/* Definitions of target machine for GNU compiler. Tahoe version. Copyright (C) 1989 Free Software Foundation, Inc. This file is part of GNU CC. GNU CC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2, or (at your option) any later version. GNU CC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GNU CC; see the file COPYING. If not, write to the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */ /* * File: tahoe.h * * Original port made at the University of Buffalo by Devon Bowen, * Dale Wiles and Kevin Zachmann. * * HCX/UX version by Piet van Oostrum (piet@cs.ruu.nl) * * Performance hacking by Michael Tiemann (tiemann@lurch.stanford.edu) * * Mail bugs reports or fixes to: gcc@cs.buffalo.edu */ /* define this for the HCX/UX version */ /* #define HCX_UX */ /* * Run-time Target Specification */ #ifdef HCX_UX /* no predefines, see Makefile and hcx-universe.c */ /* have cc1 print that this is the hcx version */ #define TARGET_VERSION printf (" (hcx)"); #else /* we want "tahoe" and "unix" defined for all future compilations */ #define CPP_PREDEFINES "-Dtahoe -Dunix" /* have cc1 print that this is the tahoe version */ #define TARGET_VERSION printf (" (tahoe)"); #endif /* this is required in all tm files to hold flags */ extern int target_flags; /* Zero if it is safe to output .dfloat and .float pseudos. */ #define TARGET_HEX_FLOAT (target_flags & 1) #define TARGET_DEFAULT 1 #define TARGET_SWITCHES \ { {"hex-float", 1}, \ {"no-hex-float", -1}, \ { "", TARGET_DEFAULT} } /* * Storage Layout */ /* This symbol was previously not mentioned, so apparently the tahoe is little-endian for bits, or else doesn't care. */ #define BITS_BIG_ENDIAN 0 /* tahoe uses a big endian byte order */ #define BYTES_BIG_ENDIAN 1 /* tahoe uses a big endian word order */ #define WORDS_BIG_ENDIAN 1 /* standard byte size is usable on tahoe */ #define BITS_PER_UNIT 8 /* longs on the tahoe are 4 byte groups */ #define BITS_PER_WORD 32 /* from the last two params we get 4 bytes per word */ #define UNITS_PER_WORD 4 /* addresses are 32 bits (one word) */ #define POINTER_SIZE 32 /* all parameters line up on 32 boundaries */ #define PARM_BOUNDARY 32 /* stack should line up on 32 boundaries */ #define STACK_BOUNDARY 32 /* line functions up on 32 bits */ #define FUNCTION_BOUNDARY 32 /* the biggest alignment the tahoe needs in 32 bits */ #define BIGGEST_ALIGNMENT 32 /* we have to align after an 'int : 0' in a structure */ #define EMPTY_FIELD_BOUNDARY 32 #ifdef HCX_UX /* structures must be made of full words */ #define STRUCTURE_SIZE_BOUNDARY 32 #else /* structures must be made of full bytes */ #define STRUCTURE_SIZE_BOUNDARY 8 #endif /* tahoe is picky about data alignment */ #define STRICT_ALIGNMENT 1 /* keep things standard with pcc */ #define PCC_BITFIELD_TYPE_MATTERS 1 /* this section is borrowed from the vax version since the */ /* formats are the same in both of the architectures */ #define CHECK_FLOAT_VALUE(mode, d) \ if ((mode) == SFmode) \ { \ if ((d) > 1.7014117331926443e+38) \ { error ("magnitude of constant too large for `float'"); \ (d) = 1.7014117331926443e+38; } \ else if ((d) < -1.7014117331926443e+38) \ { error ("magnitude of constant too large for `float'"); \ (d) = -1.7014117331926443e+38; } \ else if (((d) > 0) && ((d) < 2.9387358770557188e-39)) \ { warning ("`float' constant truncated to zero"); \ (d) = 0.0; } \ else if (((d) < 0) && ((d) > -2.9387358770557188e-39)) \ { warning ("`float' constant truncated to zero"); \ (d) = 0.0; } \ } /* * Register Usage */ /* define 15 general regs plus one for the floating point reg (FPP) */ #define FIRST_PSEUDO_REGISTER 17 /* let the compiler know what the fp, sp and pc are */ #define FIXED_REGISTERS {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0} /* lots of regs aren't guaranteed to return from a call. The FPP reg */ /* must be included in these since it can't be saved by the reg mask */ #define CALL_USED_REGISTERS {1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1} /* A single fp reg can handle any type of float. CPU regs hold just 32 bits. */ #define HARD_REGNO_NREGS(REGNO, MODE) \ (REGNO != 16 ? ((GET_MODE_SIZE(MODE)+UNITS_PER_WORD-1) / UNITS_PER_WORD) \ : GET_MODE_NUNITS ((MODE))) /* any mode greater than 4 bytes (doubles) can only go in an even regs */ /* and the FPP can only hold SFmode and DFmode */ #define HARD_REGNO_MODE_OK(REGNO, MODE) \ (REGNO != 16 \ ? (GET_MODE_UNIT_SIZE (MODE) <= 4 ? 1 : (REGNO % 2 - 1)) \ : ((MODE) == SFmode || (MODE) == DFmode \ || (MODE) == SCmode || (MODE) == DCmode)) /* if mode1 or mode2, but not both, are doubles then modes cannot be tied */ #define MODES_TIEABLE_P(MODE1, MODE2) \ (((MODE1) == DFmode || (MODE1) == DCmode) \ == ((MODE2) == DFmode || (MODE2) == DCmode)) /* return nonzero if register variable of mode MODE is not a priori a bad idea. Used only if defined. */ #define MODE_OK_FOR_USERVAR(MODE) \ ((MODE) == SImode) /* the program counter is reg 15 */ #define PC_REGNUM 15 /* the stack pointer is reg 14 */ #define STACK_POINTER_REGNUM 14 /* the frame pointer is reg 13 */ #define FRAME_POINTER_REGNUM 13 /* tahoe does require an fp */ #define FRAME_POINTER_REQUIRED 1 /* since tahoe doesn't have a argument pointer, make it the fp */ #define ARG_POINTER_REGNUM 13 /* this isn't currently used since C doesn't support this feature */ #define STATIC_CHAIN_REGNUM 0 /* we'll use reg 1 for structure passing cause the destination */ /* of the eventual movblk requires it to be there anyway. */ #define STRUCT_VALUE_REGNUM 1 /* * Register Classes */ /* tahoe has two types of regs. GENERAL_REGS are all the regs up */ /* to number 15. FPP_REG is the special floating point processor */ /* register class (only one reg). */ enum reg_class {NO_REGS,GENERAL_REGS,FPP_REG,ALL_REGS,LIM_REG_CLASSES}; /* defines the number of reg classes. */ #define N_REG_CLASSES (int) LIM_REG_CLASSES /* this defines what the classes are officially named for debugging */ #define REG_CLASS_NAMES \ {"NO_REGS","GENERAL_REGS","FPP_REG","ALL_REGS"} /* set general regs to be the first 16 regs and the fpp reg to be 17th */ #define REG_CLASS_CONTENTS {0,0xffff,0x10000,0x1ffff} /* register class for the fpp reg is FPP_REG, all others are GENERAL_REGS */ #define REGNO_REG_CLASS(REGNO) (REGNO == 16 ? FPP_REG : GENERAL_REGS) /* only general registers can be used as a base reg */ #define BASE_REG_CLASS GENERAL_REGS /* only general registers can be used to index */ #define INDEX_REG_CLASS GENERAL_REGS /* 'a' as a constraint in the md file means the FFP_REG class */ #define REG_CLASS_FROM_LETTER(C) (C == 'a' ? FPP_REG : NO_REGS) /* any general reg but the fpp can be a base reg */ #define REGNO_OK_FOR_BASE_P(regno) \ ((regno) < FIRST_PSEUDO_REGISTER - 1 || reg_renumber[regno] >= 0) /* any general reg except the pc and fpp can be an index reg */ #define REGNO_OK_FOR_INDEX_P(regno) \ ((regno) < FIRST_PSEUDO_REGISTER - 2 || reg_renumber[regno] >= 0) /* if your loading a floating point constant, it can't be done */ /* through a register. Force it to be a memory constant. */ #define PREFERRED_RELOAD_CLASS(X,CLASS) \ ((GET_CODE (X) == CONST_DOUBLE) ? NO_REGS : CLASS) /* for the fpp reg, all modes fit; for any others, you need two for doubles */ #define CLASS_MAX_NREGS(CLASS, MODE) \ (CLASS != FPP_REG ? ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD) : 1) /* we don't define any special constant sizes so all should fail */ #define CONST_OK_FOR_LETTER_P(VALUE, C) 0 /* we don't define any special double sizes so all should fail */ #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) 0 /* * Describing Stack Layout */ /* tahoe stack grows from high to low memory */ #define STACK_GROWS_DOWNWARD /* Define this if longjmp restores from saved registers rather than from what setjmp saved. */ #define LONGJMP_RESTORE_FROM_STACK /* tahoe call frames grow from high to low memory on the stack */ #define FRAME_GROWS_DOWNWARD /* the tahoe fp points to the *top* of the frame instead of the */ /* bottom, so we have to make this offset a constant large enough */ /* to jump over the biggest frame possible. */ #define STARTING_FRAME_OFFSET -52 /* tahoe always pushes 4 bytes unless it's a double in which case */ /* it pushes a full 8 bytes. */ #define PUSH_ROUNDING(BYTES) (BYTES <= 4 ? 4 : 8) /* the first parameter in a function is at the fp + 4 */ #define FIRST_PARM_OFFSET(FNDECL) 4 /* the tahoe return function takes care of everything on the stack */ #define RETURN_POPS_ARGS(FUNTYPE,SIZE) (SIZE) /* function values for all types are returned in register 0 */ #define FUNCTION_VALUE(VALTYPE, FUNC) \ gen_rtx (REG, TYPE_MODE (VALTYPE), 0) /* library routines also return things in reg 0 */ #define LIBCALL_VALUE(MODE) gen_rtx (REG, MODE, 0) /* Tahoe doesn't return structures in a reentrant way */ #define PCC_STATIC_STRUCT_RETURN /* we only return values from a function in reg 0 */ #define FUNCTION_VALUE_REGNO_P(N) ((N) == 0) /* we never pass args through a register */ #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) 0 /* int is fine to hold the argument summary in FUNCTION_ARG */ #define CUMULATIVE_ARGS int /* we just set CUM to 0 before the FUNCTION_ARG call. No matter what */ /* we make it, FUNCTION_ARG will return 0 anyway */ #define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME) \ ((CUM) = 0) /* all modes push their size rounded to the nearest word boundary */ /* except block which is the size of the block rounded up */ #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \ ((CUM) += ((MODE) != BLKmode \ ? (GET_MODE_SIZE (MODE) + 3) & ~3 \ : (int_size_in_bytes (TYPE) + 3) & ~3)) /* this is always false since we never pass params in regs */ #define FUNCTION_ARG_REGNO_P(N) 0 /* this code calculates the register entry mask and sets up */ /* the stack pointer for the function. The stack is set down */ /* far enough from the fp to jump over any push regs and local */ /* vars. This is a problem since the tahoe has the fp pointing */ /* to the top of the frame and the compiler must know the off- */ /* set off the fp to the local vars. */ #define FUNCTION_PROLOGUE(FILE, SIZE) \ { register int regno; \ register int mask = 0; \ extern char call_used_regs[]; \ for (regno = 0; regno < FIRST_PSEUDO_REGISTER-1; regno++) \ if (regs_ever_live[regno] && !call_used_regs[regno]) \ mask |= 1 << regno; \ fprintf (FILE, "\t.word 0x%x\n", mask); \ if (SIZE != 0) fprintf (FILE, "\tsubl3 $%d,fp,sp\n", (SIZE) - STARTING_FRAME_OFFSET); } /* Zero out global variable in case it was used in this function. */ #define