = high[0]; output_asm_insn (AS1 (neg%L0,%0), low); output_asm_insn (AS2 (adc%L1,%0,%1), xops); output_asm_insn (AS1 (neg%L0,%0), high); RET; }") (define_insn "negsi2" [(set (match_operand:SI 0 "general_operand" "=rm") (neg:SI (match_operand:SI 1 "general_operand" "0")))] "" "neg%L0 %0") (define_insn "neghi2" [(set (match_operand:HI 0 "general_operand" "=rm") (neg:HI (match_operand:HI 1 "general_operand" "0")))] "" "neg%W0 %0") (define_insn "negqi2" [(set (match_operand:QI 0 "general_operand" "=qm") (neg:QI (match_operand:QI 1 "general_operand" "0")))] "" "neg%B0 %0") (define_insn "negsf2" [(set (match_operand:SF 0 "register_operand" "=f") (neg:SF (match_operand:SF 1 "general_operand" "0")))] "TARGET_80387" "fchs") (define_insn "negdf2" [(set (match_operand:DF 0 "register_operand" "=f") (neg:DF (match_operand:DF 1 "general_operand" "0")))] "TARGET_80387" "fchs") (define_insn "" [(set (match_operand:DF 0 "register_operand" "=f") (neg:DF (float_extend:DF (match_operand:SF 1 "general_operand" "0"))))] "TARGET_80387" "fchs") (define_insn "negxf2" [(set (match_operand:XF 0 "register_operand" "=f") (neg:XF (match_operand:XF 1 "general_operand" "0")))] "TARGET_80387" "fchs") (define_insn "" [(set (match_operand:XF 0 "register_operand" "=f") (neg:XF (float_extend:XF (match_operand:DF 1 "general_operand" "0"))))] "TARGET_80387" "fchs") ;; Absolute value instructions (define_insn "abssf2" [(set (match_operand:SF 0 "register_operand" "=f") (abs:SF (match_operand:SF 1 "general_operand" "0")))] "TARGET_80387" "fabs") (define_insn "absdf2" [(set (match_operand:DF 0 "register_operand" "=f") (abs:DF (match_operand:DF 1 "general_operand" "0")))] "TARGET_80387" "fabs") (define_insn "" [(set (match_operand:DF 0 "register_operand" "=f") (abs:DF (float_extend:DF (match_operand:SF 1 "general_operand" "0"))))] "TARGET_80387" "fabs") (define_insn "absxf2" [(set (match_operand:XF 0 "register_operand" "=f") (abs:XF (match_operand:XF 1 "general_operand" "0")))] "TARGET_80387" "fabs") (define_insn "" [(set (match_operand:XF 0 "register_operand" "=f") (abs:XF (float_extend:XF (match_operand:DF 1 "general_operand" "0"))))] "TARGET_80387" "fabs") (define_insn "sqrtsf2" [(set (match_operand:SF 0 "register_operand" "=f") (sqrt:SF (match_operand:SF 1 "general_operand" "0")))] "! TARGET_NO_FANCY_MATH_387 && TARGET_80387 && (TARGET_IEEE_FP || flag_fast_math) " "fsqrt") (define_insn "sqrtdf2" [(set (match_operand:DF 0 "register_operand" "=f") (sqrt:DF (match_operand:DF 1 "general_operand" "0")))] "! TARGET_NO_FANCY_MATH_387 && TARGET_80387 && (TARGET_IEEE_FP || flag_fast_math) " "fsqrt") (define_insn "" [(set (match_operand:DF 0 "register_operand" "=f") (sqrt:DF (float_extend:DF (match_operand:SF 1 "general_operand" "0"))))] "! TARGET_NO_FANCY_MATH_387 && TARGET_80387 && (TARGET_IEEE_FP || flag_fast_math) " "fsqrt") (define_insn "sqrtxf2" [(set (match_operand:XF 0 "register_operand" "=f") (sqrt:XF (match_operand:XF 1 "general_operand" "0")))] "! TARGET_NO_FANCY_MATH_387 && TARGET_80387 && (TARGET_IEEE_FP || flag_fast_math) " "fsqrt") (define_insn "" [(set (match_operand:XF 0 "register_operand" "=f") (sqrt:XF (float_extend:XF (match_operand:DF 1 "general_operand" "0"))))] "! TARGET_NO_FANCY_MATH_387 && TARGET_80387 && (TARGET_IEEE_FP || flag_fast_math) " "fsqrt") (define_insn "" [(set (match_operand:XF 0 "register_operand" "=f") (sqrt:XF (float_extend:XF (match_operand:SF 1 "general_operand" "0"))))] "! TARGET_NO_FANCY_MATH_387 && TARGET_80387 && (TARGET_IEEE_FP || flag_fast_math) " "fsqrt") (define_insn "sindf2" [(set (match_operand:DF 0 "register_operand" "=f") (unspec:DF [(match_operand:DF 1 "register_operand" "0")] 1))] "! TARGET_NO_FANCY_MATH_387 && TARGET_80387 && (TARGET_IEEE_FP || flag_fast_math) " "fsin") (define_insn "sinsf2" [(set (match_operand:SF 0 "register_operand" "=f") (unspec:SF [(match_operand:SF 1 "register_operand" "0")] 1))] "! TARGET_NO_FANCY_MATH_387 && TARGET_80387 && (TARGET_IEEE_FP || flag_fast_math) " "fsin") (define_insn "" [(set (match_operand:DF 0 "register_operand" "=f") (unspec:DF [(float_extend:DF (match_operand:SF 1 "register_operand" "0"))] 1))] "! TARGET_NO_FANCY_MATH_387 && TARGET_80387 && (TARGET_IEEE_FP || flag_fast_math) " "fsin") (define_insn "cosdf2" [(set (match_operand:DF 0 "register_operand" "=f") (unspec:DF [(match_operand:DF 1 "register_operand" "0")] 2))] "! TARGET_NO_FANCY_MATH_387 && TARGET_80387 && (TARGET_IEEE_FP || flag_fast_math) " "fcos") (define_insn "cossf2" [(set (match_operand:SF 0 "register_operand" "=f") (unspec:SF [(match_operand:SF 1 "register_operand" "0")] 2))] "! TARGET_NO_FANCY_MATH_387 && TARGET_80387 && (TARGET_IEEE_FP || flag_fast_math) " "fcos") (define_insn "" [(set (match_operand:DF 0 "register_operand" "=f") (unspec:DF [(float_extend:DF (match_operand:SF 1 "register_operand" "0"))] 2))] "! TARGET_NO_FANCY_MATH_387 && TARGET_80387 && (TARGET_IEEE_FP || flag_fast_math) " "fcos") ;;- one complement instructions (define_insn "one_cmplsi2" [(set (match_operand:SI 0 "general_operand" "=rm") (not:SI (match_operand:SI 1 "general_operand" "0")))] "" "not%L0 %0") (define_insn "one_cmplhi2" [(set (match_operand:HI 0 "general_operand" "=rm") (not:HI (match_operand:HI 1 "general_operand" "0")))] "" "not%W0 %0") (define_insn "one_cmplqi2" [(set (match_operand:QI 0 "general_operand" "=qm") (not:QI (match_operand:QI 1 "general_operand" "0")))] "" "not%B0 %0") ;;- arithmetic shift instructions ;; DImode shifts are implemented using the i386 "shift double" opcode, ;; which is written as "sh[lr]d[lw] imm,reg,reg/mem". If the shift count ;; is variable, then the count is in %cl and the "imm" operand is dropped ;; from the assembler input. ;; This instruction shifts the target reg/mem as usual, but instead of ;; shifting in zeros, bits are shifted in from reg operand. If the insn ;; is a left shift double, bits are taken from the high order bits of ;; reg, else if the insn is a shift right double, bits are taken from the ;; low order bits of reg. So if %eax is "1234" and %edx is "5678", ;; "shldl $8,%edx,%eax" leaves %edx unchanged and sets %eax to "2345". ;; Since sh[lr]d does not change the `reg' operand, that is done ;; separately, making all shifts emit pairs of shift double and normal ;; shift. Since sh[lr]d does not shift more than 31 bits, and we wish to ;; support a 63 bit shift, each shift where the count is in a reg expands ;; to three pairs. If the overall shift is by N bits, then the first two ;; pairs shift by N / 2 and the last pair by N & 1. ;; If the shift count is a constant, we need never emit more than one ;; shift pair, instead using moves and sign extension for counts greater ;; than 31. (define_expand "ashldi3" [(set (match_operand:DI 0 "register_operand" "") (ashift:DI (match_operand:DI 1 "register_operand" "") (match_operand:QI 2 "nonmemory_operand" "")))] "" " { if (GET_CODE (operands[2]) != CONST_INT || ! CONST_OK_FOR_LETTER_P (INTVAL (operands[2]), 'J')) { operands[2] = copy_to_mode_reg (QImode, operands[2]); emit_insn (gen_ashldi3_non_const_int (operands[0], operands[1], operands[2])); } else emit_insn (gen_ashldi3_const_int (operands[0], operands[1], operands[2])); DONE; }") (define_insn "ashldi3_const_int" [(set (match_operand:DI 0 "register_operand" "=&r") (ashift:DI (match_operand:DI 1 "register_operand" "0") (match_operand:QI 2 "const_int_operand" "J")))] "" "* { rtx xops[4], low[1], high[1]; CC_STATUS_INIT; split_di (operands, 