lcm.c: New file.
* lcm.c: New file. * Makefile.in (OBJS): Add lcm.o (lcm.o): Add dependencies. From-SVN: r25679
This commit is contained in:
parent
3524fe0339
commit
d2ecda2785
@ -22,6 +22,10 @@ Wed Mar 10 23:11:19 1999 Kaveh R. Ghazi <ghazi@caip.rutgers.edu>
|
||||
|
||||
Wed Mar 10 20:28:29 1999 Jeffrey A Law (law@cygnus.com)
|
||||
|
||||
* lcm.c: New file.
|
||||
* Makefile.in (OBJS): Add lcm.o
|
||||
(lcm.o): Add dependencies.
|
||||
|
||||
* gcse.c (compute_pre_local_properties): Delete.
|
||||
(compute_pre_data): Use compute_local_properties instead of
|
||||
compute_pre_local_properties.
|
||||
|
@ -676,7 +676,7 @@ OBJS = toplev.o version.o tree.o print-tree.o stor-layout.o fold-const.o \
|
||||
integrate.o jump.o cse.o loop.o unroll.o flow.o stupid.o combine.o varray.o \
|
||||
regclass.o regmove.o local-alloc.o global.o reload.o reload1.o caller-save.o \
|
||||
insn-peep.o reorg.o $(SCHED_PREFIX)sched.o final.o recog.o reg-stack.o \
|
||||
insn-opinit.o insn-recog.o insn-extract.o insn-output.o insn-emit.o \
|
||||
insn-opinit.o insn-recog.o insn-extract.o insn-output.o insn-emit.o lcm.o \
|
||||
profile.o insn-attrtab.o $(out_object_file) getpwd.o $(EXTRA_OBJS) convert.o \
|
||||
mbchar.o dyn-string.o splay-tree.o graph.o sbitmap.o resource.o
|
||||
|
||||
@ -1505,6 +1505,8 @@ gcse.o : gcse.c $(CONFIG_H) system.h $(RTL_H) $(REGS_H) hard-reg-set.h flags.h \
|
||||
real.h insn-config.h $(RECOG_H) $(EXPR_H) $(BASIC_BLOCK_H) output.h
|
||||
resource.o : resource.c $(CONFIG_H) $(RTL_H) hard-reg-set.h system.h \
|
||||
$(BASIC_BLOCK_H) $(REGS_H) flags.h output.h resource.h
|
||||
lcm.o : lcm.c $(CONFIG_H) system.h $(RTL_H) $(REGS_H) hard-reg-set.h flags.h \
|
||||
real.h insn-config.h $(RECOG_H) $(EXPR_H) $(BASIC_BLOCK_H)
|
||||
profile.o : profile.c $(CONFIG_H) system.h $(RTL_H) flags.h insn-flags.h \
|
||||
gcov-io.h $(TREE_H) output.h $(REGS_H) toplev.h insn-config.h
|
||||
loop.o : loop.c $(CONFIG_H) system.h $(RTL_H) flags.h loop.h insn-config.h \
|
||||
|
799
gcc/lcm.c
Normal file
799
gcc/lcm.c
Normal file
@ -0,0 +1,799 @@
|
||||
/* Generic partial redundancy elimination with lazy code motion
|
||||
support.
|
||||
Copyright (C) 1998 Free Software Foundation, Inc.
|
||||
|
||||
This file is part of GNU CC.
|
||||
|
||||
GNU CC is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2, or (at your option)
|
||||
any later version.
|
||||
|
||||
GNU CC is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with GNU CC; see the file COPYING. If not, write to
|
||||
the Free Software Foundation, 59 Temple Place - Suite 330,
|
||||
Boston, MA 02111-1307, USA. */
|
||||
|
||||
/* These routines are meant to be used by various optimization
|
||||
passes which can be modeled as lazy code motion problems.
|
||||
Including, but not limited to:
|
||||
|
||||
* Traditional partial redundancy elimination.
|
||||
|
||||
* Placement of caller/caller register save/restores.
|
||||
|
||||
* Load/store motion.
|
||||
|
||||
* Copy motion.
|
||||
|
||||
* Conversion of flat register files to a stacked register
|
||||
model.
|
||||
|
||||
* Dead load/store elimination.
|
||||
|
||||
These routines accept as input:
|
||||
|
||||
* Basic block information (number of blocks, lists of
|
||||
predecessors and successors). Note the granularity
|
||||
does not need to be basic block, they could be statements
|
||||
or functions.
|
||||
|
||||
* Bitmaps of local properties (computed, transparent and
|
||||
anticipatable expressions).