FUNCTION_EPILOGUE(FILE, SIZE) \ { extern rtx tahoe_reg_conversion_loc; \ tahoe_reg_conversion_loc = 0; \ } #ifdef HCX_UX /* to call the profiler, the address of the counter var is placed */ /* on the stack and then passed into mcount this way */ #define FUNCTION_PROFILER(FILE, LABELNO) \ fprintf (FILE, "\tpushal LP%d\n\tcallf $8,mcount\n", (LABELNO)); #else /* to call the profiler, push the variable value onto the stack */ /* and call mcount like a regular function. */ #define FUNCTION_PROFILER(FILE, LABELNO) \ fprintf (FILE, "\tpushl $LP%d\n\tcallf $8,mcount\n", (LABELNO)); #endif /* all stack handling at the end of a function is handled by the */ /* return command. */ #define EXIT_IGNORE_STACK 1 /* * Library Subroutine Names */ /* udiv is a valid C library routine in libc.a, so we call that */ #define UDIVSI3_LIBCALL "*udiv" /* urem is a valid C library routine in libc.a, so we call that */ /* but not so on hcx/ux */ #ifdef HCX_UX #undef UMODSI3_LIBCALL #else #define UMODSI3_LIBCALL "*urem" #endif /* * Addressing Modes */ /* constant addresses can be treated exactly the same as normal constants */ #define CONSTANT_ADDRESS_P(X) CONSTANT_P (X) /* we can have as many as two regs in any given address */ #define MAX_REGS_PER_ADDRESS 2 /* The following is all the code for GO_IF_LEGITIMATE_ADDRESS */ /* most of this taken directly from the vax tm file since the */ /* tahoe and vax addressing modes are nearly identical. */ /* Is x an indirectable address? */ #define INDIRECTABLE_ADDRESS_P(X) \ (CONSTANT_ADDRESS_P (X) \ || (GET_CODE (X) == REG && REG_OK_FOR_BASE_P (X)) \ || (GET_CODE (X) == PLUS \ && GET_CODE (XEXP (X, 0)) == REG \ && REG_OK_FOR_BASE_P (XEXP (X, 0)) \ && CONSTANT_ADDRESS_P (XEXP (X, 1)))) /* If x is a non-indexed-address, go to ADDR. */ #define GO_IF_NONINDEXED_ADDRESS(X, ADDR) \ { register rtx xfoob = (X); \ if (GET_CODE (xfoob) == REG) goto ADDR; \ if (INDIRECTABLE_ADDRESS_P (xfoob)) goto ADDR; \ xfoob = XEXP (X, 0); \ if (GET_CODE (X) == MEM && INDIRECTABLE_ADDRESS_P (xfoob)) \ goto ADDR; \ if ((GET_CODE (X) == PRE_DEC || GET_CODE (X) == POST_INC) \ && GET_CODE (xfoob) == REG && REGNO (xfoob) == 14) \ goto ADDR; } /* Is PROD an index term in mode MODE. */ #define INDEX_TERM_P(PROD, MODE) \ (GET_MODE_SIZE (MODE) == 1 \ ? (GET_CODE (PROD) == REG && REG_OK_FOR_BASE_P (PROD)) \ : (GET_CODE (PROD) == MULT \ && \ (xfoo0 = XEXP (PROD, 0), xfoo1 = XEXP (PROD, 1), \ ((GET_CODE (xfoo0) == CONST_INT \ && INTVAL (xfoo0) == GET_MODE_SIZE (MODE) \ && GET_CODE (xfoo1) == REG \ && REG_OK_FOR_INDEX_P (xfoo1)) \ || \ (GET_CODE (xfoo1) == CONST_INT \ && INTVAL (xfoo1) == GET_MODE_SIZE (MODE) \ && GET_CODE (xfoo0) == REG \ && REG_OK_FOR_INDEX_P (xfoo0)))))) /* Is the addition to the index a reg? */ #define GO_IF_REG_PLUS_INDEX(X, MODE, ADDR) \ { register rtx xfooa; \ if (GET_CODE (X) == PLUS) \ { if (GET_CODE (XEXP (X, 0)) == REG \ && REG_OK_FOR_BASE_P (XEXP (X, 0)) \ && (xfooa = XEXP (X, 1), \ INDEX_TERM_P (xfooa, MODE))) \ goto ADDR; \ if (GET_CODE (XEXP (X, 1)) == REG \ && REG_OK_FOR_BASE_P (XEXP (X, 1)) \ && (xfooa = XEXP (X, 0), \ INDEX_TERM_P (xfooa, MODE))) \ goto ADDR; } } /* Is the rtx X a valid memory address for operand of mode MODE? */ /* If it is, go to ADDR */ #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \ { register rtx xfoo, xfoo0, xfoo1; \ GO_IF_NONINDEXED_ADDRESS (X, ADDR); \ if (GET_CODE (X) == PLUS) \ { xfoo = XEXP (X, 0); \ if (INDEX_TERM_P (xfoo, MODE)) \ { GO_IF_NONINDEXED_ADDRESS (XEXP (X, 1), ADDR); } \ xfoo = XEXP (X, 1); \ if (INDEX_TERM_P (xfoo, MODE)) \ { GO_IF_NONINDEXED_ADDRESS (XEXP (X, 0), ADDR); } \ if (CONSTANT_ADDRESS_P (XEXP (X, 0))) \ { if (GET_CODE (XEXP (X, 1)) == REG \ && REG_OK_FOR_BASE_P (XEXP (X, 1))) \ goto ADDR; \ GO_IF_REG_PLUS_INDEX (XEXP (X, 1), MODE, ADDR); } \ if (CONSTANT_ADDRESS_P (XEXP (X, 1))) \ { if (GET_CODE (XEXP (X, 0)) == REG \ && REG_OK_FOR_BASE_P (XEXP (X, 0))) \ goto ADDR; \ GO_IF_REG_PLUS_INDEX (XEXP (X, 0), MODE, ADDR); } } } /* Register 16 can never be used for index or base */ #ifndef REG_OK_STRICT #define REG_OK_FOR_INDEX_P(X) (REGNO(X) != 16) #define REG_OK_FOR_BASE_P(X) (REGNO(X) != 16) #else #define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X)) #define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X)) #endif /* Addressing is too simple to allow optimizing here */ #define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) {} /* Post_inc and pre_dec always adds 4 */ #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) \ { if (GET_CODE(ADDR) == POST_INC || GET_CODE(ADDR) == PRE_DEC) \ goto LABEL; \ if (GET_CODE (ADDR) == PLUS) \ { if (CONSTANT_ADDRESS_P (XEXP (ADDR, 0)) \ && GET_CODE (XEXP (ADDR, 1)) == REG); \ else if (CONSTANT_ADDRESS_P (XEXP (ADDR, 1)) \ && GET_CODE (XEXP (ADDR, 0)) == REG); \ else goto LABEL; }} /* Double's are not legitimate as immediate operands */ #define LEGITIMATE_CONSTANT_P(X) \ (GET_CODE (X) != CONST_DOUBLE) /* * Miscellaneous Parameters */ /* the elements in the case jump table are all words */ #define CASE_VECTOR_MODE HImode /* each of the table elements in a case are relative to the jump address */ #define CASE_VECTOR_PC_RELATIVE /* tahoe case instructions just fall through to the next instruction */ /* if not satisfied. It doesn't support a default action */ #define CASE_DROPS_THROUGH /* the standard answer is given here and work ok */ #define IMPLICIT_FIX_EXPR FIX_ROUND_EXPR /* in a general div case, it's easiest to use TRUNC_DIV_EXPR */ #define EASY_DIV_EXPR TRUNC_DIV_EXPR /* the standard seems to be leaving char's as signed so we left it */ /* this way even though we think they should be unsigned! */ #define DEFAULT_SIGNED_CHAR 1 /* the most we can move without cutting down speed is 4 bytes */ #define MOVE_MAX 4 /* our int is 32 bits */ #define INT_TYPE_SIZE 32 /* byte access isn't really slower than anything else */ #define SLOW_BYTE_ACCESS 0 /* zero extension is more than one instruction so try to avoid it */ #define SLOW_ZERO_EXTEND /* any bits higher than the low 4 are ignored in the shift count */ /* so don't bother zero extending or sign extending them */ #define SHIFT_COUNT_TRUNCATED /* we don't need to officially convert from one fixed type to another */ /* in order to use it as that type. We can just assume it's the same */ #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1 /* pass chars as ints */ #define PROMOTE_PROTOTYPES /* pointers can be represented by an si mode expression */ #define Pmode SImode /* function addresses are made by specifying a byte address */ #define FUNCTION_MODE QImode /* Define this if addresses of constant functions shouldn't be put through pseudo regs where they can be cse'd. On the tahoe a call with a constant address is much faster than one with a register. */ #define NO_FUNCTION_CSE /* specify the costs of various sorts of constants, and also indicate that multiplication is cheap on this machine. */ #define CONST_COSTS(RTX,CODE,OUTER_CODE) \ case CONST_INT: \ /* Constant zero is super cheap due to clr