/* Definitions of target machine for GNU compiler, for Sun SPARC. Copyright (C) 1987, 88, 89, 92, 94, 95, 1996 Free Software Foundation, Inc. Contributed by Michael Tiemann (tiemann@cygnus.com). 64 bit SPARC V9 support by Michael Tiemann, Jim Wilson, and Doug Evans, at Cygnus Support. This file is part of GNU CC. GNU CC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2, or (at your option) any later version. GNU CC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GNU CC; see the file COPYING. If not, write to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ /* Note that some other tm.h files include this one and then override many of the definitions that relate to assembler syntax. */ /* Sparc64 support has been added by trying to allow for a day when one compiler can handle both v8 and v9. There are a few cases where this isn't doable, but keep them to a minimum! TARGET_V9 is used to select at runtime the sparc64 chip. TARGET_ARCH64 is used to select at runtime a 64 bit environment. SPARC_V9 is defined as 0 or 1 (so it may be used inside and outside #define's), and says whether the cpu is a sparc64 chip (which may be running in a 32 or 64 bit environment). SPARC_ARCH64 is defined as 0 for a 32 bit environment and 1 for a 64 bit environment. In places where it is possible to choose at runtime, use TARGET_V9 and TARGET_ARCH64. In places where it is currently not possible to select between the two at runtime use SPARC_{V9,ARCH64}. Again, keep uses of SPARC_{V9,ARCH64} to a minimum. No attempt is made to support both v8 and v9 in the v9 compiler. If a combination v8/v9 compiler is too slow, it should always be possible to #define TARGET_{V9,ARCH64} as 0 (and potentially other v9-only options), and #define SPARC_{V9,ARCH64} as 0. I measured the difference once and it was around 10%. /dje 960120 */ #ifndef SPARC_V9 #define SPARC_V9 0 #endif #ifndef SPARC_ARCH64 #define SPARC_ARCH64 0 #endif /* Names to predefine in the preprocessor for this target machine. */ /* ??? The GCC_NEW_VARARGS macro is now obsolete, because gcc always uses the right varags.h file when bootstrapping. */ #if SPARC_ARCH64 #define CPP_PREDEFINES \ "-Dsparc -Dsun -Dunix -D__sparc_v9__ \ -Asystem(unix) -Asystem(bsd) -Acpu(sparc64) -Amachine(sparc64)" #else #define CPP_PREDEFINES \ "-Dsparc -Dsun -Dunix -D__GCC_NEW_VARARGS__ \ -Asystem(unix) -Asystem(bsd) -Acpu(sparc) -Amachine(sparc)" #endif #define LIB_SPEC "%{!shared:%{!p:%{!pg:-lc}}%{p:-lc_p}%{pg:-lc_p} %{g:-lg}}" /* Provide required defaults for linker -e and -d switches. */ #define LINK_SPEC \ "%{!shared:%{!nostdlib:%{!r*:%{!e*:-e start}}} -dc -dp} %{static:-Bstatic} \ %{assert*} %{shared:-assert pure-text}" /* Special flags to the Sun-4 assembler when using pipe for input. */ #define ASM_SPEC \ " %| %{R} %{!pg:%{!p:%{fpic:-k} %{fPIC:-k}}} %{keep-local-as-symbols:-L}" /* Define macros to distinguish architectures. */ #if SPARC_ARCH64 #define CPP_SPEC "\ %{mint64:-D__INT_MAX__=9223372036854775807LL -D__LONG_MAX__=9223372036854775807LL} \ %{mlong64:-D__LONG_MAX__=9223372036854775807LL} \ " #else #define CPP_SPEC "\ %{msparclite:-D__sparclite__} \ %{mf930:-D__sparclite__} %{mf934:-D__sparclite__} \ %{mv8:-D__sparc_v8__} \ %{msupersparc:-D__supersparc__ -D__sparc_v8__} \ " #endif /* Prevent error on `-sun4' and `-target sun4' options. */ /* This used to translate -dalign to -malign, but that is no good because it can't turn off the usual meaning of making debugging dumps. */ #define CC1_SPEC "%{sun4:} %{target:}" #if SPARC_ARCH64 #define PTRDIFF_TYPE "long long int" #define SIZE_TYPE "long long unsigned int" #else #define PTRDIFF_TYPE "int" /* In 2.4 it should work to delete this. #define SIZE_TYPE "int" */ #endif /* ??? This should be 32 bits for v9 but what can we do? */ #define WCHAR_TYPE "short unsigned int" #define WCHAR_TYPE_SIZE 16 #define MAX_WCHAR_TYPE_SIZE 16 /* Show we can debug even without a frame pointer. */ #define CAN_DEBUG_WITHOUT_FP /* To make profiling work with -f{pic,PIC}, we need to emit the profiling code into the rtl. Also, if we are profiling, we cannot eliminate the frame pointer (because the return address will get smashed). */ void sparc_override_options (); #define OVERRIDE_OPTIONS \ do { \ if (profile_flag || profile_block_flag) \ { \ if (flag_pic) \ { \ char *pic_string = (flag_pic == 1) ? "-fpic" : "-fPIC"; \ warning ("%s and profiling conflict: disabling %s", \ pic_string, pic_string); \ flag_pic = 0; \ } \ flag_omit_frame_pointer = 0; \ } \ SUBTARGET_OVERRIDE_OPTIONS; \ sparc_override_options (); \ } while (0) /* This is meant to be redefined in the host dependent files. */ #define SUBTARGET_OVERRIDE_OPTIONS /* These compiler options take an argument. We ignore -target for now. */ #define WORD_SWITCH_TAKES_ARG(STR) \ (DEFAULT_WORD_SWITCH_TAKES_ARG (STR) \ || !strcmp (STR, "target") || !strcmp (STR, "assert")) /* Print subsidiary information on the compiler version in use. */ #define TARGET_VERSION fprintf (stderr, " (sparc)"); /* Generate DBX debugging information. */ #define DBX_DEBUGGING_INFO /* Run-time compilation parameters selecting different hardware subsets. */ extern int target_flags; /* Nonzero if we should generate code to use the fpu. */ #define MASK_FPU 1 #define TARGET_FPU (target_flags & MASK_FPU) /* Nonzero if we should use FUNCTION_EPILOGUE. Otherwise, we use fast return insns, but lose some generality. */ #define MASK_EPILOGUE 2 #define TARGET_EPILOGUE (target_flags & MASK_EPILOGUE) /* Nonzero if we should assume that double pointers might be unaligned. This can happen when linking gcc compiled code with other compilers, because the ABI only guarantees 4 byte alignment. */ #define MASK_UNALIGNED_DOUBLES 4 #define TARGET_UNALIGNED_DOUBLES (target_flags & MASK_UNALIGNED_DOUBLES) /* Nonzero means that we should generate code for a v8 sparc. */ #define MASK_V8 0x8 #define TARGET_V8 (target_flags & MASK_V8) /* Nonzero means that we should generate code for a sparclite. This enables the sparclite specific instructions, but does not affect whether FPU instructions are emitted. */ #define MASK_SPARCLITE 0x10 #define TARGET_SPARCLITE (target_flags & MASK_SPARCLITE) /* Nonzero means we should schedule code for the TMS390Z55 SuperSparc chip. */ #define MASK_SUPERSPARC 0x20 #define TARGET_SUPERSPARC (target_flags & MASK_SUPERSPARC) /* Nonzero if we're compiling for v9 sparc. Note that v9's can run in 32 bit mode so this doesn't necessarily mean the word size is 64. It does mean that the extra fp regs are available as are the new instructions that don't require 64 bit words. */ #define MASK_V9 0x40 #define TARGET_V9 (target_flags & MASK_V9) /* ??? Bit 0x80 currently unused. */ /* Mask of all CPU selection flags. ??? Migrate to -mcpu=? */ #define MASK_CPUS (MASK_V8 + MASK_SPARCLITE + MASK_SUPERSPARC + MASK_V9) /* Nonzero means that we should generate code using a flat register window model, i.e. no save/restore instructions are generated, in the most efficient manner. This code is not compatible with normal sparc code. */ /* This is not a user selectable option yet, because it requires changes that are not yet switchable via command line arguments. */ /* ??? This flag is deprecated and may disappear at some point. */ #define MASK_FRW 0x100 #define TARGET_FRW (target_flags & MASK_FRW) /* Nonzero means that we should generate code using a flat register window model, i.e. no save/restore instructions are generated, but which is compatible with normal sparc code. This is the same as above, except that the frame pointer is %i7 instead of %fp. */ /* ??? This use to be named TARGET_FRW_COMPAT. At some point TARGET_FRW will go away, but until that time only use this one when necessary. -mflat sets both. */ #define MASK_FLAT 0x200 #define TARGET_FLAT (target_flags & MASK_FLAT) /* Nonzero means use the registers that the Sparc ABI reserves for application software. This is the default for v8, but not v9. */ #define MASK_APP_REGS 0x400 #define TARGET_APP_REGS (target_flags & MASK_APP_REGS) /* Option to select how quad word floating point is implemented. When TARGET_HARD_QUAD is true, we use the hardware quad instructions. Otherwise, we use the SPARC ABI quad library functions. */ #define MASK_HARD_QUAD 0x800 #define TARGET_HARD_QUAD (target_flags & MASK_HARD_QUAD) /* Non-zero to generate code that uses the instructions deprecated in the v9 architecture. This option only applies to v9 systems. */ #define MASK_DEPRECATED_V8_INSNS 0x1000 #define TARGET_DEPRECATED_V8_INSNS (target_flags & MASK_DEPRECATED_V8_INSNS) /* Nonzero if ints are 64 bits. This automatically implies longs are 64 bits too. This option is for v9 only. */ #define MASK_INT64 0x2000 #define TARGET_INT64 (target_flags & MASK_INT64) /* Nonzero if longs are 64 bits. This option is for v9 only. */ #define MASK_LONG64 0x4000 #define TARGET_LONG64 (target_flags & MASK_LONG64) /* Nonzero if pointers are 64 bits. This is not a user selectable option, though it may be one day - so it is used to determine pointer size instead of an architecture flag. */ #define MASK_PTR64 0x8000 #define TARGET_PTR64 (target_flags & MASK_PTR64) /* Nonzero if generating code to run in a 64 bit environment. */ #define MASK_ARCH64 0x10000 #define TARGET_ARCH64 (target_flags & MASK_ARCH64) #define TARGET_ARCH32 (! TARGET_ARCH64) /* SPARC64 memory models. TARGET_MEDLOW: 32 bit address space, top 32 bits = 0, avoid generating %uhi and %ulo terms. (pointers can be 32 or 64 bits) TARGET_MEDANY: 64 bit address space, data segment restricted to 4G, but can be loaded anywhere (use %g4 as offset). TARGET_FULLANY: 64 bit address space, no restrictions. This option is not fully supported yet. These options are for v9 only. All mask values are nonzero so the v8 compiler can assume this stuff won't interfere. */ #define MASK_MEDLOW 0x20000 #define MASK_MEDANY 0x40000 #define MASK_FULLANY 0x60000 #define MASK_CODE_MODEL (MASK_MEDLOW + MASK_MEDANY) #define TARGET_MEDLOW ((target_flags & MASK_CODE_MODEL) == MASK_MEDLOW) #define TARGET_MEDANY ((target_flags & MASK_CODE_MODEL) == MASK_MEDANY) #define TARGET_FULLANY ((target_flags & MASK_CODE_MODEL) == MASK_FULLANY) /* ??? There are hardcoded references to this reg in the .md file. */ #define MEDANY_BASE_REG "%g4" /* Non-zero means use a stack bias of 2047. Stack offsets are obtained by adding 2047 to %sp. This option is for v9 only and is the default. */ #define MASK_STACK_BIAS 0x80000 #define TARGET_STACK_BIAS (target_flags & MASK_STACK_BIAS) /* Macro to define tables used to set the flags. This is a list in braces of pairs in braces, each pair being { "NAME", VALUE } where VALUE is the bits to set or minus the bits to clear. An empty string NAME is used to identify the default VALUE. */ /* The Fujitsu MB86930 is the original sparclite chip, with no fpu. The Fujitsu MB86934 is the recent sparclite chip, with an fpu. We use -mf930 and -mf934 options to choose which. ??? These should perhaps be -mcpu= options. */ #define TARGET_SWITCHES \ { {"fpu", MASK_FPU}, \ {"no-fpu", -MASK_FPU}, \ {"hard-float", MASK_FPU}, \ {"soft-float", -MASK_FPU}, \ {"epilogue", MASK_EPILOGUE}, \ {"no-epilogue", -MASK_EPILOGUE}, \ {"unaligned-doubles", MASK_UNALIGNED_DOUBLES}, \ {"no-unaligned-doubles", -MASK_UNALIGNED_DOUBLES}, \ {"supersparc", -MASK_CPUS}, \ {"supersparc", MASK_SUPERSPARC+MASK_V8}, \ {"cypress", -MASK_CPUS}, \ {"v8", -MASK_CPUS}, \ {"v8", MASK_V8}, \ {"no-v8", -MASK_CPUS}, \ {"sparclite", -MASK_CPUS}, \ {"sparclite", MASK_SPARCLITE}, \ {"no-sparclite", -MASK_CPUS}, \ {"f930", -MASK_FPU-MASK_CPUS}, \ {"f930", MASK_SPARCLITE}, \ {"f934", -MASK_CPUS}, \ {"f934", MASK_FPU+MASK_SPARCLITE}, \ {"flat", MASK_FRW+MASK_FLAT}, \ {"no-flat", -(MASK_FRW+MASK_FLAT)}, \ {"app-regs", MASK_APP_REGS}, \ {"no-app-regs", -MASK_APP_REGS}, \ {"hard-quad-float", MASK_HARD_QUAD}, \ {"soft-quad-float", -MASK_HARD_QUAD}, \ SUBTARGET_SWITCHES \ ARCH64_SWITCHES \ { "", TARGET_DEFAULT}} #define TARGET_DEFAULT (MASK_APP_REGS + MASK_EPILOGUE + MASK_FPU) /* This is meant to be redefined in the host dependent files */ #define SUBTARGET_SWITCHES /* ??? Until we support a combination 32/64 bit compiler, these options are only defined for the v9 compiler in a true 64 bit environment. */ #if SPARC_ARCH64 #define ARCH64_SWITCHES \ /* {"arch32", -MASK_ARCH64}, */ \ /* {"arch64", MASK_ARCH64}, */ \ {"int64", MASK_INT64+MASK_LONG64}, \ {"int32", -MASK_INT64}, \ {"int32", MASK_LONG64}, \ {"long64", -MASK_INT64}, \ {"long64", MASK_LONG64}, \ {"long32", -(MASK_INT64+MASK_LONG64)}, \ /* {"ptr64", MASK_PTR64}, */ \ /* {"ptr32", -MASK_PTR64}, */ \ {"stack-bias", MASK_STACK_BIAS}, \ {"no-stack-bias", -MASK_STACK_BIAS}, \ {"medlow", -MASK_CODE_MODEL}, \ {"medlow", MASK_MEDLOW}, \ {"medany", -MASK_CODE_MODEL}, \ {"medany", MASK_MEDANY}, \ {"fullany", -MASK_CODE_MODEL}, \ {"fullany", MASK_FULLANY}, #else #define ARCH64_SWITCHES #endif /* target machine storage layout */ /* Define for cross-compilation to a sparc target with no TFmode from a host with a different float format (e.g. VAX). */ #define REAL_ARITHMETIC /* Define this if most significant bit is lowest numbered in instructions that operate on numbered bit-fields. */ #define BITS_BIG_ENDIAN 1 /* Define this if most significant byte of a word is the lowest numbered. */ /* This is true on the SPARC. */ #define BYTES_BIG_ENDIAN 1 /* Define this if most significant word of a multiword number is the lowest numbered. */ /* Doubles are stored in memory with the high order word first. This matters when cross-compiling. */ #define WORDS_BIG_ENDIAN 1 /* number of bits in an addressable storage unit */ #define BITS_PER_UNIT 8 /* Width in bits of a "word", which is the contents of a machine register. Note that this is not necessarily the width of data type `int'; if using 16-bit ints on a 68000, this would still be 32. But on a machine with 16-bit registers, this would be 16. */ #define BITS_PER_WORD (TARGET_ARCH64 ? 