|
||||
|
||||
The output of these routines is bitmap of redundant computations
|
||||
and a bitmap of optimal placement points. */
|
||||
|
||||
|
||||
#include "config.h"
|
||||
#include "system.h"
|
||||
|
||||
#include "rtl.h"
|
||||
#include "regs.h"
|
||||
#include "hard-reg-set.h"
|
||||
#include "flags.h"
|
||||
#include "real.h"
|
||||
#include "insn-config.h"
|
||||
#include "recog.h"
|
||||
#include "basic-block.h"
|
||||
|
||||
static void compute_antinout PROTO ((int, int_list_ptr *, sbitmap *,
|
||||
sbitmap *, sbitmap *, sbitmap *));
|
||||
static void compute_earlyinout PROTO ((int, int, int_list_ptr *, sbitmap *,
|
||||
sbitmap *, sbitmap *, sbitmap *));
|
||||
static void compute_delayinout PROTO ((int, int, int_list_ptr *, sbitmap *,
|
||||
sbitmap *, sbitmap *,
|
||||
sbitmap *, sbitmap *));
|
||||
static void compute_latein PROTO ((int, int, int_list_ptr *, sbitmap *,
|
||||
sbitmap *, sbitmap *));
|
||||
static void compute_isoinout PROTO ((int, int_list_ptr *, sbitmap *,
|
||||
sbitmap *, sbitmap *, sbitmap *));
|
||||
static void compute_optimal PROTO ((int, sbitmap *,
|
||||
sbitmap *, sbitmap *));
|
||||
static void compute_redundant PROTO ((int, int, sbitmap *,
|
||||
sbitmap *, sbitmap *, sbitmap *));
|
||||
|
||||
/* Similarly, but for the reversed flowgraph. */
|
||||
static void compute_avinout PROTO ((int, int_list_ptr *, sbitmap *,
|
||||
sbitmap *, sbitmap *, sbitmap *));
|
||||
static void compute_fartherinout PROTO ((int, int, int_list_ptr *,
|
||||
sbitmap *, sbitmap *,
|
||||
sbitmap *, sbitmap *));
|
||||
static void compute_earlierinout PROTO ((int, int, int_list_ptr *, sbitmap *,
|
||||
sbitmap *, sbitmap *,
|
||||
sbitmap *, sbitmap *));
|
||||
static void compute_firstout PROTO ((int, int, int_list_ptr *, sbitmap *,
|
||||
sbitmap *, sbitmap *));
|
||||
static void compute_rev_isoinout PROTO ((int, int_list_ptr *, sbitmap *,
|
||||
sbitmap *, sbitmap *, sbitmap *));
|
||||
|
||||
/* Given local properties TRANSP, ANTLOC, return the redundant and optimal
|
||||
computation points for expressions.
|
||||
|
||||
To reduce overall memory consumption, we allocate memory immediately
|
||||
before its needed and deallocate it as soon as possible. */
|
||||
void
|
||||
pre_lcm (n_blocks, n_exprs, s_preds, s_succs, transp,
|
||||
antloc, redundant, optimal)
|
||||
int n_blocks;
|
||||
int n_exprs;
|
||||
int_list_ptr *s_preds;
|
||||
int_list_ptr *s_succs;
|
||||
sbitmap *transp;
|
||||
sbitmap *antloc;
|
||||
sbitmap *redundant;
|
||||
sbitmap *optimal;
|
||||
{
|
||||
sbitmap *antin, *antout, *earlyin, *earlyout, *delayin, *delayout;
|
||||
sbitmap *latein, *isoin, *isoout;
|
||||
|
||||
/* Compute global anticipatability. ANTOUT is not needed except to
|
||||
compute ANTIN, so free its memory as soon as we return from
|
||||
compute_antinout. */
|
||||
antin = sbitmap_vector_alloc (n_blocks, n_exprs);
|
||||
antout = sbitmap_vector_alloc (n_blocks, n_exprs);
|
||||
compute_antinout (n_blocks, s_succs, antloc,
|
||||
transp, antin, antout);
|
||||
free (antout);
|
||||
antout = NULL;
|
||||
|
||||
/* Compute earliestness. EARLYOUT is not needed except to compute
|
||||
EARLYIN, so free its memory as soon as we return from
|
||||
compute_earlyinout. */
|
||||
earlyin = sbitmap_vector_alloc (n_blocks, n_exprs);
|
||||
earlyout = sbitmap_vector_alloc (n_blocks, n_exprs);
|
||||
compute_earlyinout (n_blocks, n_exprs, s_preds, transp, antin,
|
||||
earlyin, earlyout);