instruction. */ \ if (RTX == const0_rtx) return 0; \ if ((unsigned) INTVAL (RTX) < 077) return 1; \ if (INTVAL (RTX) <= 127 && INTVAL (RTX) >= -128) return 2; \ case CONST: \ case LABEL_REF: \ case SYMBOL_REF: \ return 3; \ case CONST_DOUBLE: \ return 5; \ case MULT: \ total = 2; /* * Condition Code Information */ /* Nonzero if the results of the previous comparison are in the floating point condition code register. */ #define CC_UNCHANGED 04000 #define NOTICE_UPDATE_CC(EXP, INSN) \ { if (cc_status.flags & CC_UNCHANGED) \ /* Happens for cvtld and a few other insns. */ \ cc_status.flags &= ~CC_UNCHANGED; \ else if (GET_CODE (EXP) == SET) \ { if (GET_CODE (SET_SRC (EXP)) == CALL) \ CC_STATUS_INIT; \ else if (GET_CODE (SET_DEST (EXP)) != PC) \ { cc_status.flags = 0; \ cc_status.value1 = SET_DEST (EXP); \ cc_status.value2 = SET_SRC (EXP); } } \ else if (GET_CODE (EXP) == PARALLEL \ && GET_CODE (XVECEXP (EXP, 0, 0)) == SET \ && GET_CODE (SET_DEST (XVECEXP (EXP, 0, 0))) != PC) \ { cc_status.flags = 0; \ cc_status.value1 = SET_DEST (XVECEXP (EXP, 0, 0)); \ cc_status.value2 = SET_SRC (XVECEXP (EXP, 0, 0)); } \ /* PARALLELs whose first element sets the PC are aob, sob insns. \ They do change the cc's. So drop through and forget the cc's. */ \ else CC_STATUS_INIT; \ if (cc_status.value1 && GET_CODE (cc_status.value1) == REG \ && cc_status.value2 \ && reg_overlap_mentioned_p (cc_status.value1, cc_status.value2)) \ cc_status.value2 = 0; \ if (cc_status.value1 && GET_CODE (cc_status.value1) == MEM \ && cc_status.value2 \ && GET_CODE (cc_status.value2) == MEM) \ cc_status.value2 = 0; } /* Actual condition, one line up, should be that value2's address depends on value1, but that is too much of a pain. */ /* * Output of Assembler Code */ /* print which tahoe version compiled this code and print a directive */ /* to the gnu assembler to say that the following is normal assembly */ #ifdef HCX_UX #define ASM_FILE_START(FILE) \ { fprintf (FILE, "#gcc hcx 1.0\n\n"); \ output_file_directive ((FILE), main_input_filename);} while (0) #else #define ASM_FILE_START(FILE) fprintf (FILE, "#gcc tahoe 1.0\n#NO_APP\n"); #endif /* the instruction that turns on the APP for the gnu assembler */ #define ASM_APP_ON "#APP\n" /* the instruction that turns off the APP for the gnu assembler */ #define ASM_APP_OFF "#NO_APP\n" /* what to output before read-only data. */ #define TEXT_SECTION_ASM_OP ".text" /* what to output before writable data. */ #define DATA_SECTION_ASM_OP ".data" /* this is what we call each of the regs. notice that the FPP reg is */ /* called "ac". This should never get used due to the way we've set */ /* up FPP instructions in the md file. But we call it "ac" here to */ /* fill the list. */ #define REGISTER_NAMES \ {"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", "r8", \ "r9", "r10", "r11", "r12", "fp", "sp", "pc", "ac"} #ifdef HCX_UX /* allow generation of sdb info in the assembly */ #define SDB_DEBUGGING_INFO #else /* allow generation of dbx info in the assembly */ #define DBX_DEBUGGING_INFO /* our dbx doesn't support this */ #define DBX_NO_XREFS /* we don't want symbols broken up */ #define DBX_CONTIN_LENGTH 0 /* this'll really never be used, but we'll leave it at this */ #define DBX_CONTIN_CHAR '?' #endif /* HCX_UX */ /* registers are called the same thing in dbx anything else */ /* This is necessary even if we generate SDB output */ #define DBX_REGISTER_NUMBER(REGNO) (REGNO) /* labels are the label followed by a colon and a newline */ /* must