64 : 32) #define MAX_BITS_PER_WORD 64 /* Width of a word, in units (bytes). */ #define UNITS_PER_WORD (TARGET_ARCH64 ? 8 : 4) #define MIN_UNITS_PER_WORD 4 /* Now define the sizes of the C data types. */ #define SHORT_TYPE_SIZE 16 #define INT_TYPE_SIZE (TARGET_INT64 ? 64 : 32) #define LONG_TYPE_SIZE (TARGET_LONG64 ? 64 : 32) #define LONG_LONG_TYPE_SIZE 64 #define FLOAT_TYPE_SIZE 32 #define DOUBLE_TYPE_SIZE 64 #define MAX_INT_TYPE_SIZE 64 #define MAX_LONG_TYPE_SIZE 64 #if SPARC_ARCH64 /* ??? This does not work in SunOS 4.x, so it is not enabled here. Instead, it is enabled in sol2.h, because it does work under Solaris. */ /* Define for support of TFmode long double and REAL_ARITHMETIC. Sparc ABI says that long double is 4 words. */ #define LONG_DOUBLE_TYPE_SIZE 128 #endif /* Width in bits of a pointer. See also the macro `Pmode' defined below. */ #define POINTER_SIZE (TARGET_PTR64 ? 64 : 32) /* Allocation boundary (in *bits*) for storing arguments in argument list. */ #define PARM_BOUNDARY (TARGET_ARCH64 ? 64 : 32) /* Boundary (in *bits*) on which stack pointer should be aligned. */ #define STACK_BOUNDARY (TARGET_ARCH64 ? 128 : 64) /* ALIGN FRAMES on double word boundaries */ #define SPARC_STACK_ALIGN(LOC) \ (TARGET_ARCH64 ? (((LOC)+15) & ~15) : (((LOC)+7) & ~7)) /* Allocation boundary (in *bits*) for the code of a function. */ #define FUNCTION_BOUNDARY 32 /* Alignment of field after `int : 0' in a structure. */ /* ??? Should this be based on TARGET_INT64? */ #define EMPTY_FIELD_BOUNDARY (TARGET_ARCH64 ? 64 : 32) /* Every structure's size must be a multiple of this. */ #define STRUCTURE_SIZE_BOUNDARY 8 /* A bitfield declared as `int' forces `int' alignment for the struct. */ #define PCC_BITFIELD_TYPE_MATTERS 1 /* No data type wants to be aligned rounder than this. */ #define BIGGEST_ALIGNMENT (TARGET_ARCH64 ? 128 : 64) /* The best alignment to use in cases where we have a choice. */ #define FASTEST_ALIGNMENT 64 /* Make strings word-aligned so strcpy from constants will be faster. */ #define CONSTANT_ALIGNMENT(EXP, ALIGN) \ ((TREE_CODE (EXP) == STRING_CST \ && (ALIGN) < FASTEST_ALIGNMENT) \ ? FASTEST_ALIGNMENT : (ALIGN)) /* Make arrays of chars word-aligned for the same reasons. */ #define DATA_ALIGNMENT(TYPE, ALIGN) \ (TREE_CODE (TYPE) == ARRAY_TYPE \ && TYPE_MODE (TREE_TYPE (TYPE)) == QImode \ && (ALIGN) < FASTEST_ALIGNMENT ? FASTEST_ALIGNMENT : (ALIGN)) /* Set this nonzero if move instructions will actually fail to work when given unaligned data. */ #define STRICT_ALIGNMENT 1 /* Things that must be doubleword aligned cannot go in the text section, because the linker fails to align the text section enough! Put them in the data section. This macro is only used in this file. */ #define MAX_TEXT_ALIGN 32 /* This forces all variables and constants to the data section when PIC. This is because the SunOS 4 shared library scheme thinks everything in text is a function, and patches the address to point to a loader stub. */ /* This is defined to zero for every system which doesn't use the a.out object file format. */ #ifndef SUNOS4_SHARED_LIBRARIES #define SUNOS4_SHARED_LIBRARIES 0 #endif /* This is defined differently for v9 in a cover file. */ #define SELECT_SECTION(T,RELOC) \ { \ if (TREE_CODE (T) == VAR_DECL) \ { \ if (TREE_READONLY (T) && ! TREE_SIDE_EFFECTS (T) \ && DECL_INITIAL (T) \ && (DECL_INITIAL (T) == error_mark_node \ || TREE_CONSTANT (DECL_INITIAL (T))) \ && DECL_ALIGN (T) <= MAX_TEXT_ALIGN \ && ! (flag_pic && ((RELOC) || SUNOS4_SHARED_LIBRARIES))) \ text_section (); \ else \ data_section (); \ } \ else if (TREE_CODE (T) == CONSTRUCTOR) \ { \ if (flag_pic && ((RELOC) || SUNOS4_SHARED_LIBRARIES)) \ data_section (); \ } \ else if (TREE_CODE_CLASS (TREE_CODE (T)) == 'c') \ { \ if ((TREE_CODE (T) == STRING_CST && flag_writable_strings) \ || TYPE_ALIGN (TREE_TYPE (T)) > MAX_TEXT_ALIGN \ || (flag_pic && ((RELOC) || SUNOS4_SHARED_LIBRARIES))) \ data_section (); \ else \ text_section (); \ } \ } /* Use text section for a constant unless we need more alignment than that offers. */ /* This is defined differently for v9 in a cover file. */ #define SELECT_RTX_SECTION(MODE, X) \ { \ if (GET_MODE_BITSIZE (MODE) <= MAX_TEXT_ALIGN \ && ! (flag_pic && (symbolic_operand (X) || SUNOS4_SHARED_LIBRARIES))) \ text_section (); \ else \ data_section (); \ } /* Standard register usage. */ /* Number of actual hardware registers. The hardware registers are assigned numbers for the compiler from 0 to just below FIRST_PSEUDO_REGISTER. All registers that the compiler knows about must be given numbers, even those that are not normally considered general registers. SPARC has 32 integer registers and 32 floating point registers. 64 bit SPARC has 32 additional fp regs, but the odd numbered ones are not accessible. We still account for them to simplify register computations (eg: in CLASS_MAX_NREGS). There are also 4 fp condition code registers, so 32+32+32+4 == 100. Register 0 is used as the integer condition code register. */ #if SPARC_V9 #define FIRST_PSEUDO_REGISTER 100 #else #define FIRST_PSEUDO_REGISTER 64 #endif /* 1 for registers that have pervasive standard uses and are not available for the register allocator. g0 is used for the condition code and not to represent %g0, which is hardwired to 0, so reg 0 is *not* fixed. On non-v9 systems: g1 is free to use as temporary. g2-g4 are reserved for applications. Gcc normally uses them as temporaries, but this can be disabled via the -mno-app-regs option. g5 through g7 are reserved for the operating system. On v9 systems: g1 and g5 are free to use as temporaries. g2-g4 are reserved for applications (the compiler will not normally use them, but they can be used as temporaries with -mapp-regs). g6-g7 are reserved for the operating system. ??? Register 1 is used as a temporary by the 64 bit sethi pattern, so must currently be a fixed register until this pattern is rewritten. Register 1 is also used when restoring call-preserved registers in large stack frames. */ #if SPARC_V9 #define FIXED_REGISTERS \ {0, 1, 1, 1, 1, 0, 1, 1, \ 0, 0, 0, 0, 0, 0, 1, 0, \ 0, 0, 0, 0, 0, 0, 0, 0, \ 0, 0, 0, 0, 0, 0, 1, 1, \ \ 0, 0, 0, 0, 0, 0, 0, 0, \ 0, 0, 0, 0, 0, 0, 0, 0, \ 0, 0, 0, 0, 0, 0, 0, 0, \ 0, 0, 0, 0, 0, 0, 0, 0, \ \ 0, 0, 0, 0, 0, 0, 0, 0, \ 0, 0, 0, 0, 0, 0, 0, 0, \ 0, 0, 0, 0, 0, 0, 0, 0, \ 0, 0, 0, 0, 0, 0, 0, 0, \ \ 0, 0, 0, 0} #else #define FIXED_REGISTERS \ {0, 0, 0, 0, 0, 1, 1, 1, \ 0, 0, 0, 0, 0, 0, 1, 0, \ 0, 0, 0, 0, 0, 0, 0, 0, \ 0, 0, 0, 0, 0, 0, 1, 1, \ \ 0, 0, 0, 0, 0, 0, 0, 0, \ 0, 0, 0, 0, 0, 0, 0, 0, \ 0, 0, 0, 0, 0, 0, 0, 0, \ 0, 0, 0, 0, 0, 0, 0, 0} #endif /* 1 for registers not available across function calls. These must include the FIXED_REGISTERS and also any registers that can be used without being saved. The latter must include the registers where values are returned and the register where structure-value addresses are passed. Aside from that, you can include as many other registers as you like. */ #if SPARC_V9 #define CALL_USED_REGISTERS \ {1, 1, 1, 1, 1, 1, 1, 1, \ 1, 1, 1, 1, 1, 1, 1, 1, \ 0, 0, 0, 0, 0, 0, 0, 0, \ 0, 0, 0, 0, 0, 0, 1, 1, \ \ 1, 1, 1, 1, 1, 1, 1, 1, \ 1, 1, 1, 1, 1, 1, 1, 1, \ 0, 0, 0, 0, 0, 0, 0, 0, \ 0, 0, 0, 0, 0, 0, 0, 0, \ \ 0, 0, 0, 0, 0, 0, 0, 0, \ 0, 0, 0, 0, 0, 0, 0, 0, \ 1, 1, 1, 1, 1, 1, 1, 1, \ 1, 1, 1, 1, 1, 1, 1, 1, \ \ 1, 1, 1, 1} #else #define CALL_USED_REGISTERS \ {1, 1, 1, 1, 1, 1, 1, 1, \ 1, 1, 1, 1, 1, 1, 1, 1, \ 0, 0, 0, 0, 0, 0, 0, 0, \ 0, 0, 0, 0, 0, 0, 1, 1, \ \ 1, 1, 1, 1, 1, 1, 1, 1, \ 1, 1, 1, 1, 1, 1, 1, 1, \ 1, 1, 1, 1, 1, 1, 1, 1, \ 1, 1, 1, 1, 1, 1, 1, 1} #endif /* If !TARGET_FPU, then make the fp registers fixed so that they won't be allocated. On v9, also make the fp cc regs fixed. */ #define CONDITIONAL_REGISTER_USAGE \ do \ { \ if (SPARC_V9 && ! SPARC_ARCH64) \ { \ int regno; \ for (regno = 1; regno <= 4; regno++) \ fixed_regs[regno] = 0; \ fixed_regs[5] = 1; \ for (regno = 48; regno < 80; regno++) \ call_used_regs[regno] = 1; \ } \ if (! TARGET_FPU) \ { \ int regno; \ for (regno = 32; regno < FIRST_PSEUDO_REGISTER; regno++) \ fixed_regs[regno] = 1; \ } \ if (! TARGET_APP_REGS) \ { \ fixed_regs[2] = 1; \ fixed_regs[3] = 1; \ fixed_regs[4] = 1; \ } \ else \ { \ fixed_regs[2] = 0; \ fixed_regs[3] = 0; \ fixed_regs[4] = TARGET_MEDANY != 0; \ } \ if (TARGET_FLAT) \ { \ /* Let the compiler believe the frame pointer is still \ %fp, but output it as %i7. */ \ fixed_regs[31] = 1; \ reg_names[FRAME_POINTER_REGNUM] = "%i7"; \ /* ??? This is a hack to disable leaf functions. */ \ global_regs[7] = 1; \ } \ if (profile_block_flag) \ { \ /* %g1 and %g2 must be fixed, because BLOCK_PROFILER \ uses them. */ \ fixed_regs[1] = 1; \ fixed_regs[2] = 1; \ } \ } \ while (0) /* Return number of consecutive hard regs needed starting at reg REGNO to hold something of mode MODE. This is ordinarily the length in words of a value of mode MODE but can be less for certain modes in special long registers. On SPARC, ordinary registers hold 32 bits worth; this means both integer and floating point registers. On v9, integer regs hold 64 bits worth; floating point regs hold 32 bits worth (this includes the new fp regs as even the odd ones are included in the hard register count). */ #define HARD_REGNO_NREGS(REGNO, MODE) \ (TARGET_ARCH64 \ ? ((REGNO) < 32 \ ? (GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD \ : (GET_MODE_SIZE (MODE) + 3) / 4) \ : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)) /* Value is 1 if hard register REGNO can hold a value of machine-mode MODE. See sparc.c for how we initialize this. */ extern int *hard_regno_mode_classes; extern int sparc_mode_class[]; #define HARD_REGNO_MODE_OK(REGNO, MODE) \ ((hard_regno_mode_classes[REGNO] & sparc_mode_class[MODE]) != 0) /* Value is 1 if it is a good idea to tie two pseudo registers when one has mode MODE1 and one has mode MODE2. If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2, for any hard reg, then this must be 0 for correct output. For V9: SFmode can't be combined with other float modes, because they can't be allocated to the %d registers. Also, DFmode won't fit in odd %f registers, but SFmode will. */ #define MODES_TIEABLE_P(MODE1, MODE2) \ ((MODE1) == (MODE2) \ || (GET_MODE_CLASS (MODE1) == GET_MODE_CLASS (MODE2) \ && (! TARGET_V9 \ || (GET_MODE_CLASS (MODE1) != MODE_FLOAT \ || (MODE1 != SFmode && MODE2 != SFmode))))) /* Specify the registers used for certain standard purposes. The values of these macros are register numbers. */ /* SPARC pc isn't overloaded on a register that the compiler knows about. */ /* #define PC_REGNUM */ /* Register to use for pushing function arguments. */ #define STACK_POINTER_REGNUM 14 /* Actual top-of-stack address is 92/136 greater than the contents of the stack pointer register for !v9/v9. That is: - !v9: 64 bytes for the in and local registers, 4 bytes for structure return address, and 24 bytes for the 6 register parameters. - v9: 128 bytes for the in and local registers + 8 bytes reserved. */ #define STACK_POINTER_OFFSET FIRST_PARM_OFFSET(0) /* The stack bias (amount by which the hardware register is offset by). */ #define SPARC_STACK_BIAS (TARGET_STACK_BIAS ? 2047 : 0) /* Base register for access to local variables of the function. */ #define FRAME_POINTER_REGNUM 30 #if 0 /* Register that is used for the return address. */ #define RETURN_ADDR_REGNUM 15 #endif /* Value should be nonzero if functions must have frame pointers. Zero means the frame pointer need not be set up (and parms may be accessed via the stack pointer) in functions that seem suitable. This is computed in `reload', in reload1.c. Used in flow.c, global.c, and reload1.c. Being a non-leaf function does not mean a frame pointer is needed in the flat window model. However, the debugger won't be able to backtrace through us with out it. */ #define FRAME_POINTER_REQUIRED \ (TARGET_FRW ? (current_function_calls_alloca || current_function_varargs \ || !leaf_function_p ()) \ : ! (leaf_function_p () && only_leaf_regs_used ())) /* C statement to store the difference between the frame pointer and the stack pointer values immediately after the function prologue. Note, we always pretend that this is a leaf function because if it's not, there's no point in trying to eliminate the frame pointer. If it is a leaf function, we guessed right! */ #define INITIAL_FRAME_POINTER_OFFSET(VAR) \ ((VAR) = (TARGET_FRW ? sparc_flat_compute_frame_size (get_frame_size ()) \ : compute_frame_size (get_frame_size (), 1))) /* Base register for access to arguments of the function. */ #define ARG_POINTER_REGNUM FRAME_POINTER_REGNUM /* Register in which static-chain is passed to a function. This must not be a register used by the prologue. */ #define STATIC_CHAIN_REGNUM (TARGET_ARCH64 ? 