|
||||
free (earlyout);
|
||||
earlyout = NULL;
|
||||
|
||||
/* Compute delayedness. DELAYOUT is not needed except to compute
|
||||
DELAYIN, so free its memory as soon as we return from
|
||||
compute_delayinout. We also no longer need ANTIN and EARLYIN. */
|
||||
delayin = sbitmap_vector_alloc (n_blocks, n_exprs);
|
||||
delayout = sbitmap_vector_alloc (n_blocks, n_exprs);
|
||||
compute_delayinout (n_blocks, n_exprs, s_preds, antloc,
|
||||
antin, earlyin, delayin, delayout);
|
||||
free (delayout);
|
||||
delayout = NULL;
|
||||
free (antin);
|
||||
antin = NULL;
|
||||
free (earlyin);
|
||||
earlyin = NULL;
|
||||
|
||||
/* Compute latestness. We no longer need DELAYIN after we compute
|
||||
LATEIN. */
|
||||
latein = sbitmap_vector_alloc (n_blocks, n_exprs);
|
||||
compute_latein (n_blocks, n_exprs, s_succs, antloc, delayin, latein);
|
||||
free (delayin);
|
||||
delayin = NULL;
|
||||
|
||||
/* Compute isolatedness. ISOIN is not needed except to compute
|
||||
ISOOUT, so free its memory as soon as we return from
|
||||
compute_isoinout. */
|
||||
isoin = sbitmap_vector_alloc (n_blocks, n_exprs);
|
||||
isoout = sbitmap_vector_alloc (n_blocks, n_exprs);
|
||||
compute_isoinout (n_blocks, s_succs, antloc, latein, isoin, isoout);
|
||||
free (isoin);
|
||||
isoin = NULL;
|
||||
|
||||
/* Now compute optimal placement points and the redundant expressions. */
|
||||
compute_optimal (n_blocks, latein, isoout, optimal);
|
||||
compute_redundant (n_blocks, n_exprs, antloc, latein, isoout, redundant);
|
||||
free (latein);
|
||||
latein = NULL;
|
||||
free (isoout);
|
||||
isoout = NULL;
|
||||
}
|
||||
|
||||
/* Given local properties TRANSP, AVLOC, return the redundant and optimal
|
||||
computation points for expressions on the reverse flowgraph.
|
||||
|
||||
To reduce overall memory consumption, we allocate memory immediately
|
||||
before its needed and deallocate it as soon as possible. */
|
||||
|
||||
void
|
||||
pre_rev_lcm (n_blocks, n_exprs, s_preds, s_succs, transp,
|
||||
avloc, redundant, optimal)
|
||||
int n_blocks;
|
||||
int n_exprs;
|
||||
int_list_ptr *s_preds;
|
||||
int_list_ptr *s_succs;
|
||||
sbitmap *transp;
|
||||
sbitmap *avloc;
|
||||
sbitmap *redundant;
|
||||
sbitmap *optimal;
|
||||
{
|
||||
sbitmap *avin, *avout, *fartherin, *fartherout, *earlierin, *earlierout;
|
||||
sbitmap *firstout, *rev_isoin, *rev_isoout;
|
||||
|
||||
/* Compute global availability. AVIN is not needed except to
|
||||
compute AVOUT, so free its memory as soon as we return from
|
||||
compute_avinout. */
|
||||
avin = sbitmap_vector_alloc (n_blocks, n_exprs);
|
||||
avout = sbitmap_vector_alloc (n_blocks, n_exprs);
|
||||
compute_avinout (n_blocks, s_preds, avloc, transp, avin, avout);
|
||||
free (avin);
|
||||
avin = NULL;
|
||||
|
||||
/* Compute fartherness. FARTHERIN is not needed except to compute
|
||||
FARTHEROUT, so free its memory as soon as we return from
|
||||
compute_earlyinout. */
|
||||
fartherin = sbitmap_vector_alloc (n_blocks, n_exprs);
|
||||
fartherout = sbitmap_vector_alloc (n_blocks, n_exprs);
|
||||
compute_fartherinout (n_blocks, n_exprs, s_succs, transp,
|
||||
avout, fartherin, fartherout);
|
||||
free (fartherin);
|
||||
fartherin = NULL;
|
||||
|
||||
/* Compute earlierness. EARLIERIN is not needed except to compute
|
||||
EARLIEROUT, so free its memory as soon as we return from
|
||||
compute_delayinout. We also no longer need AVOUT and FARTHEROUT. */