be a statement, so surround it in a null loop */ #define ASM_OUTPUT_LABEL(FILE,NAME) \ do { assemble_name (FILE, NAME); fputs (":\n", FILE); } while (0) /* use the .globl directive to make labels global for the linker */ #define ASM_GLOBALIZE_LABEL(FILE,NAME) \ do { fputs (".globl ", FILE); assemble_name (FILE, NAME); fputs ("\n", FILE);} while (0) /* output a label by appending an underscore to it */ #define ASM_OUTPUT_LABELREF(FILE,NAME) \ fprintf (FILE, "_%s", NAME) /* use the standard format for printing internal labels */ #define ASM_OUTPUT_INTERNAL_LABEL(FILE,PREFIX,NUM) \ fprintf (FILE, "%s%d:\n", PREFIX, NUM) /* a * is used for label indirection in unix assembly */ #define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \ sprintf (LABEL, "*%s%d", PREFIX, NUM) /* outputting a double is easy cause we only have one kind */ #ifdef HCX_UX #define ASM_OUTPUT_DOUBLE(FILE,VALUE) \ fprintf (FILE, "\t.double 0d%.20e\n", (VALUE)) #else #define ASM_OUTPUT_DOUBLE(FILE,VALUE) \ { \ union { int i[2]; double d;} temp; \ temp.d = (VALUE); \ if (TARGET_HEX_FLOAT) \ fprintf ((FILE), "\t.long 0x%x,0x%x # %.20e\n", \ temp.i[0], temp.i[1], temp.d); \ else \ fprintf (FILE, "\t.dfloat 0d%.20e\n", temp.d); \ } #endif /* This is how to output an assembler line defining a `float' constant. */ #ifdef HCX_UX #define ASM_OUTPUT_FLOAT(FILE,VALUE) \ fprintf (FILE, "\t.float 0f%.20e\n", (VALUE)) #else #define ASM_OUTPUT_FLOAT(FILE,VALUE) \ { \ union { int i; float f;} temp; \ temp.f = (float) (VALUE); \ if (TARGET_HEX_FLOAT) \ fprintf ((FILE), "\t.long 0x%x # %.20e\n", \ temp.i, temp.f); \ else \ fprintf (FILE, "\t.float 0f%.20e\n", temp.f); \ } #endif /* This is how to output an assembler line defining an `int' constant. */ #define ASM_OUTPUT_INT(FILE,VALUE) \ ( fprintf (FILE, "\t.long "), \ output_addr_const (FILE, (VALUE)), \ fprintf (FILE, "\n")) /* Likewise for `char' and `short' constants. */ #define ASM_OUTPUT_SHORT(FILE,VALUE) \ ( fprintf (FILE, "\t.word "), \ output_addr_const (FILE, (VALUE)), \ fprintf (FILE, "\n")) #define ASM_OUTPUT_CHAR(FILE,VALUE) \ ( fprintf (FILE, "\t.byte "), \ output_addr_const (FILE, (VALUE)), \ fprintf (FILE, "\n")) #ifdef HCX_UX /* This is how to output an assembler line for an ASCII string. */ #define ASM_OUTPUT_ASCII(FILE, p, size) \ { register int i; \ fprintf ((FILE), "\t.ascii \""); \ for (i = 0; i < (size); i++) \ { \ register int c = (p)[i]; \ if (c == '\'' || c == '\\') \ putc ('\\', (FILE)); \ if (c >= ' ' && c < 0177 && c != '\"') \ putc (c, (FILE)); \ else \ { \ fprintf ((FILE), "\\%03o", c); \ } \ } \ fprintf ((FILE), "\"\n"); } #endif /* This is how to output an assembler line for a numeric constant byte. */ #define ASM_OUTPUT_BYTE(FILE,VALUE) \ fprintf (FILE, "\t.byte 0x%x\n", (VALUE)) /* this is the insn to push a register onto the stack */ #define ASM_OUTPUT_REG_PUSH(FILE,REGNO) \ fprintf (FILE, "\tpushl %s\n", reg_names[REGNO]) /* this is the insn to pop a register from the stack */ #define ASM_OUTPUT_REG_POP(FILE,REGNO) \ fprintf (FILE, "\tmovl (sp)+,%s\n", reg_names[REGNO]) /* this is required even thought tahoe doesn't support it */ /* cause the C code expects it to be defined */ #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \ fprintf (FILE, "\t.long L%d\n", VALUE) /* This is how to output an element of a case-vector that is relative. */ #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, VALUE, REL) \ fprintf (FILE, "\t.word L%d-L%d\n", VALUE, REL) /* This is how to output an assembler line that says to advance the location counter to a multiple of 2**LOG bytes. */ #ifdef HCX_UX #define CASE_ALIGNMENT 2 #define ASM_OUTPUT_ALIGN(FILE,LOG) \ if ((LOG)!