5 : 2) /* Register which holds offset table for position-independent data references. */ #define PIC_OFFSET_TABLE_REGNUM 23 #define INITIALIZE_PIC initialize_pic () #define FINALIZE_PIC finalize_pic () /* Sparc ABI says that quad-precision floats and all structures are returned in memory. For v9, all aggregates are returned in memory. */ #define RETURN_IN_MEMORY(TYPE) \ (TYPE_MODE (TYPE) == BLKmode \ || (! TARGET_ARCH64 && (TYPE_MODE (TYPE) == TFmode \ || TYPE_MODE (TYPE) == TCmode))) /* Functions which return large structures get the address to place the wanted value at offset 64 from the frame. Must reserve 64 bytes for the in and local registers. v9: Functions which return large structures get the address to place the wanted value from an invisible first argument. */ /* Used only in other #defines in this file. */ #define STRUCT_VALUE_OFFSET 64 #define STRUCT_VALUE \ (TARGET_ARCH64 \ ? 0 \ : gen_rtx (MEM, Pmode, \ gen_rtx (PLUS, Pmode, stack_pointer_rtx, \ gen_rtx (CONST_INT, VOIDmode, STRUCT_VALUE_OFFSET)))) #define STRUCT_VALUE_INCOMING \ (TARGET_ARCH64 \ ? 0 \ : gen_rtx (MEM, Pmode, \ gen_rtx (PLUS, Pmode, frame_pointer_rtx, \ gen_rtx (CONST_INT, VOIDmode, STRUCT_VALUE_OFFSET)))) /* Define the classes of registers for register constraints in the machine description. Also define ranges of constants. One of the classes must always be named ALL_REGS and include all hard regs. If there is more than one class, another class must be named NO_REGS and contain no registers. The name GENERAL_REGS must be the name of a class (or an alias for another name such as ALL_REGS). This is the class of registers that is allowed by "g" or "r" in a register constraint. Also, registers outside this class are allocated only when instructions express preferences for them. The classes must be numbered in nondecreasing order; that is, a larger-numbered class must never be contained completely in a smaller-numbered class. For any two classes, it is very desirable that there be another class that represents their union. */ /* The SPARC has two kinds of registers, general and floating point. For v9 we must distinguish between the upper and lower floating point registers because the upper ones can't hold SFmode values. HARD_REGNO_MODE_OK won't help here because reload assumes that register(s) satisfying a group need for a class will also satisfy a single need for that class. EXTRA_FP_REGS is a bit of a misnomer as it covers all 64 fp regs. It is important that one class contains all the general and all the standard fp regs. Otherwise find_reg() won't properly allocate int regs for moves, because reg_class_record() will bias the selection in favor of fp regs, because reg_class_subunion[GENERAL_REGS][FP_REGS] will yield FP_REGS, because FP_REGS > GENERAL_REGS. It is also important that one class contain all the general and all the fp regs. Otherwise when spilling a DFmode reg, it may be from EXTRA_FP_REGS but find_reloads() may use class GENERAL_OR_FP_REGS. This will cause allocate_reload_reg() to bypass it causing an abort because the compiler thinks it doesn't have a spill reg when in fact it does. v9 also has 4 floating point condition code registers. Since we don't have a class that is the union of FPCC_REGS with either of the others, it is important that it appear first. Otherwise the compiler will die trying to compile _fixunsdfsi because fix_truncdfsi2 won't match its constraints. */ #if SPARC_V9 enum reg_class { NO_REGS, FPCC_REGS, GENERAL_REGS, FP_REGS, EXTRA_FP_REGS, GENERAL_OR_FP_REGS, GENERAL_OR_EXTRA_FP_REGS, ALL_REGS, LIM_REG_CLASSES }; #else enum reg_class { NO_REGS, GENERAL_REGS, FP_REGS, ALL_REGS, LIM_REG_CLASSES }; #endif #define N_REG_CLASSES (int) LIM_REG_CLASSES /* Give names of register classes as strings for dump file. */ #if SPARC_V9 #define REG_CLASS_NAMES \ { "NO_REGS", "FPCC_REGS", "GENERAL_REGS", "FP_REGS", "EXTRA_FP_REGS", \ "GENERAL_OR_FP_REGS", "GENERAL_OR_EXTRA_FP_REGS", "ALL_REGS" } #else #define REG_CLASS_NAMES \ { "NO_REGS", "GENERAL_REGS", "FP_REGS", "ALL_REGS" } #endif /* Define which registers fit in which classes. This is an initializer for a vector of HARD_REG_SET of length N_REG_CLASSES. */ #if SPARC_V9 #define REG_CLASS_CONTENTS \ {{0, 0, 0, 0}, {0, 0, 0, 0xf}, {-2, 0, 0, 0}, \ {0, -1, 0, 0}, {0, -1, -1, 0}, {-2, -1, 0, 0}, {-2, -1, -1, 0}, \ {-2, -1, -1, 0xf}} #else #if 0 && defined (__GNUC__) #define REG_CLASS_CONTENTS {0LL, 0xfffffffeLL, 0xffffffff00000000LL, 0xfffffffffffffffeLL} #else #define REG_CLASS_CONTENTS {{0, 0}, {-2, 0}, {0, -1}, {-2, -1}} #endif #endif /* The same information, inverted: Return the class number of the smallest class containing reg number REGNO. This could be a conditional expression or could index an array. */ #if SPARC_V9 #define REGNO_REG_CLASS(REGNO) \ ((REGNO) == 0 ? NO_REGS \ : (REGNO) < 32 ? GENERAL_REGS \ : (REGNO) < 64 ? FP_REGS \ : (REGNO) < 96 ? EXTRA_FP_REGS \ : FPCC_REGS) #else #define REGNO_REG_CLASS(REGNO) \ ((REGNO) >= 32 ? FP_REGS : (REGNO) == 0 ? NO_REGS : GENERAL_REGS) #endif /* This is the order in which to allocate registers normally. We put %f0/%f1 last among the float registers, so as to make it more likely that a pseudo-register which dies in the float return register will get allocated to the float return register, thus saving a move instruction at the end of the function. On v9, the float registers are ordered a little "funny" because some of them (%f16-%f47) are call-preserved. */ #if SPARC_V9 #define REG_ALLOC_ORDER \ { 8, 9, 10, 11, 12, 13, \ 15, 16, 17, 18, 19, 20, 21, 22, \ 23, 24, 25, 26, 27, 28, 29, 31, \ 34, 35, 36, 37, 38, 39, /* %f2-%f7 */ \ 40, 41, 42, 43, 44, 45, 46, 47, /* %f8-%f15 */ \ 80, 81, 82, 83, 84, 85, 86, 87, /* %f48-%f55 */ \ 88, 89, 90, 91, 92, 93, 94, 95, /* %f56-%f63 */ \ 48, 49, 50, 51, 52, 53, 54, 55, /* %f16-%f23 */ \ 56, 57, 58, 59, 60, 61, 62, 63, /* %f24-%f31 */ \ 64, 65, 66, 67, 68, 69, 70, 71, /* %f32-%f39 */ \ 72, 73, 74, 75, 76, 77, 78, 79, /* %f40-%f47 */ \ 32, 33, /* %f0,%f1 */ \ 96, 97, 98, 99, /* %fcc0-3 */ \ 1, 5, 2, 3, 4, 6, 7, 0, 14, 30} #else #define REG_ALLOC_ORDER \ { 8, 9, 10, 11, 12, 13, 2, 3, \ 15, 16, 17, 18, 19, 20, 21, 22, \ 23, 24, 25, 26, 27, 28, 29, 31, \ 34, 35, 36, 37, 38, 39, \ 40, 41, 42, 43, 44, 45, 46, 47, \ 48, 49, 50, 51, 52, 53, 54, 55, \ 56, 57, 58, 59, 60, 61, 62, 63, \ 32, 33, \ 1, 4, 5, 6, 7, 0, 14, 30} #endif /* This is the order in which to allocate registers for leaf functions. If all registers can fit in the "i" registers, then we have the possibility of having a leaf function. v9: The floating point registers are ordered a little "funny" because some of them (%f16-%f47) are call-preserved. */ #if SPARC_V9 #define REG_LEAF_ALLOC_ORDER \ { 24, 25, 26, 27, 28, 29, \ 15, 8, 9, 10, 11, 12, 13, \ 16, 17, 18, 19, 20, 21, 22, 23, \ 34, 35, 36, 37, 38, 39, \ 40, 41, 42, 43, 44, 45, 46, 47, \ 80, 81, 82, 83, 84, 85, 86, 87, \ 88, 89, 90, 91, 92, 93, 94, 95, \ 48, 49, 50, 51, 52, 53, 54, 55, \ 56, 57, 58, 59, 60, 61, 62, 63, \ 64, 65, 66, 67, 68, 69, 70, 71, \ 72, 73, 74, 75, 76, 77, 78, 79, \ 32, 33, \ 96, 97, 98, 99, \ 1, 5, 2, 3, 4, 6, 7, 0, 14, 30, 31} #else #define REG_LEAF_ALLOC_ORDER \ { 2, 3, 24, 25, 26, 27, 28, 29, \ 15, 8, 9, 10, 11, 12, 13, \ 16, 17, 18, 19, 20, 21, 22, 23, \ 34, 35, 36, 37, 38, 39, \ 40, 41, 42, 43, 44, 45, 46, 47, \ 48, 49, 50, 51, 52, 53, 54, 55, \ 56, 57, 58, 59, 60, 61, 62, 63, \ 32, 33, \ 1, 4, 5, 6, 7, 0, 14, 30, 31} #endif #define ORDER_REGS_FOR_LOCAL_ALLOC order_regs_for_local_alloc () /* ??? %g7 is not a leaf register to effectively #undef LEAF_REGISTERS when -mflat is used. Function only_leaf_regs_used will return 0 if a global register is used and is not permitted in a leaf function. We make %g7 a global reg if -mflat and voila. Since %g7 is a system register and is fixed it won't be used by gcc anyway. */ #if SPARC_V9 #define LEAF_REGISTERS \ { 1, 1, 1, 1, 1, 1, 1, 0, \ 0, 0, 0, 0, 0, 0, 1, 0, \ 0, 0, 0, 0, 0, 0, 0, 0, \ 1, 1, 1, 1, 1, 1, 0, 1, \ 1, 1, 1, 1, 1, 1, 1, 1, \ 1, 1, 1, 1, 1, 1, 1, 1, \ 1, 1, 1, 1, 1, 1, 1, 1, \ 1, 1, 1, 1, 1, 1, 1, 1, \ 1, 1, 1, 1, 1, 1, 1, 1, \ 1, 1, 1, 1, 1, 1, 1, 1, \ 1, 1, 1, 1, 1, 1, 1, 1, \ 1, 1, 1, 1, 1, 1, 1, 1, \ 1, 1, 1, 1} #else #define LEAF_REGISTERS \ { 1, 1, 1, 1, 1, 1, 1, 0, \ 0, 0, 0, 0, 0, 0, 1, 0, \ 0, 0, 0, 0, 0, 0, 0, 0, \ 1, 1, 1, 1, 1, 1, 0, 1, \ 1, 1, 1, 1, 1, 1, 1, 1, \ 1, 1, 1, 1, 1, 1, 1, 1, \ 1, 1, 1, 1, 1, 1, 1, 1, \ 1, 1, 1, 1, 1, 1, 1, 1} #endif extern char leaf_reg_remap[]; #define LEAF_REG_REMAP(REGNO) (leaf_reg_remap[REGNO]) /* The class value for index registers, and the one for base regs. */ #define INDEX_REG_CLASS GENERAL_REGS #define BASE_REG_CLASS GENERAL_REGS /* Local macro to handle the two v9 classes of FP regs. */ #if SPARC_V9 #define FP_REG_CLASS_P(CLASS) ((CLASS) == FP_REGS || (CLASS) == EXTRA_FP_REGS) #else #define FP_REG_CLASS_P(CLASS) ((CLASS) == FP_REGS) #endif /* Get reg_class from a letter such as appears in the machine description. */ #if SPARC_V9 #define REG_CLASS_FROM_LETTER(C) \ ((C) == 'f' ? FP_REGS \ : (C) == 'e' ? EXTRA_FP_REGS \ : (C) == 'c' ? FPCC_REGS \ : NO_REGS) #else /* Coerce v9's 'e' class to 'f', so we can use 'e' in the .md file for v8 and v9. */ #define REG_CLASS_FROM_LETTER(C) \ ((C) == 'f' ? FP_REGS : (C) == 'e' ? FP_REGS : NO_REGS) #endif /* The letters I, J, K, L and M in a register constraint string can be used to stand for particular ranges of immediate operands. This macro defines what the ranges are. C is the letter, and VALUE is a constant value. Return 1 if VALUE is in the range specified by C. For SPARC, `I' is used for the range of constants an insn can actually contain. `J' is used for the range which is just zero (since that is R0). `K' is used for constants which can be loaded with a single sethi insn. */ #define SMALL_INT(X) ((unsigned) (INTVAL (X) + 0x1000) < 0x2000) #define CONST_OK_FOR_LETTER_P(VALUE, C) \ ((C) == 'I' ? (unsigned) ((VALUE) + 0x1000) < 0x2000 \ : (C) == 'J' ? (VALUE) == 0 \ : (C) == 'K' ? ((VALUE) & 0x3ff) == 0 \ : 0) /* Similar, but for floating constants, and defining letters G and H. Here VALUE is the CONST_DOUBLE rtx itself. */ #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \ ((C) == 'G' ? fp_zero_operand (VALUE) \ : (C) == 'H' ? arith_double_operand (VALUE, DImode) \ : 0) /* Given an rtx X being reloaded into a reg required to be in class CLASS, return the class of reg to actually use. In general this is just CLASS; but on some machines in some cases it is preferable to use a more restrictive class. */ /* We can't load constants into FP registers. We can't load any FP constant if an 'E' constraint fails to match it. */ #define PREFERRED_RELOAD_CLASS(X,CLASS) \ (CONSTANT_P (X) \ && (FP_REG_CLASS_P (CLASS) \ || (GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT \ && (HOST_FLOAT_FORMAT != IEEE_FLOAT_FORMAT \ || HOST_BITS_PER_INT != BITS_PER_WORD))) \ ? NO_REGS : (CLASS)) /* Return the register class of a scratch register needed to load IN into a register of class CLASS in MODE. On the SPARC, when PIC, we need a temporary when loading some addresses into a register. Also, we need a temporary when loading/storing a HImode/QImode value between memory and the FPU registers. This can happen when combine puts a paradoxical subreg in a float/fix conversion insn. */ #define SECONDARY_INPUT_RELOAD_CLASS(CLASS, MODE, IN) \ ((FP_REG_CLASS_P (CLASS) && ((MODE) == HImode || (MODE) == QImode) \ && (GET_CODE (IN) == MEM \ || ((GET_CODE (IN) == REG || GET_CODE (IN) == SUBREG) \ && true_regnum (IN) == -1))) ? GENERAL_REGS : NO_REGS) #define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, IN) \ ((FP_REG_CLASS_P (CLASS) && ((MODE) == HImode || (MODE) == QImode) \ && (GET_CODE (IN) == MEM \ || ((GET_CODE (IN) == REG || GET_CODE (IN) == SUBREG) \ && true_regnum (IN) == -1))) ? GENERAL_REGS : NO_REGS) /* On SPARC it is not possible to directly move data between GENERAL_REGS and FP_REGS. */ #define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE) \ (FP_REG_CLASS_P (CLASS1) != FP_REG_CLASS_P (CLASS2)) /* Return the stack location to use for secondary memory needed reloads. We want to use the reserved location just below the frame pointer. However, we must ensure that there is a frame, so use assign_stack_local if the frame size is zero. */ #define SECONDARY_MEMORY_NEEDED_RTX(MODE) \ (get_frame_size () == 0 \ ? assign_stack_local (MODE, GET_MODE_SIZE (MODE), 0) \ : gen_rtx (MEM, MODE, gen_rtx (PLUS, Pmode, frame_pointer_rtx, \ GEN_INT (STARTING_FRAME_OFFSET)))) /* Get_secondary_mem widens it's argument to BITS_PER_WORD which loses on v9 because the movsi and movsf patterns don't handle r/f moves. For v8 we copy the default definition. */ #define SECONDARY_MEMORY_NEEDED_MODE(MODE) \ (TARGET_ARCH64 \ ? (GET_MODE_BITSIZE (MODE) < 32 \ ? mode_for_size (32, GET_MODE_CLASS (MODE), 0) \ : MODE) \ : (GET_MODE_BITSIZE (MODE) < BITS_PER_WORD \ ? mode_for_size (BITS_PER_WORD, GET_MODE_CLASS (MODE), 0) \ : MODE)) /* Return the maximum number of consecutive registers needed to represent mode MODE in a register of class CLASS. */ /* On SPARC, this is the size of MODE in words. */ #define CLASS_MAX_NREGS(CLASS, MODE) \ (FP_REG_CLASS_P (CLASS) ? (GET_MODE_SIZE (MODE) + 3) / 4 \ : (GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD) /* Stack layout; function entry, exit and calling. */ /* Define the number of register that can hold parameters. These two macros are used only in other macro definitions below. MODE is the mode of the argument. !v9: All args are passed in %o0-%o5. v9: Non-float args are passed in %o0-5 and float args are passed in %f0-%f15. */ #define NPARM_REGS(MODE) \ (TARGET_ARCH64 ? (GET_MODE_CLASS (MODE) == MODE_FLOAT ? 