1, low, high); xops[0] = operands[2]; xops[1] = const1_rtx; xops[2] = low[0]; xops[3] = high[0]; if (INTVAL (xops[0]) > 31) { output_asm_insn (AS2 (mov%L3,%2,%3), xops); /* Fast shift by 32 */ output_asm_insn (AS2 (xor%L2,%2,%2), xops); if (INTVAL (xops[0]) > 32) { xops[0] = GEN_INT (INTVAL (xops[0]) - 32); output_asm_insn (AS2 (sal%L3,%0,%3), xops); /* Remaining shift */ } } else { output_asm_insn (AS3 (shld%L3,%0,%2,%3), xops); output_asm_insn (AS2 (sal%L2,%0,%2), xops); } RET; }") (define_insn "ashldi3_non_const_int" [(set (match_operand:DI 0 "register_operand" "=&r") (ashift:DI (match_operand:DI 1 "register_operand" "0") (match_operand:QI 2 "register_operand" "c"))) (clobber (match_dup 2))] "" "* { rtx xops[4], low[1], high[1]; CC_STATUS_INIT; split_di (operands, 1, low, high); xops[0] = operands[2]; xops[1] = const1_rtx; xops[2] = low[0]; xops[3] = high[0]; output_asm_insn (AS2 (ror%B0,%1,%0), xops); /* shift count / 2 */ output_asm_insn (AS3_SHIFT_DOUBLE (shld%L3,%0,%2,%3), xops); output_asm_insn (AS2 (sal%L2,%0,%2), xops); output_asm_insn (AS3_SHIFT_DOUBLE (shld%L3,%0,%2,%3), xops); output_asm_insn (AS2 (sal%L2,%0,%2), xops); xops[1] = GEN_INT (7); /* shift count & 1 */ output_asm_insn (AS2 (shr%B0,%1,%0), xops); output_asm_insn (AS3_SHIFT_DOUBLE (shld%L3,%0,%2,%3), xops); output_asm_insn (AS2 (sal%L2,%0,%2), xops); RET; }") ;; On i386 and i486, "addl reg,reg" is faster than "sall $1,reg" ;; On i486, movl/sall appears slightly faster than leal, but the leal ;; is smaller - use leal for now unless the shift count is 1. (define_insn "ashlsi3" [(set (match_operand:SI 0 "general_operand" "=r,rm") (ashift:SI (match_operand:SI 1 "general_operand" "r,0") (match_operand:SI 2 "nonmemory_operand" "M,cI")))] "" "* { if (REG_P (operands[0]) && REGNO (operands[0]) != REGNO (operands[1])) { if (!TARGET_386 && INTVAL (operands[2]) == 1) { output_asm_insn (AS2 (mov%L0,%1,%0), operands); return AS2 (add%L0,%1,%0); } else { CC_STATUS_INIT; if (operands[1] == stack_pointer_rtx) { output_asm_insn (AS2 (mov%L0,%1,%0), operands); operands[1] = operands[0]; } operands[1] = gen_rtx (MULT, SImode, operands[1], GEN_INT (1 << INTVAL (operands[2]))); return AS2 (lea%L0,%a1,%0); } } if (REG_P (operands[2])) return AS2 (sal%L0,%b2,%0); if (REG_P (operands[0]) && operands[2] == const1_rtx) return AS2 (add%L0,%0,%0); return AS2 (sal%L0,%2,%0); }") (define_insn "ashlhi3" [(set (match_operand:HI 0 "general_operand" "=rm") (ashift:HI (match_operand:HI 1 "general_operand" "0") (match_operand:HI 2 "nonmemory_operand" "cI")))] "" "* { if (REG_P (operands[2])) return AS2 (sal%W0,%b2,%0); if (REG_P (operands[0]) && operands[2] == const1_rtx) return AS2 (add%W0,%0,%0); return AS2 (sal%W0,%2,%0); }") (define_insn "ashlqi3" [(set (match_operand:QI 0 "general_operand" "=qm") (ashift:QI (match_operand:QI 1 "general_operand" "0") (match_operand:QI 2 "nonmemory_operand" "cI")))] "" "* { if (REG_P (operands[2])) return AS2 (sal%B0,%b2,%0); if (REG_P (operands[0]) && operands[2] == const1_rtx) return AS2 (add%B0,%0,%0); return AS2 (sal%B0,%2,%0); }") ;; See comment above `ashldi3' about how this works. (define_expand "ashrdi3" [(set (match_operand:DI 0 "register_operand" "") (ashiftrt:DI (match_operand:DI 1 "register_operand" "") (match_operand:QI 2 "nonmemory_operand" "")))] "" " { if (GET_CODE (operands[2]) != CONST_INT || ! CONST_OK_FOR_LETTER_P (INTVAL (operands[2]), 'J')) { operands[2] = copy_to_mode_reg (QImode, operands[2]); emit_insn (gen_ashrdi3_non_const_int (operands[0], operands[1], operands[2])); } else emit_insn (gen_ashrdi3_const_int (operands[0], operands[1], operands[2])); DONE; }") (define_insn "ashrdi3_const_int" [(set (match_operand:DI 0 "register_operand" "=&r") (ashiftrt:DI (match_operand:DI 1 "register_operand" "0") (match_operand:QI 2 "const_int_operand" "J")))] "" "* { rtx xops[4], low[1], high[1]; CC_STATUS_INIT; split_di (operands, 1, low, high); xops[0] = operands[2]; xops[1] = const1_rtx; xops[2] = low[0]; xops[3] = high[0]; if (INTVAL (xops[0]) > 31) { xops[1] = GEN_INT (31); output_asm_insn (AS2 (mov%L2,%3,%2), xops); output_asm_insn (AS2 (sar%L3,%1,%3), xops); /* shift by 32 */ if (INTVAL (xops[0]) > 32) { xops[0] = GEN_INT (INTVAL (xops[0]) - 32); output_asm_insn (AS2 (sar%L2,%0,%2), xops); /* Remaining shift */ } } else { output_asm_insn (AS3 (shrd%L2,%0,%3,%2), xops); output_asm_insn (AS2 (sar%L3,%0,%3), xops); } RET; }") (define_insn "ashrdi3_non_const_int" [(set (match_operand:DI 0 "register_operand" "=&r") (ashiftrt:DI (match_operand:DI 1 "register_operand" "0") (match_operand:QI 2 "register_operand" "c"))) (clobber (match_dup 2))] "" "* { rtx xops[4], low[1], high[1]; CC_STATUS_INIT; split_di (operands, 1, low, high); xops[0] = operands[2]; xops[1] = const1_rtx; xops[2] = low[0]; xops[3] = high[0]; output_asm_insn (AS2 (ror%B0,%1,%0), xops); /* shift count / 2 */ output_asm_insn (AS3_SHIFT_DOUBLE (shrd%L2,%0,%3,%2), xops); output_asm_insn (AS2 (sar%L3,%0,%3), xops); output_asm_insn (AS3_SHIFT_DOUBLE (shrd%L2,%0,%3,%2), xops); output_asm_insn (AS2 (sar%L3,%0,%3), xops); xops[1] = GEN_INT (7); /* shift count & 1 */ output_asm_insn (AS2 (shr%B0,%1,%0), xops); output_asm_insn (AS3_SHIFT_DOUBLE (shrd%L2,%0,%3,%2), xops); output_asm_insn (AS2 (sar%L3,%0,%3), xops); RET; }") (define_insn "ashrsi3" [(set (match_operand:SI 0 "general_operand" "=rm") (ashiftrt:SI (match_operand:SI 1 "general_operand" "0") (match_operand:SI 2 "nonmemory_operand" "cI")))] "" "* { if (REG_P (operands[2])) return AS2 (sar%L0,%b2,%0); else return AS2 (sar%L0,%2,%0); }") (define_insn "ashrhi3" [(set (match_operand:HI 0 "general_operand" "=rm") (ashiftrt:HI (match_operand:HI 1 "general_operand" "0") (match_operand:HI 2 "nonmemory_operand" "cI")))] "" "* { if (REG_P (operands[2])) return AS2 (sar%W0,%b2,%0); else return AS2 (sar%W0,%2,%0); }") (define_insn "ashrqi3" [(set (match_operand:QI 0 "general_operand" "=qm") (ashiftrt:QI (match_operand:QI 1 "general_operand" "0") (match_operand:QI 2 "nonmemory_operand" "cI")))] "" "* { if (REG_P (operands[2])) return AS2 (sar%B0,%b2,%0); else return AS2 (sar%B0,%2,%0); }") ;;- logical shift instructions ;; See comment above `ashldi3' about how this works. (define_expand "lshrdi3" [(set (match_operand:DI 0 "register_operand" "") (lshiftrt:DI (match_operand:DI 1 "register_operand" "") (match_operand:QI 2 "nonmemory_operand" "")))] "" " { if (GET_CODE (operands[2]) != CONST_INT || ! CONST_OK_FOR_LETTER_P (INTVAL (operands[2]), 'J')) { operands[2] = copy_to_mode_reg (QImode, operands[2]); emit_insn (gen_lshrdi3_non_const_int (operands[0], operands[1], operands[2])); } else emit_insn (gen_lshrdi3_const_int (operands[0], operands[1], operands[2])); DONE; }") (define_insn "lshrdi3_const_int" [(set (match_operand:DI 0 "register_operand" "=&r") (lshiftrt:DI (match_operand:DI 1 "register_operand" "0") (match_operand:QI 2 "const_int_operand" "J")))] "" "* { rtx xops[4], low[1], high[1]; CC_STATUS_INIT; split_di (operands, 1, low, high); xops[0] = operands[2]; xops[1] = const1_rtx; xops[2] = low[0]; xops[3] = high[0]; if (INTVAL (xops[0]) > 31) { output_asm_insn (AS2 (mov%L2,%3,%2), xops); /* Fast shift by 32 */ output_asm_insn (AS2 (xor%L3,%3,%3), xops); if (INTVAL (xops[0]) > 32) { xops[0] = GEN_INT (INTVAL (xops[0]) - 32); output_asm_insn (AS2 (shr%L2,%0,%2), xops); /* Remaining shift */ } } else { output_asm_insn (AS3 (shrd%L2,%0,%3,%2), xops); output_asm_insn (AS2 (shr%L3,%0,%3), xops); } RET; }") (define_insn "lshrdi3_non_const_int" [(set (match_operand:DI 0 "register_operand" "=&r") (lshiftrt:DI (match_operand:DI 1 "register_operand" "0") (match_operand:QI 2 "register_operand" "c"))) (clobber (match_dup 2))] "" "* { rtx xops[4], low[1], high[1]; CC_STATUS_INIT; split_di (operands, 1, low, high); xops[0] = operands[2]; xops[1] = const1_rtx; xops[2] = low[0]; xops[3] = high[0]; output_asm_insn (AS2 (ror%B0,%1,%0), xops); /* shift count / 2 */ output_asm_insn (AS3_SHIFT_DOUBLE (shrd%L2,%0,%3,%2), xops); output_asm_insn (AS2 (shr%L3,%0,%3), xops); output_asm_insn (AS3_SHIFT_DOUBLE (shrd%L2,%0,%3,%2), xops); output_asm_insn (AS2 (shr%L3,%0,%3), xops); xops[1] = GEN_INT (7); /* shift count & 1 */ output_asm_insn (AS2 (shr%B0,%1,%0), xops); output_asm_insn (AS3_SHIFT_DOUBLE (shrd%L2,%0,%3,%2), xops); output_asm_insn (AS2 (shr%L3,%0,%3), xops); RET; }") (define_insn "lshrsi3" [(set (match_operand:SI 0 "general_operand" "=rm") (lshiftrt:SI (match_operand:SI 1 "general_operand" "0") (match_operand:SI 2 "nonmemory_operand" "cI")))] "" "* { if (REG_P (operands[2])) return AS2 (shr%L0,%b2,%0); else return AS2 (shr%L0,%2,%1); }") (define_insn "lshrhi3" [(set (match_operand:HI 0 "general_operand" "=rm") (lshiftrt:HI (match_operand:HI 1 "general_operand" "0") (match_operand:HI 2 "nonmemory_operand" "cI")))] "" "* { if (REG_P (operands[2])) return AS2 (shr%W0,%b2,%0); else return AS2 (shr%W0,%2,%0); }") (define_insn "lshrqi3" [(set (match_operand:QI 0 "general_operand" "=qm") (lshiftrt:QI (match_operand:QI 1 "general_operand" "0") (match_operand:QI 2 "nonmemory_operand" "cI")))] "" "* { if (REG_P (operands[2])) return AS2 (shr%B0,%b2,%0); else return AS2 (shr%B0,%2,%0); }") ;;- rotate instructions (define_insn "rotlsi3" [(set (match_operand:SI 0 "general_operand" "=rm") (rotate:SI (match_operand:SI 1 "general_operand" "0") (match_operand:SI 2 "nonmemory_operand" "cI")))] "" "* { if (REG_P (operands[2])) return AS2 (rol%L0,%b2,%0); else return AS2 (rol%L0,%2,%0); }") (define_insn "rotlhi3" [(set (match_operand:HI 0 "general_operand" "=rm") (rotate:HI (match_operand:HI 1 "general_operand" "0") (match_operand:HI 2 "nonmemory_operand" "cI")))] "" "* { if (REG_P (operands[2])) return AS2 (rol%W0,%b2,%0); else return AS2 (rol%W0,%2,%0); }") (define_insn "rotlqi3" [(set (match_operand:QI 0 "general_operand" "=qm") (rotate:QI (match_operand:QI 1 "general_operand" "0") (match_operand:QI 2 "nonmemory_operand" "cI")))] "" "* { if (REG_P (operands[2])) return AS2 (rol%B0,%b2,%0); else return AS2 (rol%B0,%2,%0); }") (define_insn "rotrsi3" [(set (match_operand:SI 0 "general_operand" "=rm") (rotatert:SI (match_operand:SI 1 "general_operand" "0") (match_operand:SI 2 "nonmemory_operand" "cI")))] "" "* { if (REG_P (operands[2])) return AS2 (ror%L0,%b2,%0); else return AS2 (ror%L0,%2,%0); }") (define_insn "rotrhi3" [(set (match_operand:HI 0 "general_operand" "=rm") (rotatert:HI (match_operand:HI 1 "general_operand" "0") (match_operand:HI 2 "nonmemory_operand" "cI")))] "" "* { if (REG_P (operands[2])) return AS2 (ror%W0,%b2,%0); else return AS2 (ror%W0,%2,%0); }") (define_insn "rotrqi3" [(set (match_operand:QI 0 "general_operand" "=qm") (rotatert:QI (match_operand:QI 1 "general_operand" "0") (match_operand:QI 2 "nonmemory_operand" "cI")))] "" "* { if (REG_P (operands[2])) return AS2 (ror%B0,%b2,%0); else return AS2 (ror%B0,%2,%0); }") /* ;; This usually looses. But try a define_expand to recognize a few case ;; we can do efficiently, such as accessing the "high" QImode registers, ;; %ah, %bh, %ch, %dh. (define_insn "insv" [(set (zero_extract:SI (match_operand:SI 0 "register_operand" "+&r") (match_operand:SI 1 "general_operand" "i") (match_operand:SI 2 "general_operand" "i")) (match_operand:SI 3 "general_operand" "ri"))] "" "* { if (INTVAL (operands[1]) + INTVAL (operands[2]) > GET_MODE_BITSIZE (SImode)) abort (); if (GET_CODE (operands[3]) == CONST_INT) { unsigned int mask = (1 << INTVAL (operands[1])) - 1; operands[1] = GEN_INT (~(mask << INTVAL (operands[2]))); output_asm_insn (AS2 (and%L0,%1,%0), operands); operands[3] = GEN_INT (INTVAL (operands[3]) << INTVAL (operands[2])); output_asm_insn (AS2 (or%L0,%3,%0), operands); } else { operands[0] = gen_rtx (REG, SImode, REGNO (operands[0])); if (INTVAL (operands[2])) output_asm_insn (AS2 (ror%L0,%2,%0), operands); output_asm_insn (AS3 (shrd%L0,%1,%3,%0), operands); operands[2] = GEN_INT (BITS_PER_WORD - INTVAL (operands[1]) - INTVAL (operands[2])); if (INTVAL (operands[2])) output_asm_insn (AS2 (ror%L0,%2,%0), operands); } RET; }") */ /* ;; ??? There are problems with the mode of operand[3]. The point of this ;; is to represent an HImode move to a "high byte" register. (define_expand "insv" [(set (zero_extract:SI (match_operand:SI 0 "general_operand" "") (match_operand:SI 1 "immediate_operand" "") (match_operand:SI 2 "immediate_operand" "")) (match_operand:QI 3 "general_operand" "ri"))] "" " { if (GET_CODE (operands[1]) != CONST_INT || GET_CODE (operands[2]) != CONST_INT) FAIL; if (! (INTVAL (operands[1]) == 8 && (INTVAL (operands[2]) == 8 || INTVAL (operands[2]) == 0)) && ! INTVAL (operands[1]) == 1) FAIL; }") ;; ??? Are these constraints right? (define_insn "" [(set (zero_extract:SI (match_operand:SI 0 "general_operand" "+&qo") (const_int 8) (const_int 8)) (match_operand:QI 1 "general_operand" "qn"))] "" "* { if (REG_P (operands[0])) return AS2 (mov%B0,%1,%h0); operands[0] = adj_offsettable_operand (operands[0], 1); return AS2 (mov%B0,%1,%0); }") */ ;; On i386, the register count for a bit operation is *not* truncated, ;; so SHIFT_COUNT_TRUNCATED must not be defined. ;; On i486, the shift & or/and code is faster than bts or btr. If ;; operands[0] is a MEM, the bt[sr] is half as fast as the normal code. ;; On i386, bts is a little faster if operands[0] is a reg, and a ;; little slower if operands[0] is a MEM, than the shift & or/and code. ;; Use bts & btr, since they reload better. ;; General bit set and clear. (define_insn "" [(set (zero_extract:SI (match_operand:SI 0 "general_operand" "+rm") (const_int 1) (match_operand:SI 2 "general_operand" "r")) (match_operand:SI 3 "const_int_operand" "n"))] "TARGET_386 && GET_CODE (operands[2]) != CONST_INT" "* { CC_STATUS_INIT; if (INTVAL (operands[3]) == 1) return AS2 (bts%L0,%2,%0); else return AS2 (btr%L0,%2,%0); }") ;; Bit complement. See comments on previous pattern. ;; ??? Is this really worthwhile? (define_insn "" [(set (match_operand:SI 0 "general_operand" "=rm") (xor:SI (ashift:SI (const_int 1) (match_operand:SI 1 "general_operand" "r")) (match_operand:SI 2 "general_operand" "0")))] "TARGET_386 && GET_CODE (operands[1]) != CONST_INT" "* { CC_STATUS_INIT; return AS2 (btc%L0,%1,%0); }") (define_insn "" [(set (match_operand:SI 0 "general_operand" "=rm") (xor:SI (match_operand:SI 1 "general_operand" "0") (ashift:SI (const_int 1) (match_operand:SI 2 "general_operand" "r"))))] "TARGET_386 && GET_CODE (operands[2]) != CONST_INT" "* { CC_STATUS_INIT; return AS2 (btc%L0,%2,%0); }") ;; Recognizers for bit-test instructions. ;; The bt opcode allows a MEM in operands[0]. But on both i386 and ;; i486, it is faster to copy a MEM to REG and then use bt, than to use ;; bt on the MEM directly. ;; ??? The first argument of a zero_extract must not be reloaded, so ;; don't allow a MEM in the operand predicate without allowing it in the ;; constraint. (define_insn "" [(set (cc0) (zero_extract (match_operand:SI 0 "register_operand" "r") (const_int 1) (match_operand:SI 