|
||||
earlierin = sbitmap_vector_alloc (n_blocks, n_exprs);
|
||||
earlierout = sbitmap_vector_alloc (n_blocks, n_exprs);
|
||||
compute_earlierinout (n_blocks, n_exprs, s_succs, avloc,
|
||||
avout, fartherout, earlierin, earlierout);
|
||||
free (earlierin);
|
||||
earlierin = NULL;
|
||||
free (avout);
|
||||
avout = NULL;
|
||||
free (fartherout);
|
||||
fartherout = NULL;
|
||||
|
||||
/* Compute firstness. We no longer need EARLIEROUT after we compute
|
||||
FIRSTOUT. */
|
||||
firstout = sbitmap_vector_alloc (n_blocks, n_exprs);
|
||||
compute_firstout (n_blocks, n_exprs, s_preds, avloc, earlierout, firstout);
|
||||
free (earlierout);
|
||||
earlierout = NULL;
|
||||
|
||||
/* Compute rev_isolatedness. ISOIN is not needed except to compute
|
||||
ISOOUT, so free its memory as soon as we return from
|
||||
compute_isoinout. */
|
||||
rev_isoin = sbitmap_vector_alloc (n_blocks, n_exprs);
|
||||
rev_isoout = sbitmap_vector_alloc (n_blocks, n_exprs);
|
||||
compute_rev_isoinout (n_blocks, s_preds, avloc, firstout,
|
||||
rev_isoin, rev_isoout);
|
||||
free (rev_isoout);
|
||||
rev_isoout = NULL;
|
||||
|
||||
/* Now compute optimal placement points and the redundant expressions. */
|
||||
compute_optimal (n_blocks, firstout, rev_isoin, optimal);
|
||||
compute_redundant (n_blocks, n_exprs, avloc, firstout, rev_isoin, redundant);
|
||||
free (firstout);
|
||||
firstout = NULL;
|
||||
free (rev_isoin);
|
||||
rev_isoin = NULL;
|
||||
}
|
||||
|
||||
/* Compute expression anticipatability at entrance and exit of each block. */
|
||||
|
||||
static void
|
||||
compute_antinout (n_blocks, s_succs, antloc, transp, antin, antout)
|
||||
int n_blocks;
|
||||
int_list_ptr *s_succs;
|
||||
sbitmap *antloc;
|
||||
sbitmap *transp;
|
||||
sbitmap *antin;
|
||||
sbitmap *antout;
|
||||
{
|
||||
int bb, changed, passes;
|
||||
sbitmap old_changed, new_changed;
|
||||
|
||||
sbitmap_zero (antout[n_blocks - 1]);
|
||||
sbitmap_vector_ones (antin, n_blocks);
|
||||
|
||||
old_changed = sbitmap_alloc (n_blocks);
|
||||
new_changed = sbitmap_alloc (n_blocks);
|
||||
sbitmap_ones (old_changed);
|
||||
|
||||
passes = 0;
|
||||
changed = 1;
|
||||
while (changed)
|
||||
{
|
||||
changed = 0;
|
||||
sbitmap_zero (new_changed);
|
||||
/* We scan the blocks in the reverse order to speed up
|
||||
the convergence. */
|
||||
for (bb = n_blocks - 1; bb >= 0; bb--)
|
||||
{
|
||||
int_list_ptr ps;
|
||||
|
||||
/* If none of the successors of this block have changed,
|
||||
then this block is not going to change. */
|
||||
for (ps = s_succs[bb] ; ps; ps = ps->next)
|
||||
{
|
||||
if (INT_LIST_VAL (ps) == EXIT_BLOCK
|
||||
|| INT_LIST_VAL (ps) == ENTRY_BLOCK)
|
||||
break;
|
||||
|
||||
if (TEST_BIT (old_changed, INT_LIST_VAL (ps))
|
||||
|| TEST_BIT (new_changed, INT_LIST_VAL (ps)))
|
||||
break;
|
||||
}
|
||||
|
||||
if (!ps)
|
||||
continue;
|
||||
|
||||
if (bb != n_blocks - 1)
|
||||
sbitmap_intersect_of_successors (antout[bb], antin,
|
||||
bb, s_succs);
|
||||
if (sbitmap_a_or_b_and_c (antin[bb], antloc[bb],
|
||||
transp[bb], antout[bb]))
|
||||
{
|
||||
changed = 1;
|
||||
SET_BIT (new_changed, bb);
|
||||
}
|
||||
}
|
||||
sbitmap_copy (old_changed, new_changed);
|
||||
passes++;
|
||||
}
|
||||
free (old_changed);
|
||||
free (new_changed);
|
||||
}
|
||||
|
||||
/* Compute expression earliestness at entrance and exit of each block.
|
||||
|
||||
From Advanced Compiler Design and Implementation pp411.