16 : 6) : 6) /* Define this if pushing a word on the stack makes the stack pointer a smaller address. */ #define STACK_GROWS_DOWNWARD /* Define this if the nominal address of the stack frame is at the high-address end of the local variables; that is, each additional local variable allocated goes at a more negative offset in the frame. */ #define FRAME_GROWS_DOWNWARD /* Offset within stack frame to start allocating local variables at. If FRAME_GROWS_DOWNWARD, this is the offset to the END of the first local allocated. Otherwise, it is the offset to the BEGINNING of the first local allocated. */ /* This allows space for one TFmode floating point value. */ #define STARTING_FRAME_OFFSET \ (TARGET_ARCH64 ? (SPARC_STACK_BIAS - 16) \ : (-SPARC_STACK_ALIGN (LONG_DOUBLE_TYPE_SIZE / BITS_PER_UNIT))) /* If we generate an insn to push BYTES bytes, this says how many the stack pointer really advances by. On SPARC, don't define this because there are no push insns. */ /* #define PUSH_ROUNDING(BYTES) */ /* Offset of first parameter from the argument pointer register value. !v9: This is 64 for the ins and locals, plus 4 for the struct-return reg even if this function isn't going to use it. v9: This is 128 for the ins and locals, plus a reserved space of 8. */ #define FIRST_PARM_OFFSET(FNDECL) \ (TARGET_ARCH64 ? (SPARC_STACK_BIAS + 136) \ : (STRUCT_VALUE_OFFSET + UNITS_PER_WORD)) /* When a parameter is passed in a register, stack space is still allocated for it. */ #if ! SPARC_ARCH64 #define REG_PARM_STACK_SPACE(DECL) (NPARM_REGS (SImode) * UNITS_PER_WORD) #endif /* Keep the stack pointer constant throughout the function. This is both an optimization and a necessity: longjmp doesn't behave itself when the stack pointer moves within the function! */ #define ACCUMULATE_OUTGOING_ARGS /* Value is the number of bytes of arguments automatically popped when returning from a subroutine call. FUNDECL is the declaration node of the function (as a tree), FUNTYPE is the data type of the function (as a tree), or for a library call it is an identifier node for the subroutine name. SIZE is the number of bytes of arguments passed on the stack. */ #define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0 /* Some subroutine macros specific to this machine. When !TARGET_FPU, put float return values in the general registers, since we don't have any fp registers. */ #define BASE_RETURN_VALUE_REG(MODE) \ (TARGET_ARCH64 \ ? (TARGET_FPU && GET_MODE_CLASS (MODE) == MODE_FLOAT ? 32 : 8) \ : (((MODE) == SFmode || (MODE) == DFmode) && TARGET_FPU ? 32 : 8)) #define BASE_OUTGOING_VALUE_REG(MODE) \ (TARGET_ARCH64 \ ? (TARGET_FPU && GET_MODE_CLASS (MODE) == MODE_FLOAT ? 32 \ : TARGET_FRW ? 8 : 24) \ : (((MODE) == SFmode || (MODE) == DFmode) && TARGET_FPU ? 32 \ : (TARGET_FRW ? 8 : 24))) #define BASE_PASSING_ARG_REG(MODE) \ (TARGET_ARCH64 \ ? (TARGET_FPU && GET_MODE_CLASS (MODE) == MODE_FLOAT ? 32 : 8) \ : 8) #define BASE_INCOMING_ARG_REG(MODE) \ (TARGET_ARCH64 \ ? (TARGET_FPU && GET_MODE_CLASS (MODE) == MODE_FLOAT ? 32 \ : TARGET_FRW ? 8 : 24) \ : (TARGET_FRW ? 8 : 24)) /* Define this macro if the target machine has "register windows". This C expression returns the register number as seen by the called function corresponding to register number OUT as seen by the calling function. Return OUT if register number OUT is not an outbound register. */ #define INCOMING_REGNO(OUT) \ ((TARGET_FRW || (OUT) < 8 || (OUT) > 15) ? (OUT) : (OUT) + 16) /* Define this macro if the target machine has "register windows". This C expression returns the register number as seen by the calling function corresponding to register number IN as seen by the called function. Return IN if register number IN is not an inbound register. */ #define OUTGOING_REGNO(IN) \ ((TARGET_FRW || (IN) < 24 || (IN) > 31) ? (IN) : (IN) - 16) /* Define how to find the value returned by a function. VALTYPE is the data type of the value (as a tree). If the precise function being called is known, FUNC is its FUNCTION_DECL; otherwise, FUNC is 0. */ /* On SPARC the value is found in the first "output" register. */ #define FUNCTION_VALUE(VALTYPE, FUNC) \ gen_rtx (REG, TYPE_MODE (VALTYPE), BASE_RETURN_VALUE_REG (TYPE_MODE (VALTYPE))) /* But the called function leaves it in the first "input" register. */ #define FUNCTION_OUTGOING_VALUE(VALTYPE, FUNC) \ gen_rtx (REG, TYPE_MODE (VALTYPE), BASE_OUTGOING_VALUE_REG (TYPE_MODE (VALTYPE))) /* Define how to find the value returned by a library function assuming the value has mode MODE. */ #define LIBCALL_VALUE(MODE) \ gen_rtx (REG, MODE, BASE_RETURN_VALUE_REG (MODE)) /* 1 if N is a possible register number for a function value as seen by the caller. On SPARC, the first "output" reg is used for integer values, and the first floating point register is used for floating point values. */ #define FUNCTION_VALUE_REGNO_P(N) ((N) == 8 || (N) == 32) /* Define the size of space to allocate for the return value of an untyped_call. */ #define APPLY_RESULT_SIZE 16 /* 1 if N is a possible register number for function argument passing. On SPARC, these are the "output" registers. v9 also uses %f0-%f15. */ #define FUNCTION_ARG_REGNO_P(N) \ (TARGET_ARCH64 ? (((N) < 14 && (N) > 7) || (N) > 31 && (N) < 48) \ : ((N) < 14 && (N) > 7)) /* Define a data type for recording info about an argument list during the scan of that argument list. This data type should hold all necessary information about the function itself and about the args processed so far, enough to enable macros such as FUNCTION_ARG to determine where the next arg should go. On SPARC (!v9), this is a single integer, which is a number of words of arguments scanned so far (including the invisible argument, if any, which holds the structure-value-address). Thus 7 or more means all following args should go on the stack. For v9, we record how many of each type has been passed. Different types get passed differently. - Float args are passed in %f0-15, after which they go to the stack where floats and doubles are passed 8 byte aligned and long doubles are passed 16 byte aligned. - All aggregates are passed by reference. The callee copies the structure if necessary, except if stdarg/varargs and the struct matches the ellipse in which case the caller makes a copy. - Any non-float argument might be split between memory and reg %o5. ??? I don't think this can ever happen now that structs are no longer passed in regs. For v9 return values: - For all aggregates, the caller allocates space for the return value, and passes the pointer as an implicit first argument, which is allocated like all other arguments. - The unimp instruction stuff for structure returns is gone. */ #if SPARC_ARCH64 enum sparc_arg_class { SPARC_ARG_INT = 0, SPARC_ARG_FLOAT = 1 }; struct sparc_args { int arg_count[2]; /* must be int! (for __builtin_args_info) */ }; #define CUMULATIVE_ARGS struct sparc_args /* Return index into CUMULATIVE_ARGS. */ #define GET_SPARC_ARG_CLASS(MODE) \ (GET_MODE_CLASS (MODE) == MODE_FLOAT ? SPARC_ARG_FLOAT : SPARC_ARG_INT) /* Round a register number up to a proper boundary for an arg of mode MODE. This macro is only used in this file. The "& (0x10000 - ...)" is used to round up to the next appropriate reg. */ #define ROUND_REG(CUM, MODE) \ (GET_MODE_CLASS (MODE) != MODE_FLOAT \ ? (CUM).arg_count[(int) GET_SPARC_ARG_CLASS (MODE)] \ : ((CUM).arg_count[(int) GET_SPARC_ARG_CLASS (MODE)] \ + GET_MODE_UNIT_SIZE (MODE) / 4 - 1) \ & (0x10000 - GET_MODE_UNIT_SIZE (MODE) / 4)) #define ROUND_ADVANCE(SIZE) \ (((SIZE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD) #else /* ! SPARC_ARCH64 */ #define CUMULATIVE_ARGS int #define ROUND_REG(CUM, MODE) (CUM) #define ROUND_ADVANCE(SIZE) \ ((SIZE + UNITS_PER_WORD - 1) / UNITS_PER_WORD) #endif /* ! SPARC_ARCH64 */ /* Initialize a variable CUM of type CUMULATIVE_ARGS for a call to a function whose data type is FNTYPE. For a library call, FNTYPE is 0. On SPARC, the offset always starts at 0: the first parm reg is always the same reg. */ #if SPARC_ARCH64 extern int sparc_arg_count,sparc_n_named_args; #define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME) \ do { \ (CUM).arg_count[(int) SPARC_ARG_INT] = 0; \ (CUM).arg_count[(int) SPARC_ARG_FLOAT] = 0; \ sparc_arg_count = 0; \ sparc_n_named_args = \ ((FNTYPE) && TYPE_ARG_TYPES (FNTYPE) \ ? (list_length (TYPE_ARG_TYPES (FNTYPE)) \ + (TREE_CODE (TREE_TYPE (FNTYPE)) == RECORD_TYPE \ || TREE_CODE (TREE_TYPE (FNTYPE)) == QUAL_UNION_TYPE\ || TREE_CODE (TREE_TYPE (FNTYPE)) == SET_TYPE \ || TREE_CODE (TREE_TYPE (FNTYPE)) == UNION_TYPE)) \ /* Can't tell, treat 'em all as named. */ \ : 10000); \ } while (0) #else #define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME) ((CUM) = 0) #endif /* Update the data in CUM to advance over an argument of mode MODE and data type TYPE. (TYPE is null for libcalls where that information may not be available.) */ #if SPARC_ARCH64 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \ do { \ (CUM).arg_count[(int) GET_SPARC_ARG_CLASS (MODE)] = \ ROUND_REG ((CUM), (MODE)) \ + (GET_MODE_CLASS (MODE) == MODE_FLOAT \ ? GET_MODE_SIZE (MODE) / 4 \ : ROUND_ADVANCE ((MODE) == BLKmode \ ? GET_MODE_SIZE (Pmode) \ : GET_MODE_SIZE (MODE))); \ sparc_arg_count++; \ } while (0) #else #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \ ((CUM) += ((MODE) != BLKmode \ ? ROUND_ADVANCE (GET_MODE_SIZE (MODE)) \ : ROUND_ADVANCE (int_size_in_bytes (TYPE)))) #endif /* Return boolean indicating arg of mode MODE will be passed in a reg. This macro is only used in this file. */ #if SPARC_ARCH64 #define PASS_IN_REG_P(CUM, MODE, TYPE) \ (ROUND_REG ((CUM), (MODE)) < NPARM_REGS (MODE) \ && ((TYPE)==0 || ! TREE_ADDRESSABLE ((tree)(TYPE))) \ && ((TYPE)==0 || (MODE) != BLKmode)) #else #define PASS_IN_REG_P(CUM, MODE, TYPE) \ ((CUM) < NPARM_REGS (SImode) \ && ((TYPE)==0 || ! TREE_ADDRESSABLE ((tree)(TYPE))) \ && ((TYPE)==0 || (MODE) != BLKmode \ || (TYPE_ALIGN (TYPE) % PARM_BOUNDARY == 0))) #endif /* Determine where to put an argument to a function. Value is zero to push the argument on the stack, or a hard register in which to store the argument. MODE is the argument's machine mode. TYPE is the data type of the argument (as a tree). This is null for libcalls where that information may not be available. CUM is a variable of type CUMULATIVE_ARGS which gives info about the preceding args and about the function being called. NAMED is nonzero if this argument is a named parameter (otherwise it is an extra parameter matching an ellipsis). */ /* On SPARC the first six args are normally in registers and the rest are pushed. Any arg that starts within the first 6 words is at least partially passed in a register unless its data type forbids. For v9, the first 6 int args are passed in regs and the first N float args are passed in regs (where N is such that %f0-15 are filled). The rest are pushed. Any arg that starts within the first 6 words is at least partially passed in a register unless its data type forbids. */ #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \ (PASS_IN_REG_P ((CUM), (MODE), (TYPE)) \ ? gen_rtx (REG, (MODE), \ (BASE_PASSING_ARG_REG (MODE) + ROUND_REG ((CUM), (MODE))))\ : 0) /* Define where a function finds its arguments. This is different from FUNCTION_ARG because of register windows. */ #define FUNCTION_INCOMING_ARG(CUM, MODE, TYPE, NAMED) \ (PASS_IN_REG_P ((CUM), (MODE), (TYPE)) \ ? gen_rtx (REG, (MODE), \ (BASE_INCOMING_ARG_REG (MODE) + ROUND_REG ((CUM), (MODE))))\ : 0) /* For an arg passed partly in registers and partly in memory, this is the number of registers used. For args passed entirely in registers or entirely in memory, zero. Any arg that starts in the first 6 regs but won't entirely fit in them needs partial registers on the Sparc (!v9). On v9, there are no arguments that are passed partially in registers (??? complex values?). */ #if ! SPARC_ARCH64 #define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \ (PASS_IN_REG_P ((CUM), (MODE), (TYPE)) \ && ((CUM) + ((MODE) == BLKmode \ ? ROUND_ADVANCE (int_size_in_bytes (TYPE)) \ : ROUND_ADVANCE (GET_MODE_SIZE (MODE))) - NPARM_REGS (SImode) > 0)\ ? (NPARM_REGS (SImode) - (CUM)) \ : 0) #endif /* The SPARC ABI stipulates passing struct arguments (of any size) and (!v9) quad-precision floats by invisible reference. For Pascal, also pass arrays by reference. */ #define FUNCTION_ARG_PASS_BY_REFERENCE(CUM, MODE, TYPE, NAMED) \ ((TYPE && AGGREGATE_TYPE_P (TYPE)) \ || (!TARGET_ARCH64 && MODE == TFmode)) /* A C expression that indicates when it is the called function's responsibility to make copies of arguments passed by reference. If the callee can determine that the argument won't be modified, it can avoid the copy. */ /* ??? We'd love to be able to use NAMED here. Unfortunately, it doesn't include the last named argument so we keep track of the args ourselves. */ #if SPARC_ARCH64 #define FUNCTION_ARG_CALLEE_COPIES(CUM, MODE, TYPE, NAMED) \ (sparc_arg_count < sparc_n_named_args) #endif /* Initialize data used by insn expanders. This is called from init_emit, once for each function, before code is generated. For v9, clear the temp slot used by float/int DImode conversions. ??? There is the 16 bytes at [%fp-16], however we'd like to delete this space at some point. ??? Use assign_stack_temp? */ extern void sparc64_init_expanders (); extern struct rtx_def *sparc64_fpconv_stack_temp (); #if SPARC_ARCH64 #define INIT_EXPANDERS sparc64_init_expanders () #endif /* Define the information needed to generate branch and scc insns. This is stored from the compare operation. Note that we can't use "rtx" here since it hasn't been defined! */ extern struct rtx_def *sparc_compare_op0, *sparc_compare_op1; /* Define the function that build the compare insn for scc and bcc. */ extern struct rtx_def *gen_compare_reg (); /* This function handles all v9 scc insns */ extern int gen_v9_scc (); /* Generate the special assembly code needed to tell the assembler whatever it might need to know about the return value of a function. For Sparc assemblers, we need to output a .proc pseudo-op which conveys information to the assembler relating to peephole optimization (done in the assembler). */ #define ASM_DECLARE_RESULT(FILE, RESULT) \ fprintf ((FILE), "\t.proc\t0%o\n", sparc_type_code (TREE_TYPE (RESULT))) /* Output the label for a function definition. */ #define ASM_DECLARE_FUNCTION_NAME(FILE, NAME, DECL) \ do { \ ASM_DECLARE_RESULT (FILE, DECL_RESULT (DECL)); \ ASM_OUTPUT_LABEL (FILE, NAME); \ } while (0) /* This macro generates the assembly code for function entry. FILE is a stdio stream to output the code to. SIZE is an int: how many units of temporary storage to allocate. Refer to the array `regs_ever_live' to determine which registers to save; `regs_ever_live[I]' is nonzero if register number I is ever used in the function. This macro is responsible for knowing which registers should not be saved even if used. */ /* On SPARC, move-double insns between fpu and cpu need an 8-byte block of memory. If any fpu reg is used in the function, we allocate such a block here, at the bottom of the frame, just in case it's needed. If this function is a leaf procedure, then we may choose not to do a "save" insn. The decision about whether or not to do this is made in regclass.c. */ extern int leaf_function; #define FUNCTION_PROLOGUE(FILE, SIZE) \ (TARGET_FRW ? sparc_flat_output_function_prologue (FILE, SIZE) \ : output_function_prologue (FILE, SIZE, leaf_function)) /* Output assembler code to FILE to increment profiler label # LABELNO for profiling a function entry. */ #define FUNCTION_PROFILER(FILE, LABELNO) \ do { \ fputs ("\tsethi %hi(", (FILE)); \ ASM_OUTPUT_INTERNAL_LABELREF (FILE, "LP", LABELNO); \ fputs ("),%o0\n", (FILE)); \ if (TARGET_MEDANY) \ fprintf (FILE, "\tadd %%o0,%s,%%o0\n", \ MEDANY_BASE_REG); \ fputs ("\tcall mcount\n\tadd %lo(", (FILE)); \ ASM_OUTPUT_INTERNAL_LABELREF (FILE, "LP", LABELNO); \ fputs ("),%o0,%o0\n", (FILE)); \ } while (0) /* There are three profiling modes for basic blocks available. The modes are selected at compile time by using the options -a or -ax of the gnu compiler. The variable `profile_block_flag' will be set according to the selected option. profile_block_flag == 0, no option used: No profiling done. profile_block_flag == 1, -a option used. Count frequency of execution of every basic block. profile_block_flag == 2, -ax option used. Generate code to allow several different profiling modes at run time. Available modes are: Produce a trace of all basic blocks. Count frequency of jump instructions executed. In every mode it is possible to start profiling upon entering certain functions and to disable profiling of some other functions. The result of basic-block profiling will be written to a file `bb.out'. If the -ax option is used parameters for the profiling will be read from file `bb.in'. */ /* The following macro shall output assembler code to FILE to initialize basic-block profiling. If profile_block_flag == 2 Output code to call the subroutine `__bb_init_trace_func' and pass two parameters to it. The first parameter is the address of a block allocated in the object module. The second parameter is the number of the first basic block of the function. The name of the block is a local symbol made with this statement: ASM_GENERATE_INTERNAL_LABEL (BUFFER, "LPBX", 0); Of course, since you are writing the definition of `ASM_GENERATE_INTERNAL_LABEL' as well as that of this macro, you can take a short cut in the definition of this macro and use the name that you know will result. The number of the first basic block of the function is passed to the macro in BLOCK_OR_LABEL. If described in a virtual assembler language the code to be output looks like: parameter1 <- LPBX0 parameter2 <- BLOCK_OR_LABEL call __bb_init_trace_func else if profile_block_flag != 0 Output code to call the subroutine `__bb_init_func' and pass one single parameter to it, which is the same as the first parameter to `__bb_init_trace_func'. The first word of this parameter is a flag which will be nonzero if the object module has already been initialized. So test this word first, and do not call `__bb_init_func' if the flag is nonzero. Note: When profile_block_flag == 2 the test need not be done but `__bb_init_trace_func' *must* be called. BLOCK_OR_LABEL may be used to generate a label number as a branch destination in case `__bb_init_func' will not be called. If described in a virtual assembler language the code to be output looks like: cmp (LPBX0),0 jne local_label parameter1 <- LPBX0 call __bb_init_func local_label: */ #define FUNCTION_BLOCK_PROFILER(FILE, BLOCK_OR_LABEL) \ do \ { \ int bol = (BLOCK_OR_LABEL); \ switch (profile_block_flag) \ { \ case 2: \ if (TARGET_MEDANY) \ fprintf (FILE, "\tsethi %%hi(LPBX0),%%o0\n\tor %%0,%%lo(LPBX0),%%o0\n\tadd %%o0,%s,%%o0\n\tsethi %%hi(%d),%%o1\n\tcall ___bb_init_trace_func\n\tadd %g0,%%lo(%d),%%o1\n",\ MEDANY_BASE_REG, bol, bol); \ else \ fprintf (FILE, "\tsethi %%hi(LPBX0),%%o0\n\tor %%o0,%%lo(LPBX0),%%o0\n\tsethi %%hi(%d),%%o1\n\tcall ___bb_init_trace_func\n\tor %%o1,%%lo(%d),%%o1\n",\ bol, bol); \ break; \ default: \ if (TARGET_MEDANY) \ fprintf (FILE, "\tsethi %%hi(LPBX0),%%o0\n\tor %%0,%%lo(LPBX0),%%o0\n\tld [%s+%%o0],%%o1\n\ttst %%o1\n\tbne LPY%d\n\tadd %%o0,%s,%%o0\n\tcall ___bb_init_func\n\tnop\nLPY%d:\n",\ MEDANY_BASE_REG, bol, MEDANY_BASE_REG, bol);\ else \ fprintf (FILE, "\tsethi %%hi(LPBX0),%%o0\n\tld [%%lo(LPBX0)+%%o0],%%o1\n\ttst %%o1\n\tbne LPY%d\n\tadd %%o0,%%lo(LPBX0),%%o0\n\tcall ___bb_init_func\n\tnop\nLPY%d:\n",\ bol, bol); \ break; \ } \ } \ while (0) /* The following macro shall output assembler code to FILE to increment a counter associated with basic block number BLOCKNO. If profile_block_flag == 2 Output code to initialize the global structure `__bb' and call the function `__bb_trace_func' which will increment the counter. `__bb' consists of two words. In the first word the number of the basic block has to be stored. In the second word the address of a block allocated in the object module has to be stored. The basic block number is given by BLOCKNO. The address of the block is given by the label created with ASM_GENERATE_INTERNAL_LABEL (BUFFER, "LPBX", 0); by FUNCTION_BLOCK_PROFILER. Of course, since you are writing the definition of `ASM_GENERATE_INTERNAL_LABEL' as well as that of this macro, you can take a short cut in the definition of this macro and use the name that you know will result. If described in a virtual assembler language the code to be output looks like: move BLOCKNO -> (__bb) move LPBX0 -> (__bb+4) call __bb_trace_func Note that function `__bb_trace_func' must not change the machine state, especially the flag register. To grant this, you must output code to save and restore registers either in this macro or in the macros MACHINE_STATE_SAVE and MACHINE_STATE_RESTORE. The last two macros will be used in the function `__bb_trace_func', so you must make sure that the function prologue does not change any register prior to saving it with MACHINE_STATE_SAVE. else if profile_block_flag != 0 Output code to increment the counter directly. Basic blocks are numbered separately from zero within each compiled object module. The count associated with block number BLOCKNO is at index BLOCKNO in an array of words; the name of this array is a local symbol made with this statement: ASM_GENERATE_INTERNAL_LABEL (BUFFER, "LPBX", 2); Of course, since you are writing the definition of `ASM_GENERATE_INTERNAL_LABEL' as well as that of this macro, you can take a short cut in the definition of this macro and use the name that you know will result. If described in a virtual assembler language, the code to be output looks like: inc (LPBX2+4*BLOCKNO) */ #define BLOCK_PROFILER(FILE, BLOCKNO) \ do \ { \ int blockn = (BLOCKNO); \ switch (profile_block_flag) \ { \ case 2: \ if (TARGET_MEDANY) \ fprintf (FILE, "\tsethi %%hi(___bb),%%g1\n\tor %%0,%%lo(___bb),%%g1\n\tsethi %%hi(%d),%%g2\n\tor %%g2,%%lo(%d),%%g2\n\tst %%g2,[%s+%%g1]\n\tsethi %%hi(LPBX0),%%g2\n\tor %%0,%%lo(LPBX0),%%g2\n\tadd %%g2,%s,%%g2\n\tadd 4,%%g1,%%g1\n\tst %%g2,[%%g1+%%lo(___bb)]\n\tmov %%o7,%%g2\n\tcall ___bb_trace_func\n\tnop\n\tmov %%g2,%%o7\n",\ blockn, blockn, MEDANY_BASE_REG, MEDANY_BASE_REG); \ else \ fprintf (FILE, "\tsethi %%hi(___bb),%%g1\n\tsethi %%hi(%d),%%g2\n\tor %%g2,%%lo(%d),%%g2\n\tst %%g2,[%%lo(___bb)+%%g1]\n\tsethi %%hi(LPBX0),%%g2\n\tor %%g2,%%lo(LPBX0),%%g2\n\tadd 4,%%g1,%%g1\n\tst %%g2,[%%lo(___bb)+%%g1]\n\tmov %%o7,%%g2\n\tcall ___bb_trace_func\n\tnop\n\tmov %%g2,%%o7\n",\ blockn, blockn); \ break; \ default: \ if (TARGET_MEDANY) \ fprintf (FILE, "\tsethi %%hi(LPBX2+%d),%%g1\n\tor %%g1,%%lo(LPBX2+%d),%%g1\n\tld [%%g1+%s],%%g2\n\tadd %%g2,1,%%g2\n\tst %%g2,[%%g1+%s]\n", \ 4 * blockn, 4 * blockn, MEDANY_BASE_REG, MEDANY_BASE_REG); \ else \ fprintf (FILE, "\tsethi %%hi(LPBX2+%d),%%g1\n\tld [%%lo(LPBX2+%d)+%%g1],%%g2\n\ \tadd %%g2,1,%%g2\n\tst %%g2,[%%lo(LPBX2+%d)+%%g1]\n", \ 4 * blockn, 4 * blockn, 4 * blockn); \ break; \ } \ } \ while(0) /* The following macro shall output assembler code to FILE to indicate a return from function during basic-block profiling. If profiling_block_flag == 2: Output assembler code to call function `__bb_trace_ret'. Note that function `__bb_trace_ret' must not change the machine state, especially the flag register. To grant this, you must output code to save and restore registers either in this macro or in the macros MACHINE_STATE_SAVE_RET and MACHINE_STATE_RESTORE_RET. The last two macros will be used in the function `__bb_trace_ret', so you must make sure that the function prologue does not change any register prior to saving it with MACHINE_STATE_SAVE_RET. else if profiling_block_flag != 0: The macro will not be used, so it need not distinguish these cases. */ #define FUNCTION_BLOCK_PROFILER_EXIT(FILE) \ fprintf (FILE, "\tcall ___bb_trace_ret\n\tnop\n" ); /* The function `__bb_trace_func' is called in every basic block and is not allowed to change the machine state. Saving (restoring) the state can either be done in the BLOCK_PROFILER macro, before calling function (rsp. after returning from function) `__bb_trace_func', or it can be done inside the function by defining the macros: MACHINE_STATE_SAVE(ID) MACHINE_STATE_RESTORE(ID) In the latter case care must be taken, that the prologue code of function `__bb_trace_func' does not already change the state prior to saving it with MACHINE_STATE_SAVE. The parameter `ID' is a string identifying a unique macro use. On sparc it is sufficient to save the psw register to memory. Unfortunately the psw register can be read in supervisor mode only, so we read only the condition codes by using branch instructions and hope that this is enough. */ #define MACHINE_STATE_SAVE(ID) \ asm (" mov %g0,%l0");\ asm (" be,a LFLGNZ" ID);\ asm (" or %l0,4,%l0");\ asm ("LFLGNZ" ID ": bcs,a LFLGNC" ID);\ asm (" or %l0,1,%l0");\ asm ("LFLGNC" ID ": bvs,a LFLGNV" ID);\ asm (" or %l0,2,%l0");\ asm ("LFLGNV" ID ": bneg,a LFLGNN" ID);\ asm (" or %l0,8,%l0");\ asm ("LFLGNN" ID ": sethi %hi(LFLAGS" ID "),%l1");\ asm (" st %l0,[%l1+%lo(LFLAGS" ID ")]"); \ asm (" st %g2,[%l1+%lo(LSAVRET" ID ")]"); /* On sparc MACHINE_STATE_RESTORE restores the psw register from memory. The psw register can be written in supervisor mode only, which is true even for simple condition codes. We use some combination of instructions to produce the proper condition codes, but some flag combinations can not be generated in this way. If this happens an unimplemented instruction will be executed to abort the program. */ #define MACHINE_STATE_RESTORE(ID) \ asm (" sethi %hi(LFLGTAB" ID "),%l1");\ asm (" ld [%l1+%lo(LFLGTAB" ID "-(LFLGTAB" ID "-LFLAGS" ID "))],%l0");\ asm (" ld [%l1+%lo(LFLGTAB" ID "-(LFLGTAB" ID "-LSAVRET" ID "))],%g2");\ asm (" sll %l0,2,%l0");\ asm (" add %l0,%l1,%l0");\ asm (" ld [%l0+%lo(LFLGTAB" ID ")],%l1");\ asm (" jmp %l1");\ asm (" nop");\ asm (".data");\ asm (" .align 4");\ asm ("LFLAGS" ID ":");\ asm (" .word 0");\ asm ("LSAVRET" ID ":");\ asm (" .word 0");\ asm ("LFLGTAB" ID ": ");\ asm (" .word LSFLG0" ID);\ asm (" .word LSFLGC" ID);\ asm (" .word LSFLGV" ID);\ asm (" .word LSFLGVC" ID);\ asm (" .word LSFLGZ" ID);\ asm (" .word LSFLGZC" ID);\ asm (" .word LSFLGZV" ID);\ asm (" .word LSFLGZVC" ID);\ asm (" .word LSFLGN" ID);\ asm (" .word LSFLGNC" ID);\ asm (" .word LSFLGNV" ID);\ asm (" .word LSFLGNVC" ID);\ asm (" .word LSFLGNZ" ID);\ asm (" .word LSFLGNZC" ID);\ asm (" .word LSFLGNZV" ID);\ asm (" .word LSFLGNZVC" ID);\ asm (".text");\ asm ("LSFLGVC" ID ": mov -1,%l0");\ asm (" addcc 2,%l0,%g0");\ asm (" sethi %hi(0x80000000),%l0");\ asm (" mov %l0,%l1");\ asm (" ba LFLGRET" ID);\ asm (" addxcc %l0,%l1,%l0");\ asm ("LSFLGC" ID ": mov -1,%l0");\ asm (" ba LFLGRET" ID);\ asm (" addcc 2,%l0,%g0");\ asm ("LSFLGZC" ID ": mov -1,%l0");\ asm (" ba LFLGRET" ID);\ asm (" addcc 1,%l0,%l0");\ asm ("LSFLGZVC" ID ": sethi %hi(0x80000000),%l0");\ asm (" mov %l0,%l1");\ asm (" ba LFLGRET" ID);\ asm (" addcc %l0,%l1,%l0");\ asm ("LSFLGZ" ID ": ba LFLGRET" ID);\ asm (" subcc %g0,%g0,%g0");\ asm ("LSFLGNC" ID ": add %g0,1,%l0");\ asm (" ba LFLGRET" ID);\ asm (" subcc %g0,%l0,%g0");\ asm ("LSFLG0" ID ": ba LFLGRET" ID);\ asm (" orcc 1,%g0,%g0");\ asm ("LSFLGN" ID ": ba LFLGRET" ID);\ asm (" orcc -1,%g0,%g0");\ asm ("LSFLGV" ID ":");\ asm ("LSFLGZV" ID ":");\ asm ("LSFLGNV" ID ":");\ asm ("LSFLGNVC" ID ":");\ asm ("LSFLGNZ" ID ":");\ asm ("LSFLGNZC" ID ":");\ asm ("LSFLGNZV" ID ":");\ asm ("LSFLGNZVC" ID ":");\ asm (" unimp");\ asm ("LFLGRET" ID ":"); /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function, the stack pointer does not matter. The value is tested only in functions that have frame pointers. No definition is equivalent to always zero. */ extern int current_function_calls_alloca; extern int current_function_outgoing_args_size; #define EXIT_IGNORE_STACK \ (get_frame_size () != 0 \ || current_function_calls_alloca || current_function_outgoing_args_size) /* This macro generates the assembly code for function exit, on machines that need it. If FUNCTION_EPILOGUE is not defined then individual return instructions are generated for each return statement. Args are same as for FUNCTION_PROLOGUE. The function epilogue should not depend on the current stack pointer! It should use the frame pointer only. This is mandatory because of alloca; we also take advantage of it to omit stack adjustments before returning. */ /* This declaration is needed due to traditional/ANSI incompatibilities which cannot be #ifdefed away because they occur inside of macros. Sigh. */ extern union tree_node *current_function_decl; #define FUNCTION_EPILOGUE(FILE, SIZE) \ (TARGET_FRW ? sparc_flat_output_function_epilogue (FILE, SIZE) \ : output_function_epilogue (FILE, SIZE, leaf_function)) #define DELAY_SLOTS_FOR_EPILOGUE \ (TARGET_FRW ? sparc_flat_epilogue_delay_slots () : 1) #define ELIGIBLE_FOR_EPILOGUE_DELAY(trial, slots_filled) \ (TARGET_FRW ? sparc_flat_eligible_for_epilogue_delay (trial, slots_filled) \ : eligible_for_epilogue_delay (trial, slots_filled)) /* Output assembler code for a block containing the constant parts of a trampoline, leaving space for the variable parts. */ /* On 32 bit sparcs, the trampoline contains five instructions: sethi #TOP_OF_FUNCTION,%g1 or #BOTTOM_OF_FUNCTION,%g1,%g1 sethi #TOP_OF_STATIC,%g2 jmp g1 or #BOTTOM_OF_STATIC,%g2,%g2 On 64 bit sparcs, the trampoline contains 4 insns and two pseudo-immediate constants (plus some padding): rd %pc,%g1 ldx[%g1+20],%g5 ldx[%g1+28],%g1 jmp %g1 nop nop .xword context .xword function */ #define TRAMPOLINE_TEMPLATE(FILE) \ do { \ if (TARGET_ARCH64) \ { \ fprintf (FILE, "\trd %%pc,%%g1\n"); \ fprintf (FILE, "\tldx [%%g1+24],%%g5\n"); \ fprintf (FILE, "\tldx [%%g1+32],%%g1\n"); \ fprintf (FILE, "\tjmp %%g1\n"); \ fprintf (FILE, "\tnop\n"); \ fprintf (FILE, "\tnop\n"); \ /* -mmedlow shouldn't generate .xwords, so don't use them at all */ \ fprintf (FILE, "\t.word 0,0,0,0\n"); \ } \ else \ { \ ASM_OUTPUT_INT (FILE, gen_rtx (CONST_INT, VOIDmode, 0x00000000)); \ ASM_OUTPUT_INT (FILE, gen_rtx (CONST_INT, VOIDmode, 0x00000000)); \ ASM_OUTPUT_INT (FILE, gen_rtx (CONST_INT, VOIDmode, 0x00000000)); \ ASM_OUTPUT_INT (FILE, gen_rtx (CONST_INT, VOIDmode, 0x81C04000)); \ ASM_OUTPUT_INT (FILE, gen_rtx (CONST_INT, VOIDmode, 0x00000000)); \ } \ } while (0) /* Length in units of the trampoline for entering a nested function. */ #define TRAMPOLINE_SIZE (TARGET_ARCH64 ? 40 : 20) /* Emit RTL insns to initialize the variable parts of a trampoline. FNADDR is an RTX for the address of the function's pure code. CXT is an RTX for the static chain value for the function. */ void sparc_initialize_trampoline (); void sparc64_initialize_trampoline (); #define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \ do { \ if (TARGET_ARCH64) \ sparc64_initialize_trampoline (TRAMP, FNADDR, CXT); \ else \ sparc_initialize_trampoline (TRAMP, FNADDR, CXT); \ } while (0) /* Generate necessary RTL for __builtin_saveregs(). ARGLIST is the argument list; see expr.c. */ extern struct rtx_def *sparc_builtin_saveregs (); #define EXPAND_BUILTIN_SAVEREGS(ARGLIST) sparc_builtin_saveregs (ARGLIST) /* Generate RTL to flush the register windows so as to make arbitrary frames available. */ #define SETUP_FRAME_ADDRESSES() \ emit_insn (gen_flush_register_windows ()) /* Given an rtx for the address of a frame, return an rtx for the address of the word in the frame that holds the dynamic chain--the previous frame's address. ??? -mflat support? */ #define DYNAMIC_CHAIN_ADDRESS(frame) \ gen_rtx (PLUS, Pmode, frame, gen_rtx (CONST_INT, VOIDmode, 14 * UNITS_PER_WORD)) /* The return address isn't on the stack, it is in a register, so we can't access it from the current frame pointer. We can access it from the previous frame pointer though by reading a value from the register window save area. */ #define RETURN_ADDR_IN_PREVIOUS_FRAME /* This is the offset of the return address to the true next instruction to be executed for the current function. */ #define RETURN_ADDR_OFFSET \ (8 + 4 * (! TARGET_ARCH64 && current_function_returns_struct)) /* The current return address is in %i7. The return address of anything farther back is in the register window save area at [%fp+60]. */ /* ??? This ignores the fact that the actual return address is +8 for normal returns, and +12 for structure returns. */ #define RETURN_ADDR_RTX(count, frame) \ ((count == -1) \ ? gen_rtx (REG, Pmode, 31) \ : gen_rtx (MEM, Pmode, \ memory_address (Pmode, plus_constant (frame, 15 * UNITS_PER_WORD)))) /* Addressing modes, and classification of registers for them. */ /* #define HAVE_POST_INCREMENT */ /* #define HAVE_POST_DECREMENT */ /* #define HAVE_PRE_DECREMENT */ /* #define HAVE_PRE_INCREMENT */ /* Macros to check register numbers against specific register classes. */ /* These assume that REGNO is a hard or pseudo reg number. They give nonzero only if REGNO is a hard reg of the suitable class or a pseudo reg currently allocated to a suitable hard reg. Since they use reg_renumber, they are safe only once reg_renumber has been allocated, which happens in local-alloc.c. */ #define REGNO_OK_FOR_INDEX_P(REGNO) \ (((REGNO) < 32 || (unsigned) reg_renumber[REGNO] < 32) && (REGNO) != 0) #define REGNO_OK_FOR_BASE_P(REGNO) \ (((REGNO) < 32 || (unsigned) reg_renumber[REGNO] < 32) && (REGNO) != 0) #define REGNO_OK_FOR_FP_P(REGNO) \ (((unsigned) (REGNO) - 32 < (TARGET_V9 ? 64 : 32)) \ || ((unsigned) reg_renumber[REGNO] - 32 < (TARGET_V9 ? 64 : 32))) #define REGNO_OK_FOR_CCFP_P(REGNO) \ (TARGET_V9 \ && ((unsigned) (REGNO) - 96 < 4) || ((unsigned) reg_renumber[REGNO] - 96 < 4)) /* Now macros that check whether X is a register and also, strictly, whether it is in a specified class. These macros are specific to the SPARC, and may be used only in code for printing assembler insns and in conditions for define_optimization. */ /* 1 if X is an fp register. */ #define FP_REG_P(X) (REG_P (X) && REGNO_OK_FOR_FP_P (REGNO (X))) /* Maximum number of registers that can appear in a valid memory address. */ #define MAX_REGS_PER_ADDRESS 2 /* Recognize any constant value that is a valid address. When PIC, we do not accept an address that would require a scratch reg to load into a register. */ #define CONSTANT_ADDRESS_P(X) \ (GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \ || GET_CODE (X) == CONST_INT || GET_CODE (X) == HIGH \ || (GET_CODE (X) == CONST \ && ! (flag_pic && pic_address_needs_scratch (X)))) /* Define this, so that when PIC, reload won't try to reload invalid addresses which require two reload registers. */ #define LEGITIMATE_PIC_OPERAND_P(X) (! pic_address_needs_scratch (X)) /* Nonzero if the constant value X is a legitimate general operand. Anything can be made to work except floating point constants. */ #define LEGITIMATE_CONSTANT_P(X) \ (GET_CODE (X) != CONST_DOUBLE || GET_MODE (X) == VOIDmode) /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx and check its validity for a certain class. We have two alternate definitions for each of them. The usual definition accepts all pseudo regs; the other rejects them unless they have been allocated suitable hard regs. The symbol REG_OK_STRICT causes the latter definition to be used. Most source files want to accept pseudo regs in the hope that they will get allocated to the class that the insn wants them to be in. Source files for reload pass need to be strict. After reload, it makes no difference, since pseudo regs have been eliminated by then. */ /* Optional extra constraints for this machine. Borrowed from romp.h. For the SPARC, `Q' means that this is a memory operand but not a symbolic memory operand. Note that an unassigned pseudo register is such a memory operand. Needed because reload will generate these things in insns and then not re-recognize the insns, causing constrain_operands to fail. `S' handles constraints for calls. ??? So where is it? */ #ifndef REG_OK_STRICT /* Nonzero if X is a hard reg that can be used as an index or if it is a pseudo reg. */ #define REG_OK_FOR_INDEX_P(X) \ (((unsigned) REGNO (X)) - 32 >= (FIRST_PSEUDO_REGISTER - 32) && REGNO (X) != 0) /* Nonzero if X is a hard reg that can be used as a base reg or if it is a pseudo reg. */ #define REG_OK_FOR_BASE_P(X) \ (((unsigned) REGNO (X)) - 32 >= (FIRST_PSEUDO_REGISTER - 32) && REGNO (X) != 0) /* 'T', 'U' are for aligned memory loads which aren't needed for v9. */ #define EXTRA_CONSTRAINT(OP, C) \ ((C) == 'Q' \ ? ((GET_CODE (OP) == MEM \ && memory_address_p (GET_MODE (OP), XEXP (OP, 0)) \ && ! symbolic_memory_operand (OP, VOIDmode)) \ || (reload_in_progress && GET_CODE (OP) == REG \ && REGNO (OP) >= FIRST_PSEUDO_REGISTER)) \ : (! TARGET_ARCH64 && (C) == 'T') \ ? (mem_aligned_8 (OP)) \ : (! TARGET_ARCH64 && (C) == 'U') \ ? (register_ok_for_ldd (OP)) \ : 0) #else /* Nonzero if X is a hard reg that can be used as an index. */ #define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X)) /* Nonzero if X is a hard reg that can be used as a base reg. */ #define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X)) #define EXTRA_CONSTRAINT(OP, C) \ ((C) == 'Q' \ ? (GET_CODE (OP) == REG \ ? (REGNO (OP) >= FIRST_PSEUDO_REGISTER \ && reg_renumber[REGNO (OP)] < 0) \ : GET_CODE (OP) == MEM) \ : (! TARGET_ARCH64 && (C) == 'T') \ ? mem_aligned_8 (OP) && strict_memory_address_p (Pmode, XEXP (OP, 0)) \ : (! TARGET_ARCH64 && (C) == 'U') \ ? (GET_CODE (OP) == REG \ && (REGNO (OP) < FIRST_PSEUDO_REGISTER \ || reg_renumber[REGNO (OP)] > 0) \ && register_ok_for_ldd (OP)) : 0) #endif /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression that is a valid memory address for an instruction. The MODE argument is the machine mode for the MEM expression that wants to use this address. On SPARC, the actual legitimate addresses must be REG+REG or REG+SMALLINT ordinarily. This changes a bit when generating PIC. If you change this, execute "rm explow.o recog.o reload.o". */ #define RTX_OK_FOR_BASE_P(X) \ ((GET_CODE (X) == REG && REG_OK_FOR_BASE_P (X)) \ || (GET_CODE (X) == SUBREG \ && GET_CODE (SUBREG_REG (X)) == REG \ && REG_OK_FOR_BASE_P (SUBREG_REG (X)))) #define RTX_OK_FOR_INDEX_P(X) \ ((GET_CODE (X) == REG && REG_OK_FOR_INDEX_P (X)) \ || (GET_CODE (X) == SUBREG \ && GET_CODE (SUBREG_REG (X)) == REG \ && REG_OK_FOR_INDEX_P (SUBREG_REG (X)))) #define RTX_OK_FOR_OFFSET_P(X) \ (GET_CODE (X) == CONST_INT && INTVAL (X) >= -0x1000 && INTVAL (X) < 0x1000) #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \ { if (RTX_OK_FOR_BASE_P (X)) \ goto ADDR; \ else if (GET_CODE (X) == PLUS) \ { \ register rtx op0 = XEXP (X, 0); \ register rtx op1 = XEXP (X, 1); \ if (flag_pic && op0 == pic_offset_table_rtx) \ { \ if (RTX_OK_FOR_BASE_P (op1)) \ goto ADDR; \ else if (flag_pic == 1 \ && GET_CODE (op1) != REG \ && GET_CODE (op1) != LO_SUM \ && GET_CODE (op1) != MEM \ && (GET_CODE (op1) != CONST_INT \ || SMALL_INT (op1))) \ goto ADDR; \ } \ else if (RTX_OK_FOR_BASE_P (op0)) \ { \ if (RTX_OK_FOR_INDEX_P (op1) \ || RTX_OK_FOR_OFFSET_P (op1)) \ goto ADDR; \ } \ else if (RTX_OK_FOR_BASE_P (op1)) \ { \ if (RTX_OK_FOR_INDEX_P (op0) \ || RTX_OK_FOR_OFFSET_P (op0)) \ goto ADDR; \ } \ } \ else if (GET_CODE (X) == LO_SUM) \ { \ register rtx op0 = XEXP (X, 0); \ register rtx op1 = XEXP (X, 1); \ if (RTX_OK_FOR_BASE_P (op0) \ && CONSTANT_P (op1) \ /* We can't allow TFmode, because an offset \ greater than or equal to the alignment (8) \ may cause the LO_SUM to overflow. */ \ && MODE != TFmode) \ goto ADDR; \ } \ else if (GET_CODE (X) == CONST_INT && SMALL_INT (X)) \ goto ADDR; \ } /* Try machine-dependent ways of modifying an illegitimate address to be legitimate. If we find one, return the new, valid address. This macro is used in only one place: `memory_address' in explow.c. OLDX is the address as it was before break_out_memory_refs was called. In some cases it is useful to look at this to decide what needs to be done. MODE and WIN are passed so that this macro can use GO_IF_LEGITIMATE_ADDRESS. It is always safe for this macro to do nothing. It exists to recognize opportunities to optimize the output. */ /* On SPARC, change REG+N into REG+REG, and REG+(X*Y) into REG+REG. */ extern struct rtx_def *legitimize_pic_address (); #define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) \ { rtx sparc_x = (X); \ if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 0)) == MULT) \ (X) = gen_rtx (PLUS, Pmode, XEXP (X, 1), \ force_operand (XEXP (X, 0), NULL_RTX)); \ if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 1)) == MULT) \ (X) = gen_rtx (PLUS, Pmode, XEXP (X, 0), \ force_operand (XEXP (X, 1), NULL_RTX)); \ if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 0)) == PLUS) \ (X) = gen_rtx (PLUS, Pmode, force_operand (XEXP (X, 0), NULL_RTX),\ XEXP (X, 1)); \ if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 1)) == PLUS) \ (X) = gen_rtx (PLUS, Pmode, XEXP (X, 0), \ force_operand (XEXP (X, 1), NULL_RTX)); \ if (sparc_x != (X) && memory_address_p (MODE, X)) \ goto WIN; \ if (flag_pic) (X) = legitimize_pic_address (X, MODE, 0); \ else if (GET_CODE (X) == PLUS && CONSTANT_ADDRESS_P (XEXP (X, 1))) \ (X) = gen_rtx (PLUS, Pmode, XEXP (X, 0), \ copy_to_mode_reg (Pmode, XEXP (X, 1))); \ else if (GET_CODE (X) == PLUS && CONSTANT_ADDRESS_P (XEXP (X, 0))) \ (X) = gen_rtx (PLUS, Pmode, XEXP (X, 1), \ copy_to_mode_reg (Pmode, XEXP (X, 0))); \ else if (GET_CODE (X) == SYMBOL_REF || GET_CODE (X) == CONST \ || GET_CODE (X) == LABEL_REF) \ (X) = gen_rtx (LO_SUM, Pmode, \ copy_to_mode_reg (Pmode, gen_rtx (HIGH, Pmode, X)), X); \ if (memory_address_p (MODE, X)) \ goto WIN; } /* Go to LABEL if ADDR (a legitimate address expression) has an effect that depends on the machine mode it is used for. On the SPARC this is never true. */ #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) /* If we are referencing a function make the SYMBOL_REF special. In the Medium/Anywhere code model, %g4 points to the data segment so we must not add it to function addresses. */ #define ENCODE_SECTION_INFO(DECL) \ do { \ if (TARGET_MEDANY && TREE_CODE (DECL) == FUNCTION_DECL) \ SYMBOL_REF_FLAG (XEXP (DECL_RTL (DECL), 0)) = 1; \ } while (0) /* Specify the machine mode that this machine uses for the index in the tablejump instruction. */ #define CASE_VECTOR_MODE Pmode /* Define this if the tablejump instruction expects the table to contain offsets from the address of the table. Do not define this if the table should contain absolute addresses. */ /* #define CASE_VECTOR_PC_RELATIVE */ /* Specify the tree operation to be used to convert reals to integers. */ #define IMPLICIT_FIX_EXPR FIX_ROUND_EXPR /* This is the kind of divide that is easiest to do in the general case. */ #define EASY_DIV_EXPR TRUNC_DIV_EXPR /* Define this as 1 if `char' should by default be signed; else as 0. */ #define DEFAULT_SIGNED_CHAR 1 /* Max number of bytes we can move from memory to memory in one reasonably fast instruction. */ #define MOVE_MAX 8 #if 0 /* Sun 4 has matherr, so this is no good. */ /* This is the value of the error code EDOM for this machine, used by the sqrt instruction. */ #define TARGET_EDOM 33 /* This is how to refer to the variable errno. */ #define GEN_ERRNO_RTX \ gen_rtx (MEM, SImode, gen_rtx (SYMBOL_REF, Pmode, "errno")) #endif /* 0 */ /* Define if operations between registers always perform the operation on the full register even if a narrower mode is specified. */ #define WORD_REGISTER_OPERATIONS /* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD will either zero-extend or sign-extend. The value of this macro should be the code that says which one of the two operations is implicitly done, NIL if none. */ #define LOAD_EXTEND_OP(MODE) ZERO_EXTEND /* Nonzero if access to memory by bytes is slow and undesirable. For RISC chips, it means that access to memory by bytes is no better than access by words when possible, so grab a whole word and maybe make use of that. */ #define SLOW_BYTE_ACCESS 1 /* We assume that the store-condition-codes instructions store 0 for false and some other value for true. This is the value stored for true. */ #define STORE_FLAG_VALUE 1 /* When a prototype says `char' or `short', really pass an `int'. */ #define PROMOTE_PROTOTYPES /* Define this to be nonzero if shift instructions ignore all but the low-order few bits. */ #define SHIFT_COUNT_TRUNCATED 1 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits is done just by pretending it is already truncated. */ #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1 /* Specify the machine mode that pointers have. After generation of rtl, the compiler makes no further distinction between pointers and any other objects of this machine mode. */ #define Pmode (TARGET_PTR64 ? DImode : SImode) /* Generate calls to memcpy, memcmp and memset. */ #define TARGET_MEM_FUNCTIONS /* Add any extra modes needed to represent the condition code. On the Sparc, we have a "no-overflow" mode which is used when an add or subtract insn is used to set the condition code. Different branches are used in this case for some operations. We also have two modes to indicate that the relevant condition code is in the floating-point condition code register. One for comparisons which will generate an exception if the result is unordered (CCFPEmode) and one for comparisons which will never trap (CCFPmode). This really should be a separate register, but we don't want to go to 65 registers. CCXmode and CCX_NOOVmode are only used by v9. */ #define EXTRA_CC_MODES CCXmode, CC_NOOVmode, CCX_NOOVmode, CCFPmode, CCFPEmode /* Define the names for the modes specified above. */ #define EXTRA_CC_NAMES "CCX", "CC_NOOV", "CCX_NOOV", "CCFP", "CCFPE" /* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE, return the mode to be used for the comparison. For floating-point, CCFP[E]mode is used. CC_NOOVmode should be used when the first operand is a PLUS, MINUS, NEG, or ASHIFT. CCmode should be used when no special processing is needed. */ #define SELECT_CC_MODE(OP,X,Y) \ (GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT \ ? ((OP == EQ || OP == NE) ? CCFPmode : CCFPEmode) \ : ((GET_CODE (X) == PLUS || GET_CODE (X) == MINUS \ || GET_CODE (X) == NEG || GET_CODE (X) == ASHIFT) \ ? (TARGET_ARCH64 && GET_MODE (X) == DImode ? CCX_NOOVmode : CC_NOOVmode) \ : (TARGET_ARCH64 && GET_MODE (X) == DImode ? CCXmode : CCmode))) /* Return non-zero if SELECT_CC_MODE will never return MODE for a floating point inequality comparison. */ #define REVERSIBLE_CC_MODE(MODE) ((MODE) != CCFPEmode) /* A function address in a call instruction is a byte address (for indexing purposes) so give the MEM rtx a byte's mode. */ #define FUNCTION_MODE SImode /* Define this if addresses of constant functions shouldn't be put through pseudo regs where they can be cse'd. Desirable on machines where ordinary constants are expensive but a CALL with constant address is cheap. */ #define NO_FUNCTION_CSE /* alloca should avoid clobbering the old register save area. */ #define SETJMP_VIA_SAVE_AREA /* Define subroutines to call to handle multiply and divide. Use the subroutines that Sun's library provides. The `*' prevents an underscore from being prepended by the compiler. */ #define DIVSI3_LIBCALL "*.div" #define UDIVSI3_LIBCALL "*.udiv" #define MODSI3_LIBCALL "*.rem" #define UMODSI3_LIBCALL "*.urem" /* .umul is a little faster than .mul. */ #define MULSI3_LIBCALL "*.umul" /* Define library calls for quad FP operations. These are all part of the SPARC ABI. */ #define ADDTF3_LIBCALL "_Q_add" #define SUBTF3_LIBCALL "_Q_sub" #define NEGTF2_LIBCALL "_Q_neg" #define MULTF3_LIBCALL "_Q_mul" #define DIVTF3_LIBCALL "_Q_div" #define FLOATSITF2_LIBCALL "_Q_itoq" #define FIX_TRUNCTFSI2_LIBCALL "_Q_qtoi" #define FIXUNS_TRUNCTFSI2_LIBCALL "_Q_qtou" #define EXTENDSFTF2_LIBCALL "_Q_stoq" #define TRUNCTFSF2_LIBCALL "_Q_qtos" #define EXTENDDFTF2_LIBCALL "_Q_dtoq" #define TRUNCTFDF2_LIBCALL "_Q_qtod" #define EQTF2_LIBCALL "_Q_feq" #define NETF2_LIBCALL "_Q_fne" #define GTTF2_LIBCALL "_Q_fgt" #define GETF2_LIBCALL "_Q_fge" #define LTTF2_LIBCALL "_Q_flt" #define LETF2_LIBCALL "_Q_fle" /* We can define the TFmode sqrt optab only if TARGET_FPU. This is because with soft-float, the SFmode and DFmode sqrt instructions will be absent, and the compiler will notice and try to use the TFmode sqrt instruction for calls to the builtin function sqrt, but this fails. */ #define INIT_TARGET_OPTABS \ do { \ add_optab->handlers[(int) TFmode].libfunc \ = gen_rtx (SYMBOL_REF, Pmode, ADDTF3_LIBCALL); \ sub_optab->handlers[(int) TFmode].libfunc \ = gen_rtx (SYMBOL_REF, Pmode, SUBTF3_LIBCALL); \ neg_optab->handlers[(int) TFmode].libfunc \ = gen_rtx (SYMBOL_REF, Pmode, NEGTF2_LIBCALL); \ smul_optab->handlers[(int) TFmode].libfunc \ = gen_rtx (SYMBOL_REF, Pmode, MULTF3_LIBCALL); \ flodiv_optab->handlers[(int) TFmode].libfunc \ = gen_rtx (SYMBOL_REF, Pmode, DIVTF3_LIBCALL); \ eqtf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, EQTF2_LIBCALL); \ netf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, NETF2_LIBCALL); \ gttf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, GTTF2_LIBCALL); \ getf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, GETF2_LIBCALL); \ lttf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, LTTF2_LIBCALL); \ letf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, LETF2_LIBCALL); \ trunctfsf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, TRUNCTFSF2_LIBCALL); \ trunctfdf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, TRUNCTFDF2_LIBCALL); \ extendsftf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, EXTENDSFTF2_LIBCALL); \ extenddftf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, EXTENDDFTF2_LIBCALL); \ floatsitf_libfunc = gen_rtx (SYMBOL_REF, Pmode, FLOATSITF2_LIBCALL); \ fixtfsi_libfunc = gen_rtx (SYMBOL_REF, Pmode, FIX_TRUNCTFSI2_LIBCALL); \ fixunstfsi_libfunc \ = gen_rtx (SYMBOL_REF, Pmode, FIXUNS_TRUNCTFSI2_LIBCALL); \ if (TARGET_FPU) \ sqrt_optab->handlers[(int) TFmode].libfunc \ = gen_rtx (SYMBOL_REF, Pmode, "_Q_sqrt"); \ INIT_SUBTARGET_OPTABS; \ } while (0) /* This is meant to be redefined in the host dependent files */ #define INIT_SUBTARGET_OPTABS /* Compute the cost of computing a constant rtl expression RTX whose rtx-code is CODE. The body of this macro is a portion of a switch statement. If the code is computed here, return it with a return statement. Otherwise, break from the switch. */ #define CONST_COSTS(RTX,CODE,OUTER_CODE) \ case CONST_INT: \ if (INTVAL (RTX) < 0x1000 && INTVAL (RTX) >= -0x1000) \ return 0; \ case HIGH: \ return 2; \ case CONST: \ case LABEL_REF: \ case SYMBOL_REF: \ return 4; \ case CONST_DOUBLE: \ if (GET_MODE (RTX) == DImode) \ if ((XINT (RTX, 3) == 0 \ && (unsigned) XINT (RTX, 2) < 0x1000) \ || (XINT (RTX, 3) == -1 \ && XINT (RTX, 2) < 0 \ && XINT (RTX, 2) >= -0x1000)) \ return 0; \ return 8; /* Compute the cost of an address. For the sparc, all valid addresses are the same cost. ??? Is this true for v9? */ #define ADDRESS_COST(RTX) 1 /* Compute extra cost of moving data between one register class and another. ??? v9: We ignore FPCC_REGS on the assumption they'll never be seen. */ #define REGISTER_MOVE_COST(CLASS1, CLASS2) \ (((FP_REG_CLASS_P (CLASS1) && (CLASS2) == GENERAL_REGS) \ || ((CLASS1) == GENERAL_REGS && FP_REG_CLASS_P (CLASS2))) ? 