1 "general_operand" "r")))] "GET_CODE (operands[1]) != CONST_INT" "* { cc_status.flags |= CC_Z_IN_NOT_C; return AS2 (bt%L0,%1,%0); }") (define_insn "" [(set (cc0) (zero_extract (match_operand:SI 0 "register_operand" "r") (match_operand:SI 1 "const_int_operand" "n") (match_operand:SI 2 "const_int_operand" "n")))] "" "* { unsigned int mask; mask = ((1 << INTVAL (operands[1])) - 1) << INTVAL (operands[2]); operands[1] = GEN_INT (mask); if (QI_REG_P (operands[0])) { if ((mask & ~0xff) == 0) { cc_status.flags |= CC_NOT_NEGATIVE; return AS2 (test%B0,%1,%b0); } if ((mask & ~0xff00) == 0) { cc_status.flags |= CC_NOT_NEGATIVE; operands[1] = GEN_INT (mask >> 8); return AS2 (test%B0,%1,%h0); } } return AS2 (test%L0,%1,%0); }") ;; ??? All bets are off if operand 0 is a volatile MEM reference. ;; The CPU may access unspecified bytes around the actual target byte. (define_insn "" [(set (cc0) (zero_extract (match_operand:QI 0 "general_operand" "rm") (match_operand:SI 1 "const_int_operand" "n") (match_operand:SI 2 "const_int_operand" "n")))] "GET_CODE (operands[0]) != MEM || ! MEM_VOLATILE_P (operands[0])" "* { unsigned int mask; mask = ((1 << INTVAL (operands[1])) - 1) << INTVAL (operands[2]); operands[1] = GEN_INT (mask); if (! REG_P (operands[0]) || QI_REG_P (operands[0])) { if ((mask & ~0xff) == 0) { cc_status.flags |= CC_NOT_NEGATIVE; return AS2 (test%B0,%1,%b0); } if ((mask & ~0xff00) == 0) { cc_status.flags |= CC_NOT_NEGATIVE; operands[1] = GEN_INT (mask >> 8); if (QI_REG_P (operands[0])) return AS2 (test%B0,%1,%h0); else { operands[0] = adj_offsettable_operand (operands[0], 1); return AS2 (test%B0,%1,%b0); } } if (GET_CODE (operands[0]) == MEM && (mask & ~0xff0000) == 0) { cc_status.flags |= CC_NOT_NEGATIVE; operands[1] = GEN_INT (mask >> 16); operands[0] = adj_offsettable_operand (operands[0], 2); return AS2 (test%B0,%1,%b0); } if (GET_CODE (operands[0]) == MEM && (mask & ~0xff000000) == 0) { cc_status.flags |= CC_NOT_NEGATIVE; operands[1] = GEN_INT (mask >> 24); operands[0] = adj_offsettable_operand (operands[0], 3); return AS2 (test%B0,%1,%b0); } } if (CONSTANT_P (operands[1]) || GET_CODE (operands[0]) == MEM) return AS2 (test%L0,%1,%0); return AS2 (test%L1,%0,%1); }") ;; Store-flag instructions. ;; For all sCOND expanders, also expand the compare or test insn that ;; generates cc0. Generate an equality comparison if `seq' or `sne'. ;; The 386 sCOND opcodes can write to memory. But a gcc sCOND insn may ;; not have any input reloads. A MEM write might need an input reload ;; for the address of the MEM. So don't allow MEM as the SET_DEST. (define_expand "seq" [(match_dup 1) (set (match_operand:QI 0 "register_operand" "") (eq:QI (cc0) (const_int 0)))] "" " { if (TARGET_IEEE_FP && GET_MODE_CLASS (GET_MODE (i386_compare_op0)) == MODE_FLOAT) operands[1] = (*i386_compare_gen_eq)(i386_compare_op0, i386_compare_op1); else operands[1] = (*i386_compare_gen)(i386_compare_op0, i386_compare_op1); }") (define_insn "" [(set (match_operand:QI 0 "register_operand" "=q") (eq:QI (cc0) (const_int 0)))] "" "* { if (cc_prev_status.flags & CC_Z_IN_NOT_C) return AS1 (setnb,%0); else return AS1 (sete,%0); }") (define_expand "sne" [(match_dup 1) (set (match_operand:QI 0 "register_operand" "") (ne:QI (cc0) (const_int 0)))] "" " { if (TARGET_IEEE_FP && GET_MODE_CLASS (GET_MODE (i386_compare_op0)) == MODE_FLOAT) operands[1] = (*i386_compare_gen_eq)(i386_compare_op0, i386_compare_op1); else operands[1] = (*i386_compare_gen)(i386_compare_op0, i386_compare_op1); }") (define_insn "" [(set (match_operand:QI 0 "register_operand" "=q") (ne:QI (cc0) (const_int 0)))] "" "* { if (cc_prev_status.flags & CC_Z_IN_NOT_C) return AS1 (setb,%0); else return AS1 (setne,%0); } ") (define_expand "sgt" [(match_dup 1) (set (match_operand:QI 0 "register_operand" "") (gt:QI (cc0) (const_int 0)))] "" "operands[1] = (*i386_compare_gen)(i386_compare_op0, i386_compare_op1);") (define_insn "" [(set (match_operand:QI 0 "register_operand" "=q") (gt:QI (cc0) (const_int 0)))] "" "* { if (TARGET_IEEE_FP && (cc_prev_status.flags & CC_IN_80387)) return AS1 (sete,%0); OUTPUT_JUMP (\"setg %0\", \"seta %0\", NULL_PTR); }") (define_expand "sgtu" [(match_dup 1) (set (match_operand:QI 0 "register_operand" "") (gtu:QI (cc0) (const_int 0)))] "" "operands[1] = (*i386_compare_gen)(i386_compare_op0, i386_compare_op1);") (define_insn "" [(set (match_operand:QI 0 "register_operand" "=q") (gtu:QI (cc0) (const_int 0)))] "" "* return \"seta %0\"; ") (define_expand "slt" [(match_dup 1) (set (match_operand:QI 0 "register_operand" "") (lt:QI (cc0) (const_int 0)))] "" "operands[1] = (*i386_compare_gen)(i386_compare_op0, i386_compare_op1);") (define_insn "" [(set (match_operand:QI 0 "register_operand" "=q") (lt:QI (cc0) (const_int 0)))] "" "* { if (TARGET_IEEE_FP && (cc_prev_status.flags & CC_IN_80387)) return AS1 (sete,%0); OUTPUT_JUMP (\"setl %0\", \"setb %0\", \"sets %0\"); }") (define_expand "sltu" [(match_dup 1) (set (match_operand:QI 0 "register_operand" "") (ltu:QI (cc0) (const_int 0)))] "" "operands[1] = (*i386_compare_gen)(i386_compare_op0, i386_compare_op1);") (define_insn "" [(set (match_operand:QI 0 "register_operand" "=q") (ltu:QI (cc0) (const_int 0)))] "" "* return \"setb %0\"; ") (define_expand "sge" [(match_dup 1) (set (match_operand:QI 0 "register_operand" "") (ge:QI (cc0) (const_int 0)))] "" "operands[1] = (*i386_compare_gen)(i386_compare_op0, i386_compare_op1);") (define_insn "" [(set (match_operand:QI 0 "register_operand" "=q") (ge:QI (cc0) (const_int 0)))] "" "* { if (TARGET_IEEE_FP && (cc_prev_status.flags & CC_IN_80387)) return AS1 (sete,%0); OUTPUT_JUMP (\"setge %0\", \"setae %0\", \"setns %0\"); }") (define_expand "sgeu" [(match_dup 1) (set (match_operand:QI 0 "register_operand" "") (geu:QI (cc0) (const_int 0)))] "" "operands[1] = (*i386_compare_gen)(i386_compare_op0, i386_compare_op1);") (define_insn "" [(set (match_operand:QI 0 "register_operand" "=q") (geu:QI (cc0) (const_int 0)))] "" "* return \"setae %0\"; ") (define_expand "sle" [(match_dup 1) (set (match_operand:QI 0 "register_operand" "") (le:QI (cc0) (const_int 0)))] "" "operands[1] = (*i386_compare_gen)(i386_compare_op0, i386_compare_op1);") (define_insn "" [(set (match_operand:QI 0 "register_operand" "=q") (le:QI (cc0) (const_int 0)))] "" "* { if (TARGET_IEEE_FP && (cc_prev_status.flags & CC_IN_80387)) return AS1 (setb,%0); OUTPUT_JUMP (\"setle %0\", \"setbe %0\", NULL_PTR); }") (define_expand "sleu" [(match_dup 1) (set (match_operand:QI 0 "register_operand" "") (leu:QI (cc0) (const_int 0)))] "" "operands[1] = (*i386_compare_gen)(i386_compare_op0, i386_compare_op1);") (define_insn "" [(set (match_operand:QI 0 "register_operand" "=q") (leu:QI (cc0) (const_int 0)))] "" "* return \"setbe %0\"; ") ;; Basic conditional jump instructions. ;; We ignore the overflow flag for signed branch instructions. ;; For all bCOND expanders, also expand the compare or test insn that ;; generates cc0. Generate an equality comparison if `beq' or `bne'. (define_expand "beq" [(match_dup 1) (set (pc) (if_then_else (eq (cc0) (const_int 0)) (label_ref (match_operand 0 "" "")) (pc)))] "" " { if (TARGET_IEEE_FP && GET_MODE_CLASS (GET_MODE (i386_compare_op0)) == MODE_FLOAT) operands[1] = (*i386_compare_gen_eq)(i386_compare_op0, i386_compare_op1); else operands[1] = (*i386_compare_gen)(i386_compare_op0, i386_compare_op1); }") (define_insn "" [(set (pc) (if_then_else (eq (cc0) (const_int 0)) (label_ref (match_operand 0 "" "")) (pc)))] "" "* { if (cc_prev_status.flags & CC_Z_IN_NOT_C) return \"jnc %l0\"; else return \"je %l0\"; }") (define_expand "bne" [(match_dup 1) (set (pc) (if_then_else (ne (cc0) (const_int 0)) (label_ref (match_operand 0 "" "")) (pc)))] "" " { if (TARGET_IEEE_FP && GET_MODE_CLASS (GET_MODE (i386_compare_op0)) == MODE_FLOAT) operands[1] = (*i386_compare_gen_eq)(i386_compare_op0, i386_compare_op1); else operands[1] = (*i386_compare_gen)(i386_compare_op0, i386_compare_op1); }") (define_insn "" [(set (pc) (if_then_else (ne (cc0) (const_int 0)) (label_ref (match_operand 0 "" "")) (pc)))] "" "* { if (cc_prev_status.flags & CC_Z_IN_NOT_C) return \"jc %l0\"; else return \"jne %l0\"; }") (define_expand "bgt" [(match_dup 1) (set (pc) (if_then_else (gt (cc0) (const_int 0)) (label_ref (match_operand 0 "" "")) (pc)))] "" "operands[1] = (*i386_compare_gen)(i386_compare_op0, i386_compare_op1);") (define_insn "" [(set (pc) (if_then_else (gt (cc0) (const_int 0)) (label_ref (match_operand 0 "" "")) (pc)))] "" "* { if (TARGET_IEEE_FP && (cc_prev_status.flags & CC_IN_80387)) return AS1 (je,%l0); OUTPUT_JUMP (\"jg %l0\", \"ja %l0\", NULL_PTR); }") (define_expand "bgtu" [(match_dup 1) (set (pc) (if_then_else (gtu (cc0) (const_int 0)) (label_ref (match_operand 0 "" "")) (pc)))] "" "operands[1] = (*i386_compare_gen)(i386_compare_op0, i386_compare_op1);") (define_insn "" [(set (pc) (if_then_else (gtu (cc0) (const_int 0)) (label_ref (match_operand 0 "" "")) (pc)))] "" "ja %l0") (define_expand "blt" [(match_dup 1) (set (pc) (if_then_else (lt (cc0) (const_int 0)) (label_ref (match_operand 0 "" "")) (pc)))] "" "operands[1] = (*i386_compare_gen)(i386_compare_op0, i386_compare_op1);") (define_insn "" [(set (pc) (if_then_else (lt (cc0) (const_int 0)) (label_ref (match_operand 0 "" "")) (pc)))] "" "* { if (TARGET_IEEE_FP && (cc_prev_status.flags & CC_IN_80387)) return AS1 (je,%l0); OUTPUT_JUMP (\"jl %l0\", \"jb %l0\", \"js %l0\"); }") (define_expand "bltu" [(match_dup 1) (set (pc) (if_then_else (ltu (cc0) (const_int 0)) (label_ref (match_operand 0 "" "")) (pc)))] "" "operands[1] = (*i386_compare_gen)(i386_compare_op0, i386_compare_op1);") (define_insn "" [(set (pc) (if_then_else (ltu (cc0) (const_int 0)) (label_ref (match_operand 0 "" "")) (pc)))] "" "jb %l0") (define_expand "bge" [(match_dup 1) (set (pc) (if_then_else (ge (cc0) (const_int 0)) (label_ref (match_operand 0 "" "")) (pc)))] "" "operands[1] = (*i386_compare_gen)(i386_compare_op0, i386_compare_op1);") (define_insn "" [(set (pc) (if_then_else (ge (cc0) (const_int 0)) (label_ref (match_operand 0 "" "")) (pc)))] "" "* { if (TARGET_IEEE_FP && (cc_prev_status.flags & CC_IN_80387)) return AS1 (je,%l0); OUTPUT_JUMP (\"jge %l0\", \"jae %l0\", \"jns %l0\"); }") (define_expand "bgeu" [(match_dup 1) (set (pc) (if_then_else (geu (cc0) (const_int 0)) (label_ref (match_operand 0 "" "")) (pc)))] "" "operands[1] = (*i386_compare_gen)(i386_compare_op0, i386_compare_op1);") (define_insn "" [(set (pc) (if_then_else (geu (cc0) (const_int 0)) (label_ref (match_operand 0 "" "")) (pc)))] "" "jae %l0") (define_expand "ble" [(match_dup 1) (set (pc) (if_then_else (le (cc0) (const_int 0)) (label_ref (match_operand 0 "" "")) (pc)))] "" "operands[1] = (*i386_compare_gen)(i386_compare_op0, i386_compare_op1);") (define_insn "" [(set (pc) (if_then_else (le (cc0) (const_int 0)) (label_ref (match_operand 0 "" "")) (pc)))] "" "* { if (TARGET_IEEE_FP && (cc_prev_status.flags & CC_IN_80387)) return AS1 (jb,%l0); OUTPUT_JUMP (\"jle %l0\", \"jbe %l0\", NULL_PTR); }") (define_expand "bleu" [(match_dup 1) (set (pc) (if_then_else (leu (cc0) (const_int 0)) (label_ref (match_operand 0 "" "")) (pc)))] "" "operands[1] = (*i386_compare_gen)(i386_compare_op0, i386_compare_op1);") (define_insn "" [(set (pc) (if_then_else (leu (cc0) (const_int 0)) (label_ref (match_operand 0 "" "")) (pc)))] "" "jbe %l0") ;; Negated conditional jump instructions. (define_insn "" [(set (pc) (if_then_else (eq (cc0) (const_int 0)) (pc) (label_ref (match_operand 0 "" ""))))] "" "* { if (cc_prev_status.flags & CC_Z_IN_NOT_C) return \"jc %l0\"; else return \"jne %l0\"; }") (define_insn "" [(set (pc) (if_then_else (ne (cc0) (const_int 0)) (pc) (label_ref (match_operand 0 "" ""))))] "" "* { if (cc_prev_status.flags & CC_Z_IN_NOT_C) return \"jnc %l0\"; else return \"je %l0\"; }") (define_insn "" [(set (pc) (if_then_else (gt (cc0) (const_int 0)) (pc) (label_ref (match_operand 0 "" ""))))] "" "* { if (TARGET_IEEE_FP && (cc_prev_status.flags & CC_IN_80387)) return AS1 (jne,%l0); OUTPUT_JUMP (\"jle %l0\", \"jbe %l0\", NULL_PTR); }") (define_insn "" [(set (pc) (if_then_else (gtu (cc0) (const_int 0)) (pc) (label_ref (match_operand 0 "" ""))))] "" "jbe %l0") (define_insn "" [(set (pc) (if_then_else (lt (cc0) (const_int 0)) (pc) (label_ref (match_operand 0 "" ""))))] "" "* { if (TARGET_IEEE_FP && (cc_prev_status.flags & CC_IN_80387)) return AS1 (jne,%l0); OUTPUT_JUMP (\"jge %l0\", \"jae %l0\", \"jns %l0\"); }") (define_insn "" [(set (pc) (if_then_else (ltu (cc0) (const_int 0)) (pc) (label_ref (match_operand 0 "" ""))))] "" "jae %l0") (define_insn "" [(set (pc) (if_then_else (ge (cc0) (const_int 0)) (pc) (label_ref (match_operand 0 "" ""))))] "" "* { if (TARGET_IEEE_FP && (cc_prev_status.flags & CC_IN_80387)) return AS1 (jne,%l0); OUTPUT_JUMP (\"jl %l0\", \"jb %l0\", \"js %l0\"); }") (define_insn "" [(set (pc) (if_then_else (geu (cc0) (const_int 0)) (pc) (label_ref (match_operand 0 "" ""))))] "" "jb %l0") (define_insn "" [(set (pc) (if_then_else (le (cc0) (const_int 0)) (pc) (label_ref (match_operand 0 "" ""))))] "" "* { if (TARGET_IEEE_FP && (cc_prev_status.flags & CC_IN_80387)) return AS1 (jae,%l0); OUTPUT_JUMP (\"jg %l0\", \"ja %l0\", NULL_PTR); }") (define_insn "" [(set (pc) (if_then_else (leu (cc0) (const_int 0)) (pc) (label_ref (match_operand 0 "" ""))))] "" "ja %l0") ;; Unconditional and other jump instructions (define_insn "jump" [(set (pc) (label_ref (match_operand 0 "" "")))] "" "jmp %l0") (define_insn "indirect_jump" [(set (pc) (match_operand:SI 0 "general_operand" "rm"))] "" "* { CC_STATUS_INIT; return AS1 (jmp,%*%0); }") ;; Implement switch statements when generating PIC code. Switches are ;; implemented by `tablejump' when not using -fpic. ;; Emit code here to do the range checking and make the index zero based. (define_expand "casesi" [(set (match_dup 5) (minus:SI (match_operand:SI 0 "general_operand" "") (match_operand:SI 1 "general_operand" ""))) (set (cc0) (compare:CC (match_dup 5) (match_operand:SI 2 "general_operand" ""))) (set (pc) (if_then_else (gtu (cc0) (const_int 0)) (label_ref (match_operand 4 "" "")) (pc))) (parallel [(set (pc) (minus:SI (reg:SI 3) (mem:SI (plus:SI (mult:SI (match_dup 5) (const_int 4)) (label_ref (match_operand 3 "" "")))))) (clobber (match_scratch:SI 6 ""))])] "flag_pic" " { operands[5] = gen_reg_rtx (SImode); current_function_uses_pic_offset_table = 1; }") ;; Implement a casesi insn. ;; Each entry in the "addr_diff_vec" looks like this as the result of the ;; two rules below: ;; ;; .long _GLOBAL_OFFSET_TABLE_+[.-.L2] ;; ;; 1. An expression involving an external reference may only use the ;; addition operator, and only with an assembly-time constant. ;; The example above satisfies this because ".