|
||||
|
||||
An expression is earliest at the entrance to basic block BB if no
|
||||
block from entry to block BB both evaluates the expression and
|
||||
produces the same value as evaluating it at the entry to block BB
|
||||
does. Similarly for earlistness at basic block BB exit. */
|
||||
|
||||
static void
|
||||
compute_earlyinout (n_blocks, n_exprs, s_preds, transp, antin,
|
||||
earlyin, earlyout)
|
||||
int n_blocks;
|
||||
int n_exprs;
|
||||
int_list_ptr *s_preds;
|
||||
sbitmap *transp;
|
||||
sbitmap *antin;
|
||||
sbitmap *earlyin;
|
||||
sbitmap *earlyout;
|
||||
{
|
||||
int bb, changed, passes;
|
||||
sbitmap temp_bitmap;
|
||||
sbitmap old_changed, new_changed;
|
||||
|
||||
temp_bitmap = sbitmap_alloc (n_exprs);
|
||||
|
||||
sbitmap_vector_zero (earlyout, n_blocks);
|
||||
sbitmap_ones (earlyin[0]);
|
||||
|
||||
old_changed = sbitmap_alloc (n_blocks);
|
||||
new_changed = sbitmap_alloc (n_blocks);
|
||||
sbitmap_ones (old_changed);
|
||||
|
||||
passes = 0;
|
||||
changed = 1;
|
||||
while (changed)
|
||||
{
|
||||
changed = 0;
|
||||
sbitmap_zero (new_changed);
|
||||
for (bb = 0; bb < n_blocks; bb++)
|
||||
{
|
||||
int_list_ptr ps;
|
||||
|
||||
/* If none of the predecessors of this block have changed,
|
||||
then this block is not going to change. */
|
||||
for (ps = s_preds[bb] ; ps; ps = ps->next)
|
||||
{
|
||||
if (INT_LIST_VAL (ps) == EXIT_BLOCK
|
||||
|| INT_LIST_VAL (ps) == ENTRY_BLOCK)
|
||||
break;
|
||||
|
||||
if (TEST_BIT (old_changed, INT_LIST_VAL (ps))
|
||||
|| TEST_BIT (new_changed, INT_LIST_VAL (ps)))
|
||||
break;
|
||||
}
|
||||
|
||||
if (!ps)
|
||||
continue;
|
||||
|
||||
if (bb != 0)
|
||||
sbitmap_union_of_predecessors (earlyin[bb], earlyout,
|
||||
bb, s_preds);
|
||||
sbitmap_not (temp_bitmap, transp[bb]);
|
||||
if (sbitmap_union_of_diff (earlyout[bb], temp_bitmap,
|
||||
earlyin[bb], antin[bb]))
|
||||
{
|
||||
changed = 1;
|
||||
SET_BIT (new_changed, bb);
|
||||
}
|
||||
}
|
||||
sbitmap_copy (old_changed, new_changed);
|
||||
passes++;
|
||||
}
|
||||
free (old_changed);
|
||||
free (new_changed);
|
||||
free (temp_bitmap);
|
||||
}
|
||||
|
||||
/* Compute expression delayedness at entrance and exit of each block.
|
||||
|
||||
From Advanced Compiler Design and Implementation pp411.
|
||||
|
||||
An expression is delayed at the entrance to BB if it is anticipatable
|
||||
and earliest at that point and if all subsequent computations of
|
||||
the expression are in block BB. */
|
||||
|
||||
static void
|
||||
compute_delayinout (n_blocks, n_exprs, s_preds, antloc,
|
||||
antin, earlyin, delayin, delayout)
|
||||
int n_blocks;
|
||||
int n_exprs;
|
||||
int_list_ptr *s_preds;
|
||||
sbitmap *antloc;
|
||||
sbitmap *antin;
|
||||
sbitmap *earlyin;
|
||||
sbitmap *delayin;
|
||||
sbitmap *delayout;
|
||||
{
|
||||
int bb, changed, passes;
|
||||
sbitmap *anti_and_early;
|
||||
sbitmap temp_bitmap;
|
||||
|
||||
temp_bitmap = sbitmap_alloc (n_exprs);
|
||||
|
||||
/* This is constant throughout the flow equations below, so compute
|
||||
it once to save time. */
|
||||
anti_and_early = sbitmap_vector_alloc (n_blocks, n_exprs);
|
||||
for (bb = 0; bb < n_blocks; bb++)
|
||||
sbitmap_a_and_b (anti_and_early[bb], antin[bb], earlyin[bb]);
|
||||
|
||||
sbitmap_vector_zero (delayout, n_blocks);
|
||||
sbitmap_copy (delayin[0], anti_and_early[0]);
|
||||
|
||||
passes = 0;
|
||||
changed = 1;
|
||||
while (changed)
|
||||
{
|
||||
changed = 0;
|
||||
for (bb = 0; bb < n_blocks; bb++)
|
||||
{
|
||||
if (bb != 0)
|
||||
{
|
||||
sbitmap_intersect_of_predecessors (temp_bitmap, delayout,
|
||||
bb, s_preds);
|
||||
changed |= sbitmap_a_or_b (delayin[bb],
|
||||
anti_and_early[bb],
|
||||
temp_bitmap);
|
||||
}
|
||||
sbitmap_not (temp_bitmap, antloc[bb]);
|
||||
changed |= sbitmap_a_and_b (delayout[bb],
|
||||
temp_bitmap,
|
||||
delayin[bb]);
|
||||
}
|
||||
passes++;
|
||||
}
|
||||
|
||||
/* We're done with this, so go ahead and free it's memory now instead
|
||||
of waiting until the end of pre. */
|
||||
free (anti_and_early);
|
||||
free (temp_bitmap);
|
||||
}
|
||||
|
||||
/* Compute latestness.