6 : 2) /* Provide the costs of a rtl expression. This is in the body of a switch on CODE. The purpose for the cost of MULT is to encourage `synth_mult' to find a synthetic multiply when reasonable. If we need more than 12 insns to do a multiply, then go out-of-line, since the call overhead will be < 10% of the cost of the multiply. */ #define RTX_COSTS(X,CODE,OUTER_CODE) \ case MULT: \ return (TARGET_V8 || TARGET_SPARCLITE || TARGET_V9) \ ? COSTS_N_INSNS (5) : COSTS_N_INSNS (25); \ case DIV: \ case UDIV: \ case MOD: \ case UMOD: \ return COSTS_N_INSNS (25); \ /* Make FLOAT and FIX more expensive than CONST_DOUBLE,\ so that cse will favor the latter. */ \ case FLOAT: \ case FIX: \ return 19; /* Adjust the cost of dependencies. */ #define ADJUST_COST(INSN,LINK,DEP,COST) \ if (TARGET_SUPERSPARC) \ (COST) = supersparc_adjust_cost (INSN, LINK, DEP, COST) /* Conditional branches with empty delay slots have a length of two. */ #define ADJUST_INSN_LENGTH(INSN, LENGTH) \ if (GET_CODE (INSN) == CALL_INSN \ || (GET_CODE (INSN) == JUMP_INSN && ! simplejump_p (insn))) \ LENGTH += 1; /* Control the assembler format that we output. */ /* Output at beginning of assembler file. */ #define ASM_FILE_START(file) /* Output to assembler file text saying following lines may contain character constants, extra white space, comments, etc. */ #define ASM_APP_ON "" /* Output to assembler file text saying following lines no longer contain unusual constructs. */ #define ASM_APP_OFF "" /* ??? Try to make the style consistent here (_OP?). */ #define ASM_LONGLONG ".xword" #define ASM_LONG ".word" #define ASM_SHORT ".half" #define ASM_BYTE_OP ".byte" #define ASM_FLOAT ".single" #define ASM_DOUBLE ".double" #define ASM_LONGDOUBLE ".xxx" /* ??? Not known (or used yet). */ /* Output before read-only data. */ #define TEXT_SECTION_ASM_OP ".text" /* Output before writable data. */ #define DATA_SECTION_ASM_OP ".data" /* How to refer to registers in assembler output. This sequence is indexed by compiler's hard-register-number (see above). */ #define REGISTER_NAMES \ {"%g0", "%g1", "%g2", "%g3", "%g4", "%g5", "%g6", "%g7", \ "%o0", "%o1", "%o2", "%o3", "%o4", "%o5", "%sp", "%o7", \ "%l0", "%l1", "%l2", "%l3", "%l4", "%l5", "%l6", "%l7", \ "%i0", "%i1", "%i2", "%i3", "%i4", "%i5", "%fp", "%i7", \ "%f0", "%f1", "%f2", "%f3", "%f4", "%f5", "%f6", "%f7", \ "%f8", "%f9", "%f10", "%f11", "%f12", "%f13", "%f14", "%f15", \ "%f16", "%f17", "%f18", "%f19", "%f20", "%f21", "%f22", "%f23", \ "%f24", "%f25", "%f26", "%f27", "%f28", "%f29", "%f30", "%f31", \ SPARC64_REGISTER_NAMES \ } #if SPARC_V9 #define SPARC64_REGISTER_NAMES \ "%f32", "%f33", "%f34", "%f35", "%f36", "%f37", "%f38", "%f39", \ "%f40", "%f41", "%f42", "%f43", "%f44", "%f45", "%f46", "%f47", \ "%f48", "%f49", "%f50", "%f51", "%f52", "%f53", "%f54", "%f55", \ "%f56", "%f57", "%f58", "%f59", "%f60", "%f61", "%f62", "%f63", \ "%fcc0", "%fcc1", "%fcc2", "%fcc3" #else #define SPARC64_REGISTER_NAMES #endif /* Define additional names for use in asm clobbers and asm declarations. We define the fake Condition Code register as an alias for reg 0 (which is our `condition code' register), so that condition codes can easily be clobbered by an asm. No such register actually exists. Condition codes are partly stored in the PSR and partly in the FSR. */ #define ADDITIONAL_REGISTER_NAMES {"ccr", 0, "cc", 0} /* How to renumber registers for dbx and gdb. */ #define DBX_REGISTER_NUMBER(REGNO) (REGNO) /* On Sun 4, this limit is 2048. We use 1500 to be safe, since the length can run past this up to a continuation point. */ #define DBX_CONTIN_LENGTH 1500 /* This is how to output a note to DBX telling it the line number to which the following sequence of instructions corresponds. This is needed for SunOS 4.0, and should not hurt for 3.2 versions either. */ #define ASM_OUTPUT_SOURCE_LINE(file, line) \ { static int sym_lineno = 1; \ fprintf (file, ".stabn 68,0,%d,LM%d\nLM%d:\n", \ line, sym_lineno, sym_lineno); \ sym_lineno += 1; } /* This is how to output the definition of a user-level label named NAME, such as the label on a static function or variable NAME. */ #define ASM_OUTPUT_LABEL(FILE,NAME) \ do { assemble_name (FILE, NAME); fputs (":\n", FILE); } while (0) /* This is how to output a command to make the user-level label named NAME defined for reference from other files. */ #define ASM_GLOBALIZE_LABEL(FILE,NAME) \ do { fputs ("\t.global ", FILE); assemble_name (FILE, NAME); fputs ("\n", FILE);} while (0) /* This is how to output a reference to a user-level label named NAME. `assemble_name' uses this. */ #define ASM_OUTPUT_LABELREF(FILE,NAME) \ fprintf (FILE, "_%s", NAME) /* This is how to output a definition of an internal numbered label where PREFIX is the class of label and NUM is the number within the class. */ #define ASM_OUTPUT_INTERNAL_LABEL(FILE,PREFIX,NUM) \ fprintf (FILE, "%s%d:\n", PREFIX, NUM) /* This is how to output a reference to an internal numbered label where PREFIX is the class of label and NUM is the number within the class. */ /* FIXME: This should be used throughout gcc, and documented in the texinfo files. There is no reason you should have to allocate a buffer and `sprintf' to reference an internal label (as opposed to defining it). */ #define ASM_OUTPUT_INTERNAL_LABELREF(FILE,PREFIX,NUM) \ fprintf (FILE, "%s%d", PREFIX, NUM) /* This is how to store into the string LABEL the symbol_ref name of an internal numbered label where PREFIX is the class of label and NUM is the number within the class. This is suitable for output with `assemble_name'. */ #define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \ sprintf (LABEL, "*%s%d", PREFIX, NUM) /* This is how to output an assembler line defining a `double' constant. */ #define ASM_OUTPUT_DOUBLE(FILE,VALUE) \ { \ long t[2]; \ REAL_VALUE_TO_TARGET_DOUBLE ((VALUE), t); \ fprintf (FILE, "\t%s\t0x%lx\n\t%s\t0x%lx\n", \ ASM_LONG, t[0], ASM_LONG, t[1]); \ } /* This is how to output an assembler line defining a `float' constant. */ #define ASM_OUTPUT_FLOAT(FILE,VALUE) \ { \ long t; \ REAL_VALUE_TO_TARGET_SINGLE ((VALUE), t); \ fprintf (FILE, "\t%s\t0x%lx\n", ASM_LONG, t); \ } \ /* This is how to output an assembler line defining a `long double' constant. */ #define ASM_OUTPUT_LONG_DOUBLE(FILE,VALUE) \ { \ long t[4]; \ REAL_VALUE_TO_TARGET_LONG_DOUBLE ((VALUE), t); \ fprintf (FILE, "\t%s\t0x%lx\n\t%s\t0x%lx\n\t%s\t0x%lx\n\t%s\t0x%lx\n", \ ASM_LONG, t[0], ASM_LONG, t[1], ASM_LONG, t[2], ASM_LONG, t[3]); \ } /* This is how to output an assembler line defining an `int' constant. */ #define ASM_OUTPUT_INT(FILE,VALUE) \ ( fprintf (FILE, "\t%s\t", ASM_LONG), \ output_addr_const (FILE, (VALUE)), \ fprintf (FILE, "\n")) /* This is how to output an assembler line defining a DImode constant. */ #define ASM_OUTPUT_DOUBLE_INT(FILE,VALUE) \ output_double_int (FILE, VALUE) /* Likewise for `char' and `short' constants. */ #define ASM_OUTPUT_SHORT(FILE,VALUE) \ ( fprintf (FILE, "\t%s\t", ASM_SHORT), \ output_addr_const (FILE, (VALUE)), \ fprintf (FILE, "\n")) #define ASM_OUTPUT_CHAR(FILE,VALUE) \ ( fprintf (FILE, "\t%s\t", ASM_BYTE_OP), \ output_addr_const (FILE, (VALUE)), \ fprintf (FILE, "\n")) /* This is how to output an assembler line for a numeric constant byte. */ #define ASM_OUTPUT_BYTE(FILE,VALUE) \ fprintf (FILE, "\t%s\t0x%x\n", ASM_BYTE_OP, (VALUE)) /* This is how to output an element of a case-vector that is absolute. */ #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \ do { \ char label[30]; \ ASM_GENERATE_INTERNAL_LABEL (label, "L", VALUE); \ if (Pmode == SImode) \ fprintf (FILE, "\t.word\t"); \ else if (TARGET_MEDLOW) \ fprintf (FILE, "\t.word\t0\n\t.word\t"); \ else \ fprintf (FILE, "\t.xword\t"); \ assemble_name (FILE, label); \ fprintf (FILE, "\n"); \ } while (0) /* This is how to output an element of a case-vector that is relative. (SPARC uses such vectors only when generating PIC.) */ #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, VALUE, REL) \ do { \ char label[30]; \ ASM_GENERATE_INTERNAL_LABEL (label, "L", VALUE); \ if (Pmode == SImode) \ fprintf (FILE, "\t.word\t"); \ else if (TARGET_MEDLOW) \ fprintf (FILE, "\t.word\t0\n\t.word\t"); \ else \ fprintf (FILE, "\t.xword\t"); \ assemble_name (FILE, label); \ fprintf (FILE, "-1b\n"); \ } while (0) /* This is how to output an assembler line that says to advance the location counter to a multiple of 2**LOG bytes. */ #define ASM_OUTPUT_ALIGN(FILE,LOG) \ if ((LOG) != 0) \ fprintf (FILE, "\t.align %d\n", (1<<(LOG))) #define ASM_OUTPUT_SKIP(FILE,SIZE) \ fprintf (FILE, "\t.skip %u\n", (SIZE)) /* This says how to output an assembler line to define a global common symbol. */ #define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED) \ ( fputs ("\t.common ", (FILE)), \ assemble_name ((FILE), (NAME)), \ fprintf ((FILE), ",%u,\"bss\"\n", (SIZE))) /* This says how to output an assembler line to define a local common symbol. */ #define ASM_OUTPUT_ALIGNED_LOCAL(FILE, NAME, SIZE, ALIGNED) \ ( fputs ("\t.reserve ", (FILE)), \ assemble_name ((FILE), (NAME)), \ fprintf ((FILE), ",%u,\"bss\",%u\n", \ (SIZE), ((ALIGNED) / BITS_PER_UNIT))) /* Store in OUTPUT a string (made with alloca) containing an assembler-name for a local static variable named NAME. LABELNO is an integer which is different for each call. */ #define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \ ( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \ sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO))) #define IDENT_ASM_OP ".ident" /* Output #ident as a .ident. */ #define ASM_OUTPUT_IDENT(FILE, NAME) \ fprintf (FILE, "\t%s\t\"%s\"\n", IDENT_ASM_OP, NAME); /* Define the parentheses used to group arithmetic operations in assembler code. */ #define ASM_OPEN_PAREN "(" #define ASM_CLOSE_PAREN ")" /* Define results of standard character escape sequences. */ #define TARGET_BELL 007 #define TARGET_BS 010 #define TARGET_TAB 011 #define TARGET_NEWLINE 012 #define TARGET_VT 013 #define TARGET_FF 014 #define TARGET_CR 015 #define PRINT_OPERAND_PUNCT_VALID_P(CHAR) \ ((CHAR) == '#' || (CHAR) == '*' || (CHAR) == '^' || (CHAR) == '(') /* Print operand X (an rtx) in assembler syntax to file FILE. CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified. For `%' followed by punctuation, CODE is the punctuation and X is null. */ #define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE) /* Print a memory address as an operand to reference that memory location. */ #define PRINT_OPERAND_ADDRESS(FILE, ADDR) \ { register rtx base, index = 0; \ int offset = 0; \ register rtx addr = ADDR; \ if (GET_CODE (addr) == REG) \ fputs (reg_names[REGNO (addr)], FILE); \ else if (GET_CODE (addr) == PLUS) \ { \ if (GET_CODE (XEXP (addr, 0)) == CONST_INT) \ offset = INTVAL (XEXP (addr, 0)), base = XEXP (addr, 1);\ else if (GET_CODE (XEXP (addr, 1)) == CONST_INT) \ offset = INTVAL (XEXP (addr, 1)), base = XEXP (addr, 0);\ else \ base = XEXP (addr, 0), index = XEXP (addr, 1); \ fputs (reg_names[REGNO (base)], FILE); \ if (index == 0) \ fprintf (FILE, "%+d", offset); \ else if (GET_CODE (index) == REG) \ fprintf (FILE, "+%s", reg_names[REGNO (index)]); \ else if (GET_CODE (index) == SYMBOL_REF \ || GET_CODE (index) == CONST) \ fputc ('+', FILE), output_addr_const (FILE, index); \ else abort (); \ } \ else if (GET_CODE (addr) == MINUS \ && GET_CODE (XEXP (addr, 1)) == LABEL_REF) \ { \ output_addr_const (FILE, XEXP (addr, 0)); \ fputs ("-(", FILE); \ output_addr_const (FILE, XEXP (addr, 1)); \ fputs ("-.)", FILE); \ } \ else if (GET_CODE (addr) == LO_SUM) \ { \ output_operand (XEXP (addr, 0), 0); \ fputs ("+%lo(", FILE); \ output_address (XEXP (addr, 1)); \ fputc (')', FILE); \ } \ else if (flag_pic && GET_CODE (addr) == CONST \ && GET_CODE (XEXP (addr, 0)) == MINUS \ && GET_CODE (XEXP (XEXP (addr, 0), 1)) == CONST \ && GET_CODE (XEXP (XEXP (XEXP (addr, 0), 1), 0)) == MINUS \ && XEXP (XEXP (XEXP (XEXP (addr, 0), 1), 0), 1) == pc_rtx) \ { \ addr = XEXP (addr, 0); \ output_addr_const (FILE, XEXP (addr, 0)); \ /* Group the args of the second CONST in parenthesis. */ \ fputs ("-(", FILE); \ /* Skip past the second CONST--it does nothing for us. */\ output_addr_const (FILE, XEXP (XEXP (addr, 1), 0)); \ /* Close the parenthesis. */ \ fputc (')', FILE); \ } \ else \ { \ output_addr_const (FILE, addr); \ } \ } /* Declare functions defined in sparc.c and used in templates. */ extern char *singlemove_string (); extern char *output_move_double (); extern char *output_move_quad (); extern char *output_fp_move_double (); extern char *output_fp_move_quad (); extern char *output_block_move (); extern char *output_scc_insn (); extern char *output_cbranch (); extern char *output_v9branch (); extern char *output_return (); /* Defined in flags.h, but insn-emit.c does not include flags.h. */ extern int flag_pic;