-.L2" is a constant. ;; ;; 2. The symbol _GLOBAL_OFFSET_TABLE_ is magic, and at link time is ;; given the value of "GOT - .", where GOT is the actual address of ;; the Global Offset Table. Therefore, the .long above actually ;; stores the value "( GOT - . ) + [ . - .L2 ]", or "GOT - .L2". The ;; expression "GOT - .L2" by itself would generate an error from as(1). ;; ;; The pattern below emits code that looks like this: ;; ;; movl %ebx,reg ;; subl TABLE@GOTOFF(%ebx,index,4),reg ;; jmp reg ;; ;; The addr_diff_vec contents may be directly referenced with @GOTOFF, since ;; the addr_diff_vec is known to be part of this module. ;; ;; The subl above calculates "GOT - (( GOT - . ) + [ . - .L2 ])", which ;; evaluates to just ".L2". (define_insn "" [(set (pc) (minus:SI (reg:SI 3) (mem:SI (plus:SI (mult:SI (match_operand:SI 0 "register_operand" "r") (const_int 4)) (label_ref (match_operand 1 "" "")))))) (clobber (match_scratch:SI 2 "=&r"))] "" "* { rtx xops[4]; xops[0] = operands[0]; xops[1] = operands[1]; xops[2] = operands[2]; xops[3] = pic_offset_table_rtx; output_asm_insn (AS2 (mov%L2,%3,%2), xops); output_asm_insn (\"sub%L2 %l1@GOTOFF(%3,%0,4),%2\", xops); output_asm_insn (AS1 (jmp,%*%2), xops); ASM_OUTPUT_ALIGN_CODE (asm_out_file); RET; }") (define_insn "tablejump" [(set (pc) (match_operand:SI 0 "general_operand" "rm")) (use (label_ref (match_operand 1 "" "")))] "" "* { CC_STATUS_INIT; return AS1 (jmp,%*%0); }") ;; Call insns. ;; If generating PIC code, the predicate indirect_operand will fail ;; for operands[0] containing symbolic references on all of the named ;; call* patterns. Each named pattern is followed by an unnamed pattern ;; that matches any call to a symbolic CONST (ie, a symbol_ref). The ;; unnamed patterns are only used while generating PIC code, because ;; otherwise the named patterns match. ;; Call subroutine returning no value. (define_expand "call_pop" [(parallel [(call (match_operand:QI 0 "indirect_operand" "") (match_operand:SI 1 "general_operand" "")) (set (reg:SI 7) (plus:SI (reg:SI 7) (match_operand:SI 3 "immediate_operand" "")))])] "" " { rtx addr; if (flag_pic) current_function_uses_pic_offset_table = 1; /* With half-pic, force the address into a register. */ addr = XEXP (operands[0], 0); if (GET_CODE (addr) != REG && HALF_PIC_P () && !CONSTANT_ADDRESS_P (addr)) XEXP (operands[0], 0) = force_reg (Pmode, addr); if (! expander_call_insn_operand (operands[0], QImode)) operands[0] = change_address (operands[0], VOIDmode, copy_to_mode_reg (Pmode, XEXP (operands[0], 0))); }") (define_insn "" [(call (match_operand:QI 0 "call_insn_operand" "m") (match_operand:SI 1 "general_operand" "g")) (set (reg:SI 7) (plus:SI (reg:SI 7) (match_operand:SI 3 "immediate_operand" "i")))] "" "* { if (GET_CODE (operands[0]) == MEM && ! CONSTANT_ADDRESS_P (XEXP (operands[0], 0))) { operands[0] = XEXP (operands[0], 0); return AS1 (call,%*%0); } else return AS1 (call,%P0); }") (define_insn "" [(call (mem:QI (match_operand:SI 0 "symbolic_operand" "")) (match_operand:SI 1 "general_operand" "g")) (set (reg:SI 7) (plus:SI (reg:SI 7) (match_operand:SI 3 "immediate_operand" "i")))] "!HALF_PIC_P ()" "call %P0") (define_expand "call" [(call (match_operand:QI 0 "indirect_operand" "") (match_operand:SI 1 "general_operand" ""))] ;; Operand 1 not used on the i386. "" " { rtx addr; if (flag_pic) current_function_uses_pic_offset_table = 1; /* With half-pic, force the address into a register. */ addr = XEXP (operands[0], 0); if (GET_CODE (addr) != REG && HALF_PIC_P () && !CONSTANT_ADDRESS_P (addr)) XEXP (operands[0], 0) = force_reg (Pmode, addr); if (! expander_call_insn_operand (operands[0], QImode)) operands[0] = change_address (operands[0], VOIDmode, copy_to_mode_reg (Pmode, XEXP (operands[0], 0))); }") (define_insn "" [(call (match_operand:QI 0 "call_insn_operand" "m") (match_operand:SI 1 "general_operand" "g"))] ;; Operand 1 not used on the i386. "" "* { if (GET_CODE (operands[0]) == MEM && ! CONSTANT_ADDRESS_P (XEXP (operands[0], 0))) { operands[0] = XEXP (operands[0], 0); return AS1 (call,%*%0); } else return AS1 (call,%P0); }") (define_insn "" [(call (mem:QI (match_operand:SI 0 "symbolic_operand" "")) (match_operand:SI 1 "general_operand" "g"))] ;; Operand 1 not used on the i386. "!HALF_PIC_P ()" "call %P0") ;; Call subroutine, returning value in operand 0 ;; (which must be a hard register). (define_expand "call_value_pop" [(parallel [(set (match_operand 0 "" "") (call (match_operand:QI 1 "indirect_operand" "") (match_operand:SI 2 "general_operand" ""))) (set (reg:SI 7) (plus:SI (reg:SI 7) (match_operand:SI 4 "immediate_operand" "")))])] "" " { rtx addr; if (flag_pic) current_function_uses_pic_offset_table = 1; /* With half-pic, force the address into a register. */ addr = XEXP (operands[1], 0); if (GET_CODE (addr) != REG && HALF_PIC_P () && !CONSTANT_ADDRESS_P (addr)) XEXP (operands[1], 0) = force_reg (Pmode, addr); if (! expander_call_insn_operand (operands[1], QImode)) operands[1] = change_address (operands[1], VOIDmode, copy_to_mode_reg (Pmode, XEXP (operands[1], 0))); }") (define_insn "" [(set (match_operand 0 "" "=rf") (call (match_operand:QI 1 "call_insn_operand" "m") (match_operand:SI 2 "general_operand" "g"))) (set (reg:SI 7) (plus:SI (reg:SI 7) (match_operand:SI 4 "immediate_operand" "i")))] "" "* { if (GET_CODE (operands[1]) == MEM && ! CONSTANT_ADDRESS_P (XEXP (operands[1], 0))) { operands[1] = XEXP (operands[1], 0); output_asm_insn (AS1 (call,%*%1), operands); } else output_asm_insn (AS1 (call,%P1), operands); RET; }") (define_insn "" [(set (match_operand 0 "" "=rf") (call (mem:QI (match_operand:SI 1 "symbolic_operand" "")) (match_operand:SI 2 "general_operand" "g"))) (set (reg:SI 7) (plus:SI (reg:SI 7) (match_operand:SI 4 "immediate_operand" "i")))] "!HALF_PIC_P ()" "call %P1") (define_expand "call_value" [(set (match_operand 0 "" "") (call (match_operand:QI 1 "indirect_operand" "") (match_operand:SI 2 "general_operand" "")))] ;; Operand 2 not used on the i386. "" " { rtx addr; if (flag_pic) current_function_uses_pic_offset_table = 1; /* With half-pic, force the address into a register. */ addr = XEXP (operands[1], 0); if (GET_CODE (addr) != REG && HALF_PIC_P () && !CONSTANT_ADDRESS_P (addr)) XEXP (operands[1], 0) = force_reg (Pmode, addr); if (! expander_call_insn_operand (operands[1], QImode)) operands[1] = change_address (operands[1], VOIDmode, copy_to_mode_reg (Pmode, XEXP (operands[1], 0))); }") (define_insn "" [(set (match_operand 0 "" "=rf") (call (match_operand:QI 1 "call_insn_operand" "m") (match_operand:SI 2 "general_operand" "g")))] ;; Operand 2 not used on the i386. "" "* { if (GET_CODE (operands[1]) == MEM && ! CONSTANT_ADDRESS_P (XEXP (operands[1], 0))) { operands[1] = XEXP (operands[1], 0); output_asm_insn (AS1 (call,%*%1), operands); } else output_asm_insn (AS1 (call,%P1), operands); RET; }") (define_insn "" [(set (match_operand 0 "" "=rf") (call (mem:QI (match_operand:SI 1 "symbolic_operand" "")) (match_operand:SI 2 "general_operand" "g")))] ;; Operand 2 not used on the i386. "!HALF_PIC_P ()" "call %P1") (define_expand "untyped_call" [(parallel [(call (match_operand:QI 0 "indirect_operand" "") (const_int 0)) (match_operand:BLK 1 "memory_operand" "") (match_operand 2 "" "")])] "" " { rtx addr; if (flag_pic) current_function_uses_pic_offset_table = 1; /* With half-pic, force the address into a register. */ addr = XEXP (operands[0], 0); if (GET_CODE (addr) != REG && HALF_PIC_P () && !CONSTANT_ADDRESS_P (addr)) XEXP (operands[0], 0) = force_reg (Pmode, addr); operands[1] = change_address (operands[1], DImode, XEXP (operands[1], 0)); if (! expander_call_insn_operand (operands[1], QImode)) operands[1] = change_address (operands[1], VOIDmode, copy_to_mode_reg (Pmode, XEXP (operands[1], 0))); }") (define_insn "" [(call (match_operand:QI 0 "call_insn_operand" "m") (const_int 0)) (match_operand:DI 1 "memory_operand" "o") (match_operand 2 "" "")] "" "* { rtx addr = operands[1]; if (GET_CODE (operands[0]) == MEM && ! CONSTANT_ADDRESS_P (XEXP (operands[0], 0))) { operands[0] = XEXP (operands[0], 0); output_asm_insn (AS1 (call,%*%0), operands); } else output_asm_insn (AS1 (call,%P0), operands); operands[2] = gen_rtx (REG, SImode, 0); output_asm_insn (AS2 (mov%L2,%2,%1), operands); operands[2] = gen_rtx (REG, SImode, 1); operands[1] = adj_offsettable_operand (addr, 4); output_asm_insn (AS2 (mov%L2,%2,%1), operands); operands[1] = adj_offsettable_operand (addr, 8); return AS1 (fnsave,%1); }") (define_insn "" [(call (mem:QI (match_operand:SI 0 "symbolic_operand" "")) (const_int 0)) (match_operand:DI 1 "memory_operand" "o") (match_operand 2 "" "")] "!HALF_PIC_P ()" "* { rtx addr = operands[1]; output_asm_insn (AS1 (call,%P0), operands); operands[2] = gen_rtx (REG, SImode, 0); output_asm_insn (AS2 (mov%L2,%2,%1), operands); operands[2] = gen_rtx (REG, SImode, 1); operands[1] = adj_offsettable_operand (addr, 4); output_asm_insn (AS2 (mov%L2,%2,%1), operands); operands[1] = adj_offsettable_operand (addr, 8); return AS1 (fnsave,%1); }") ;; We use fnsave and frstor to save and restore the floating point result. ;; These are expensive instructions and require a large space to save the ;; FPU state. An more complicated alternative is to use fnstenv to store ;; the FPU environment and test whether the stack top is valid. Store the ;; result of the test, and if it is valid, pop and save the value. The ;; untyped_return would check the test and optionally push the saved value. (define_expand "untyped_return" [(match_operand:BLK 0 "memory_operand" "") (match_operand 1 "" "")] "" " { rtx valreg1 = gen_rtx (REG, SImode, 0); rtx valreg2 = gen_rtx (REG, SImode, 1); rtx result = operands[0]; /* Restore the FPU state. */ emit_insn (gen_update_return (change_address (result, SImode, plus_constant (XEXP (result, 0), 8)))); /* Reload the function value registers. */ emit_move_insn (valreg1, change_address (result, SImode, XEXP (result, 0))); emit_move_insn (valreg2, change_address (result, SImode, plus_constant (XEXP (result, 0), 4))); /* Put USE insns before the return. */ emit_insn (gen_rtx (USE, VOIDmode, valreg1)); emit_insn (gen_rtx (USE, VOIDmode, valreg2)); /* Construct the return. */ expand_null_return (); DONE; }") (define_insn "update_return" [(unspec:SI [(match_operand:SI 0 "memory_operand" "m")] 0)] "" "frstor %0") ;; Insn emitted into the body of a function to return from a function. ;; This is only done if the function's epilogue is known to be simple. ;; See comments for simple_386_epilogue in i386.c. (define_insn "return" [(return)] "simple_386_epilogue ()" "* { function_epilogue (asm_out_file, get_frame_size ()); RET; }") (define_insn "nop" [(const_int 0)] "" "nop") (define_expand "movstrsi" [(parallel [(set (match_operand:BLK 0 "memory_operand" "") (match_operand:BLK 1 "memory_operand" "")) (use (match_operand:SI 2 "const_int_operand" "")) (use (match_operand:SI 3 "const_int_operand" "")) (clobber (match_scratch:SI 4 "")) (clobber (match_dup 5)) (clobber (match_dup 6))])] "" " { rtx addr0, addr1; if (GET_CODE (operands[2]) != CONST_INT) FAIL; addr0 = copy_to_mode_reg (Pmode, XEXP (operands[0], 0)); addr1 = copy_to_mode_reg (Pmode, XEXP (operands[1], 0)); operands[5] = addr0; operands[6] = addr1; operands[0] = gen_rtx (MEM, BLKmode, addr0); operands[1] = gen_rtx (MEM, BLKmode, addr1); }") ;; It might seem that operands 0 & 1 could use predicate register_operand. ;; But strength reduction might offset the MEM expression. So we let ;; reload put the address into %edi & %esi. (define_insn "" [(set (mem:BLK (match_operand:SI 0 "address_operand" "D")) (mem:BLK (match_operand:SI 1 "address_operand" "S"))) (use (match_operand:SI 2 "const_int_operand" "n")) (use (match_operand:SI 3 "immediate_operand" "i")) (clobber (match_scratch:SI 4 "=&c")) (clobber (match_dup 0)) (clobber (match_dup 1))] "" "* { rtx xops[2]; output_asm_insn (\"cld\", operands); if (GET_CODE (operands[2]) == CONST_INT) { if (INTVAL (operands[2]) & ~0x03) { xops[0] = GEN_INT ((INTVAL (operands[2]) >> 2) & 0x3fffffff); xops[1] = operands[4]; output_asm_insn (AS2 (mov%L1,%0,%1), xops); #ifdef INTEL_SYNTAX output_asm_insn (\"rep movsd\", xops); #else output_asm_insn (\"rep\;movsl\", xops); #endif } if (INTVAL (operands[2]) & 0x02) output_asm_insn (\"movsw\", operands); if (INTVAL (operands[2]) & 0x01) output_asm_insn (\"movsb\", operands); } else abort (); RET; }") (define_expand "cmpstrsi" [(parallel [(set (match_operand:SI 0 "general_operand" "") (compare:SI (match_operand:BLK 1 "general_operand" "") (match_operand:BLK 2 "general_operand" ""))) (use (match_operand:SI 3 "general_operand" "")) (use (match_operand:SI 4 "immediate_operand" "")) (clobber (match_dup 5)) (clobber (match_dup 6)) (clobber (match_dup 3))])] "" " { rtx addr1, addr2; addr1 = copy_to_mode_reg (Pmode, XEXP (operands[1], 0)); addr2 = copy_to_mode_reg (Pmode, XEXP (operands[2], 0)); operands[3] = copy_to_mode_reg (SImode, operands[3]); operands[5] = addr1; operands[6] = addr2; operands[1] = gen_rtx (MEM, BLKmode, addr1); operands[2] = gen_rtx (MEM, BLKmode, addr2); }") ;; memcmp recognizers. The `cmpsb' opcode does nothing if the count is ;; zero. Emit extra code to make sure that a zero-length compare is EQ. ;; It might seem that operands 0 & 1 could use predicate register_operand. ;; But strength reduction might offset the MEM expression. So we let ;; reload put the address into %edi & %esi. ;; ??? Most comparisons have a constant length, and it's therefore ;; possible to know that the length is non-zero, and to avoid the extra ;; code to handle zero-length compares. (define_insn "" [(set (match_operand:SI 0 "general_operand" "=&r") (compare:SI (mem:BLK (match_operand:SI 1 "address_operand" "S")) (mem:BLK (match_operand:SI 2 "address_operand" "D")))) (use (match_operand:SI 3 "register_operand" "c")) (use (match_operand:SI 4 "immediate_operand" "i")) (clobber (match_dup 1)) (clobber (match_dup 2)) (clobber (match_dup 3))] "" "* { rtx xops[4], label; label = gen_label_rtx (); output_asm_insn (\"cld\", operands); output_asm_insn (AS2 (xor%L0,%0,%0), operands); output_asm_insn (\"repz\;cmps%B2\", operands); output_asm_insn (\"je %l0\", &label); xops[0] = operands[0]; xops[1] = gen_rtx (MEM, QImode, gen_rtx (PLUS, SImode, operands[1], constm1_rtx)); xops[2] = gen_rtx (MEM, QImode, gen_rtx (PLUS, SImode, operands[2], constm1_rtx)); xops[3] = operands[3]; output_asm_insn (AS2 (movz%B1%L0,%1,%0), xops); output_asm_insn (AS2 (movz%B2%L3,%2,%3), xops); output_asm_insn (AS2 (sub%L0,%3,%0), xops); ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, \"L\", CODE_LABEL_NUMBER (label)); RET; }") (define_insn "" [(set (cc0) (compare:SI (mem:BLK (match_operand:SI 0 "address_operand" "S")) (mem:BLK (match_operand:SI 1 "address_operand" "D")))) (use (match_operand:SI 2 "register_operand" "c")) (use (match_operand:SI 3 "immediate_operand" "i")) (clobber (match_dup 0)) (clobber (match_dup 1)) (clobber (match_dup 2))] "" "* { rtx xops[2]; cc_status.flags |= CC_NOT_SIGNED; xops[0] = gen_rtx (REG, QImode, 0); xops[1] = CONST0_RTX (QImode); output_asm_insn (\"cld\", operands); output_asm_insn (AS2 (test%B0,%1,%0), xops); return \"repz\;cmps%B2\"; }") (define_expand "ffssi2" [(set (match_dup 2) (plus:SI (ffs:SI (match_operand:SI 1 "general_operand" "")) (const_int -1))) (set (match_operand:SI 0 "general_operand" "") (plus:SI (match_dup 2) (const_int 1)))] "" "operands[2] = gen_reg_rtx (SImode);") (define_insn "" [(set (match_operand:SI 0 "general_operand" "=&r") (plus:SI (ffs:SI (match_operand:SI 1 "general_operand" "rm")) (const_int -1)))] "" "* { rtx xops[3]; static int ffssi_label_number; char buffer[30]; xops[0] = operands[0]; xops[1] = operands[1]; xops[2] = constm1_rtx; /* Can there be a way to avoid the jump here? */ output_asm_insn (AS2 (bsf%L0,%1,%0), xops); #ifdef LOCAL_LABEL_PREFIX sprintf (buffer, \"jnz %sLFFSSI%d\", LOCAL_LABEL_PREFIX, ffssi_label_number); #else sprintf (buffer, \"jnz %sLFFSSI%d\", \"\", ffssi_label_number); #endif output_asm_insn (buffer, xops); output_asm_insn (AS2 (mov%L0,%2,%0), xops); #ifdef LOCAL_LABEL_PREFIX sprintf (buffer, \"%sLFFSSI%d:\", LOCAL_LABEL_PREFIX, ffssi_label_number); #else sprintf (buffer, \"%sLFFSSI%d:\", \"\", ffssi_label_number); #endif output_asm_insn (buffer, xops); ffssi_label_number++; return \"\"; }") (define_expand "ffshi2" [(set (match_dup 2) (plus:HI (ffs:HI (match_operand:HI 1 "general_operand" "")) (const_int -1))) (set (match_operand:HI 0 "general_operand" "") (plus:HI (match_dup 2) (const_int 1)))] "" "operands[2] = gen_reg_rtx (HImode);") (define_insn "" [(set (match_operand:HI 0 "general_operand" "=&r") (plus:HI (ffs:HI (match_operand:SI 1 "general_operand" "rm")) (const_int -1)))] "" "* { rtx xops[3]; static int ffshi_label_number; char buffer[30]; xops[0] = operands[0]; xops[1] = operands[1]; xops[2] = constm1_rtx; output_asm_insn (AS2 (bsf%W0,%1,%0), xops); #ifdef LOCAL_LABEL_PREFIX sprintf (buffer, \"jnz %sLFFSHI%d\", LOCAL_LABEL_PREFIX, ffshi_label_number); #else sprintf (buffer, \"jnz %sLFFSHI%d\", \"\", ffshi_label_number); #endif output_asm_insn (buffer, xops); output_asm_insn (AS2 (mov%W0,%2,%0), xops); #ifdef LOCAL_LABEL_PREFIX sprintf (buffer, \"%sLFFSHI%d:\", LOCAL_LABEL_PREFIX, ffshi_label_number); #else sprintf (buffer, \"%sLFFSHI%d:\", \"\", ffshi_label_number); #endif output_asm_insn (buffer, xops); ffshi_label_number++; return \"\"; }") ;; These patterns match the binary 387 instructions for addM3, subM3, ;; mulM3 and divM3. There are three patterns for each of DFmode and ;; SFmode. The first is the normal insn, the second the same insn but ;; with one operand a conversion, and the third the same insn but with ;; the other operand a conversion. The conversion may be SFmode or ;; SImode if the target mode DFmode, but only SImode if the target mode ;; is SFmode. (define_insn "" [(set (match_operand:DF 0 "register_operand" "=f,f") (match_operator:DF 3 "binary_387_op" [(match_operand:DF 1 "nonimmediate_operand" "0,fm") (match_operand:DF 2 "nonimmediate_operand" "fm,0")]))] "TARGET_80387" "* return output_387_binary_op (insn, operands);") (define_insn "" [(set (match_operand:DF 0 "register_operand" "=f") (match_operator:DF 3 "binary_387_op" [(float:DF (match_operand:SI 1 "general_operand" "rm")) (match_operand:DF 2 "general_operand" "0")]))] "TARGET_80387" "* return output_387_binary_op (insn, operands);") (define_insn "" [(set (match_operand:XF 0 "register_operand" "=f,f") (match_operator:XF 3 "binary_387_op" [(match_operand:XF 1 "nonimmediate_operand" "0,f") (match_operand:XF 2 "nonimmediate_operand" "f,0")]))] "TARGET_80387" "* return output_387_binary_op (insn, operands);") (define_insn "" [(set (match_operand:XF 0 "register_operand" "=f") (match_operator:XF 3 "binary_387_op" [(float:XF (match_operand:SI 1 "general_operand" "rm")) (match_operand:XF 2 "general_operand" "0")]))] "TARGET_80387" "* return output_387_binary_op (insn, operands);") (define_insn "" [(set (match_operand:XF 0 "register_operand" "=f,f") (match_operator:XF 3 "binary_387_op" [(float_extend:XF (match_operand:SF 1 "general_operand" "fm,0")) (match_operand:XF 2 "general_operand" "0,f")]))] "TARGET_80387" "* return output_387_binary_op (insn, operands);") (define_insn "" [(set (match_operand:XF 0 "register_operand" "=f") (match_operator:XF 3 "binary_387_op" [(match_operand:XF 1 "general_operand" "0") (float:XF (match_operand:SI 2 "general_operand" "rm"))]))] "TARGET_80387" "* return output_387_binary_op (insn, operands);") (define_insn "" [(set (match_operand:XF 0 "register_operand" "=f,f") (match_operator:XF 3 "binary_387_op" [(match_operand:XF 1 "general_operand" "0,f") (float_extend:XF (match_operand:SF 2 "general_operand" "fm,0"))]))] "TARGET_80387" "* return output_387_binary_op (insn, operands);") (define_insn "" [(set (match_operand:DF 0 "register_operand" "=f,f") (match_operator:DF 3 "binary_387_op" [(float_extend:DF (match_operand:SF 1 "general_operand" "fm,0")) (match_operand:DF 2 "general_operand" "0,f")]))] "TARGET_80387" "* return output_387_binary_op (insn, operands);") (define_insn "" [(set (match_operand:DF 0 "register_operand" "=f") (match_operator:DF 3 "binary_387_op" [(match_operand:DF 1 "general_operand" "0") (float:DF (match_operand:SI 2 "general_operand" "rm"))]))] "TARGET_80387" "* return output_387_binary_op (insn, operands);") (define_insn "" [(set (match_operand:DF 0 "register_operand" "=f,f") (match_operator:DF 3 "binary_387_op" [(match_operand:DF 1 "general_operand" "0,f") (float_extend:DF (match_operand:SF 2 "general_operand" "fm,0"))]))] "TARGET_80387" "* return output_387_binary_op (insn, operands);") (define_insn "" [(set (match_operand:SF 0 "register_operand" "=f,f") (match_operator:SF 3 "binary_387_op" [(match_operand:SF 1 "nonimmediate_operand" "0,fm") (match_operand:SF 2 "nonimmediate_operand" "fm,0")]))] "TARGET_80387" "* return output_387_binary_op (insn, operands);") (define_insn "" [(set (match_operand:SF 0 "register_operand" "=f") (match_operator:SF 3 "binary_387_op" [(float:SF (match_operand:SI 1 "general_operand" "rm")) (match_operand:SF 2 "general_operand" "0")]))] "TARGET_80387" "* return output_387_binary_op (insn, operands);") (define_insn "" [(set (match_operand:SF 0 "register_operand" "=f") (match_operator:SF 3 "binary_387_op" [(match_operand:SF 1 "general_operand" "0") (float:SF (match_operand:SI 2 "general_operand" "rm"))]))] "TARGET_80387" "* return output_387_binary_op (insn, operands);") (define_expand "strlensi" [(parallel [(set (match_dup 4) (unspec:SI [(mem:BLK (match_operand:BLK 1 "general_operand" "")) (match_operand:QI 2 "register_operand" "") (match_operand:SI 3 "immediate_operand" "")] 0)) (clobber (match_dup 1))]) (set (match_dup 5) (not:SI (match_dup 4))) (set (match_operand:SI 0 "register_operand" "") (minus:SI (match_dup 5) (const_int 1)))] "" " { operands[1] = copy_to_mode_reg (SImode, XEXP (operands[1], 0)); operands[4] = gen_reg_rtx (SImode); operands[5] = gen_reg_rtx (SImode); }") ;; It might seem that operands 0 & 1 could use predicate register_operand. ;; But strength reduction might offset the MEM expression. So we let ;; reload put the address into %edi. (define_insn "" [(set (match_operand:SI 0 "register_operand" "=&c") (unspec:SI [(mem:BLK (match_operand:SI 1 "address_operand" "D")) (match_operand:QI 2 "register_operand" "a") (match_operand:SI 3 "immediate_operand" "i")] 0)) (clobber (match_dup 1))] "" "* { rtx xops[2]; xops[0] = operands[0]; xops[1] = constm1_rtx; output_asm_insn (\"cld\", operands); output_asm_insn (AS2 (mov%L0,%1,%0), xops); return \"repnz\;scas%B2\"; }")