|
||||
|
||||
From Advanced Compiler Design and Implementation pp412.
|
||||
|
||||
An expression is latest at the entrance to block BB if that is an optimal
|
||||
point for computing the expression and if on every path from block BB's
|
||||
entrance to the exit block, any optimal computation point for the
|
||||
expression occurs after one of the points at which the expression was
|
||||
computed in the original flowgraph. */
|
||||
|
||||
static void
|
||||
compute_latein (n_blocks, n_exprs, s_succs, antloc, delayin, latein)
|
||||
int n_blocks;
|
||||
int n_exprs;
|
||||
int_list_ptr *s_succs;
|
||||
sbitmap *antloc;
|
||||
sbitmap *delayin;
|
||||
sbitmap *latein;
|
||||
{
|
||||
int bb;
|
||||
sbitmap temp_bitmap;
|
||||
|
||||
temp_bitmap = sbitmap_alloc (n_exprs);
|
||||
|
||||
for (bb = 0; bb < n_blocks; bb++)
|
||||
{
|
||||
/* The last block is succeeded only by the exit block; therefore,
|
||||
temp_bitmap will not be set by the following call! */
|
||||
if (bb == n_blocks - 1)
|
||||
{
|
||||
sbitmap_intersect_of_successors (temp_bitmap, delayin,
|
||||
bb, s_succs);
|
||||
sbitmap_not (temp_bitmap, temp_bitmap);
|
||||
}
|
||||
else
|
||||
sbitmap_ones (temp_bitmap);
|
||||
sbitmap_a_and_b_or_c (latein[bb], delayin[bb],
|
||||
antloc[bb], temp_bitmap);
|
||||
}
|
||||
free (temp_bitmap);
|
||||
}
|
||||
|
||||
/* Compute isolated.
|
||||
|
||||
From Advanced Compiler Design and Implementation pp413.
|
||||
|
||||
A computationally optimal placement for the evaluation of an expression
|
||||
is defined to be isolated if and only if on every path from a successor
|
||||
of the block in which it is computed to the exit block, every original
|
||||
computation of the expression is preceded by the optimal placement point. */
|
||||
|
||||
static void
|
||||
compute_isoinout (n_blocks, s_succs, antloc, latein, isoin, isoout)
|
||||
int n_blocks;
|
||||
int_list_ptr *s_succs;
|
||||
sbitmap *antloc;
|
||||
sbitmap *latein;
|
||||
sbitmap *isoin;
|
||||
sbitmap *isoout;
|
||||
{
|
||||
int bb, changed, passes;
|
||||
|
||||
sbitmap_vector_zero (isoin, n_blocks);
|
||||
sbitmap_zero (isoout[n_blocks - 1]);
|
||||
|
||||
passes = 0;
|
||||
changed = 1;
|
||||
while (changed)
|
||||
{
|
||||
changed = 0;
|
||||
for (bb = n_blocks - 1; bb >= 0; bb--)
|
||||
{
|
||||
if (bb != n_blocks - 1)
|
||||
sbitmap_intersect_of_successors (isoout[bb], isoin,
|
||||
bb, s_succs);
|
||||
changed |= sbitmap_union_of_diff (isoin[bb], latein[bb],
|
||||
isoout[bb], antloc[bb]);
|
||||
}
|
||||
passes++;
|
||||
}
|
||||
}
|
||||
|
||||
/* Compute the set of expressions which have optimal computational points
|
||||
in each basic block. This is the set of expressions that are latest, but
|
||||
that are not isolated in the block. */
|
||||
|
||||
static void
|
||||
compute_optimal (n_blocks, latein, isoout, optimal)
|
||||
int n_blocks;
|
||||
sbitmap *latein;
|
||||
sbitmap *isoout;
|
||||
sbitmap *optimal;
|
||||
{
|
||||
int bb;
|
||||
|