=0) fprintf ((FILE), "\t.align %d\n", 1<<(LOG)) #else #define CASE_ALIGNMENT 1 #define ASM_OUTPUT_ALIGN(FILE,LOG) \ LOG ? fprintf (FILE, "\t.align %d\n", (LOG)) : 0 #endif /* This is how to skip over some space */ #define ASM_OUTPUT_SKIP(FILE,SIZE) \ fprintf (FILE, "\t.space %u\n", (SIZE)) /* This defines common variables across files */ #ifdef HCX_UX #define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED) \ ( fputs (".comm ", (FILE)), \ assemble_name ((FILE), (NAME)), \ fprintf ((FILE), ",%u\n", (SIZE))) #else #define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED) \ ( fputs (".comm ", (FILE)), \ assemble_name ((FILE), (NAME)), \ fprintf ((FILE), ",%u\n", (ROUNDED))) #endif /* This says how to output an assembler line to define a local common symbol. */ #ifdef HCX_UX #define ASM_OUTPUT_LOCAL(FILE, NAME, SIZE, ROUNDED) \ ( fputs ("\t.bss ", (FILE)), \ assemble_name ((FILE), (NAME)), \ fprintf ((FILE), ",%u,4\n", (SIZE),(ROUNDED))) #else #define ASM_OUTPUT_LOCAL(FILE, NAME, SIZE, ROUNDED) \ ( fputs (".lcomm ", (FILE)), \ assemble_name ((FILE), (NAME)), \ fprintf ((FILE), ",%u\n", (ROUNDED))) #endif /* code to generate a label */ #define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \ ( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \ sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO))) /* Define the parentheses used to group arithmetic operations in assembler code. */ #define ASM_OPEN_PAREN "(" #define ASM_CLOSE_PAREN ")" /* Define results of standard character escape sequences. */ #define TARGET_BELL 007 #define TARGET_BS 010 #define TARGET_TAB 011 #define TARGET_NEWLINE 012 #define TARGET_VT 013 #define TARGET_FF 014 #define TARGET_CR 015 /* Print an instruction operand X on file FILE. CODE is the code from the %-spec that requested printing this operand; if `%z3' was used to print operand 3, then CODE is 'z'. On the Vax, the only code used is `#', indicating that either `d' or `g' should be printed, depending on whether we're using dfloat or gfloat. */ /* Print an operand. Some difference from the vax code, since the tahoe can't support immediate floats and doubles. %@ means print the proper alignment operand for aligning after a casesi. This depends on the assembler syntax. This is 1 for our assembler, since .align is logarithmic. %s means the number given is supposed to be a shift value, but on the tahoe it should be converted to a number that can be used as a multiplicative constant (cause multiplication is a whole lot faster than shifting). So make the number 2^n instead. */ #define PRINT_OPERAND_PUNCT_VALID_P(CODE) \ ((CODE) == '@') #define PRINT_OPERAND(FILE, X, CODE) \ { if (CODE == '@') \ putc ('0' + CASE_ALIGNMENT, FILE); \ else if (CODE == 's') \ fprintf (FILE, "$%d", 1 << INTVAL(X)); \ else if (GET_CODE (X) == REG) \ fprintf (FILE, "%s", reg_names[REGNO (X)]); \ else if (GET_CODE (X) == MEM) \ output_address (XEXP (X, 0)); \ else { putc ('$', FILE); output_addr_const (FILE, X); }} /* When the operand is an address, call print_operand_address to */ /* do the work from output-tahoe.c. */ #define PRINT_OPERAND_ADDRESS(FILE, ADDR) \ print_operand_address (FILE, ADDR) /* This is for G++ */ #define CRT0_DUMMIES #define DOT_GLOBAL_START #ifdef HCX_UX #define NO_GNU_LD /* because of COFF format */ #define LINK_SPEC "-L/usr/staff/lib" #endif