||||
for (bb = 0; bb < n_blocks; bb++)
|
||||
sbitmap_difference (optimal[bb], latein[bb], isoout[bb]);
|
||||
}
|
||||
|
||||
/* Compute the set of expressions that are redundant in a block. They are
|
||||
the expressions that are used in the block and that are neither isolated
|
||||
or latest. */
|
||||
|
||||
static void
|
||||
compute_redundant (n_blocks, n_exprs, antloc, latein, isoout, redundant)
|
||||
int n_blocks;
|
||||
int n_exprs;
|
||||
sbitmap *antloc;
|
||||
sbitmap *latein;
|
||||
sbitmap *isoout;
|
||||
sbitmap *redundant;
|
||||
{
|
||||
int bb;
|
||||
sbitmap temp_bitmap;
|
||||
|
||||
temp_bitmap = sbitmap_alloc (n_exprs);
|
||||
|
||||
for (bb = 0; bb < n_blocks; bb++)
|
||||
{
|
||||
sbitmap_a_or_b (temp_bitmap, latein[bb], isoout[bb]);
|
||||
sbitmap_difference (redundant[bb], antloc[bb], temp_bitmap);
|
||||
}
|
||||
free (temp_bitmap);
|
||||
}
|
||||
|
||||
/* Compute expression availability at entrance and exit of each block. */
|
||||
|
||||
static void
|
||||
compute_avinout (n_blocks, s_preds, avloc, transp, avin, avout)
|
||||
int n_blocks;
|
||||
int_list_ptr *s_preds;
|
||||
sbitmap *avloc;
|
||||
sbitmap *transp;
|
||||
sbitmap *avin;
|
||||
sbitmap *avout;
|
||||
{
|
||||
int bb, changed, passes;
|
||||
|
||||
sbitmap_zero (avin[0]);
|
||||
sbitmap_vector_ones (avout, n_blocks);
|
||||
|
||||
passes = 0;
|
||||
changed = 1;
|
||||
while (changed)
|
||||
{
|
||||
changed = 0;
|
||||
for (bb = 0; bb < n_blocks; bb++)
|
||||
{
|
||||
if (bb != 0)
|
||||
sbitmap_intersect_of_predecessors (avin[bb], avout,
|
||||
bb, s_preds);
|
||||
changed |= sbitmap_a_or_b_and_c (avout[bb], avloc[bb],
|
||||
transp[bb], avin[bb]);
|
||||
}
|
||||
passes++;
|
||||
}
|
||||
}
|
||||
|
||||
/* Compute expression latestness.
|
||||
|
||||
This is effectively the same as earliestness computed on the reverse
|
||||
flow graph. */
|
||||
|
||||
static void
|
||||
compute_fartherinout (n_blocks, n_exprs, s_succs,
|
||||
transp, avout, fartherin, fartherout)
|
||||
int n_blocks;
|
||||
int n_exprs;
|
||||
int_list_ptr *s_succs;
|
||||
sbitmap *transp;
|
||||
sbitmap *avout;
|
||||
sbitmap *fartherin;
|
||||
sbitmap *fartherout;
|
||||
{
|
||||
int bb, changed, passes;
|
||||
sbitmap temp_bitmap;
|
||||
|
||||
temp_bitmap = sbitmap_alloc (n_exprs);
|
||||
|
||||
sbitmap_vector_zero (fartherin, n_blocks);
|
||||
sbitmap_ones (fartherout[n_blocks - 1]);
|
||||
|
||||
passes = 0;
|
||||
changed = 1;
|
||||
while (changed)
|
||||
{
|
||||
changed = 0;
|
||||
for (bb = n_blocks - 1; bb >= 0; bb--)
|
||||
{
|
||||
if (bb != n_blocks - 1)
|
||||
sbitmap_union_of_successors (fartherout[bb], fartherin,
|
||||
bb, s_succs);
|
||||
sbitmap_not (temp_bitmap, transp[bb]);
|
||||
changed |= sbitmap_union_of_diff (fartherin[bb], temp_bitmap,
|
||||
fartherout[bb], avout[bb]);
|
||||
}
|
||||
passes++;
|
||||
}
|
||||
|
||||
free (temp_bitmap);
|
||||
}
|
||||
|
||||
/* Compute expression earlierness at entrance and exit of each block.
|
||||
|
||||
This is effectively the same as delayedness computed on the reverse
|
||||
flow graph. */
|
||||
|
||||
static void
|
||||
compute_earlierinout (n_blocks, n_exprs, s_succs, avloc,
|
||||
avout, fartherout, earlierin, earlierout)
|
||||
int n_blocks;
|
||||
int n_exprs;
|
||||
int_list_ptr *s_succs;
|
||||
sbitmap *avloc;
|
||||
sbitmap *avout;
|
||||
sbitmap *fartherout;
|
||||
sbitmap *earlierin;
|
||||
sbitmap *earlierout;
|
||||
{
|
||||
int bb, changed, passes;
|
||||
sbitmap *av_and_farther;
|
||||
sbitmap temp_bitmap;
|
||||
|
||||
temp_bitmap = sbitmap_alloc (n_exprs);
|
||||
|
||||
/* This is constant throughout the flow equations below, so compute
|
||||
it once to save time. */
|
||||
av_and_farther = sbitmap_vector_alloc (n_blocks, n_exprs);
|
||||
for (bb = 0; bb < n_blocks; bb++)
|
||||
sbitmap_a_and_b (av_and_farther[bb], avout[bb], fartherout[bb]);
|
||||
|
||||
sbitmap_vector_zero (earlierin, n_blocks);
|
||||
sbitmap_copy (earlierout[n_blocks - 1], av_and_farther[n_blocks - 1]);
|
||||
|
||||
passes = 0;
|
||||
changed = 1;
|
||||
while (changed)
|
||||
{
|
||||
changed = 0;
|
||||
for (bb = n_blocks - 1; bb >= 0; bb--)
|
||||
{
|
||||
if (bb != n_blocks - 1)
|
||||
{
|
||||
sbitmap_intersect_of_successors (temp_bitmap, earlierin,
|
||||
bb, s_succs);
|
||||
changed |= sbitmap_a_or_b (earlierout[bb],
|
||||
av_and_farther[bb],
|
||||
temp_bitmap);
|
||||
}
|
||||
sbitmap_not (temp_bitmap, avloc[bb]);
|
||||
changed |= sbitmap_a_and_b (earlierin[bb],
|
||||
temp_bitmap,
|
||||
earlierout[bb]);
|
||||
}
|
||||
passes++;
|
||||
}
|
||||
|
||||
/* We're done with this, so go ahead and free it's memory now instead
|
||||
of waiting until the end of pre. */
|
||||
free (av_and_farther);
|
||||
free (temp_bitmap);
|
||||
}
|
||||
|
||||
/* Compute firstness.
|
||||
|
||||
This is effectively the same as latestness computed on the reverse
|
||||
flow graph. */
|
||||
|
||||
static void
|
||||
compute_firstout (n_blocks, n_exprs, s_preds, avloc, earlierout, firstout)
|
||||
int n_blocks;
|
||||
int n_exprs;
|
||||
int_list_ptr *s_preds;
|
||||
sbitmap *avloc;
|
||||
sbitmap *earlierout;
|
||||
sbitmap *firstout;
|
||||
{
|
||||
int bb;
|
||||
sbitmap temp_bitmap;
|
||||
|
||||
temp_bitmap = sbitmap_alloc (n_exprs);
|
||||
|
||||
for (bb = 0; bb < n_blocks; bb++)
|
||||
{
|
||||
/* The first block is preceded only by the entry block; therefore,
|
||||
temp_bitmap will not be set by the following call! */
|
||||
if (bb != 0)
|
||||
{
|
||||
sbitmap_intersect_of_predecessors (temp_bitmap, earlierout,
|
||||
bb, s_preds);
|
||||
sbitmap_not (temp_bitmap, temp_bitmap);
|
||||
}
|
||||
else
|
||||
{
|
||||
sbitmap_ones (temp_bitmap);
|
||||
}
|
||||
sbitmap_a_and_b_or_c (firstout[bb], earlierout[bb],
|
||||
avloc[bb], temp_bitmap);
|
||||
}
|
||||
free (temp_bitmap);
|
||||
}
|
||||
|
||||
/* Compute reverse isolated.
|
||||
|
||||
This is effectively the same as isolatedness computed on the reverse
|
||||
flow graph. */
|
||||
|
||||
static void
|
||||
compute_rev_isoinout (n_blocks, s_preds, avloc, firstout,
|
||||
rev_isoin, rev_isoout)
|
||||
int n_blocks;
|
||||
int_list_ptr *s_preds;
|
||||
sbitmap *avloc;
|
||||
sbitmap *firstout;
|
||||
sbitmap *rev_isoin;
|
||||
sbitmap *rev_isoout;
|
||||
{
|
||||
int bb, changed, passes;
|
||||
|
||||
sbitmap_vector_zero (rev_isoout, n_blocks);
|
||||
sbitmap_zero (rev_isoin[0]);
|
||||
|
||||
passes = 0;
|
||||
changed = 1;
|
||||
while (changed)
|
||||
{
|
||||
changed = 0;
|
||||
for (bb = 0; bb < n_blocks; bb++)
|
||||
{
|
||||
if (bb != 0)
|
||||
sbitmap_intersect_of_predecessors (rev_isoin[bb], rev_isoout,
|
||||
bb, s_preds);
|
||||
changed |= sbitmap_union_of_diff (rev_isoout[bb], firstout[bb],
|
||||
rev_isoin[bb], avloc[bb]);
|
||||
}
|
||||
passes++;
|
||||
}
|
||||
}
|
Loading…
Reference in New Issue
Block a user