From 6434da253184ad038fef9a6e90c25fe33f13fad9 Mon Sep 17 00:00:00 2001 From: Richard Stallman Date: Sat, 4 Jan 1992 08:28:46 +0000 Subject: [PATCH] Initial revision From-SVN: r162 --- gcc/config/fx80/fx80.h | 1443 ++++++++++++++++++++++++++++++++++++++++ 1 file changed, 1443 insertions(+) create mode 100644 gcc/config/fx80/fx80.h diff --git a/gcc/config/fx80/fx80.h b/gcc/config/fx80/fx80.h new file mode 100644 index 00000000000..7bba5661606 --- /dev/null +++ b/gcc/config/fx80/fx80.h @@ -0,0 +1,1443 @@ +/* Definitions of target machine for GNU compiler. Alliant FX version. + Copyright (C) 1989 Free Software Foundation, Inc. + Adapted from m68k.h by Paul Petersen (petersen@uicsrd.csrd.uiuc.edu) + and Joe Weening (weening@gang-of-four.stanford.edu). + +This file is part of GNU CC. + +GNU CC is free software; you can redistribute it and/or modify +it under the terms of the GNU General Public License as published by +the Free Software Foundation; either version 2, or (at your option) +any later version. + +GNU CC is distributed in the hope that it will be useful, +but WITHOUT ANY WARRANTY; without even the implied warranty of +MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +GNU General Public License for more details. + +You should have received a copy of the GNU General Public License +along with GNU CC; see the file COPYING. If not, write to +the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */ + + +/* This file is based on m68k.h, simplified by removing support for + the Sun FPA and other things not applicable to the Alliant. Some + remnants of these features remain. */ + +/* Names to predefine in the preprocessor for this target machine. */ + +#define CPP_PREDEFINES "-Dmc68000 -Dalliant -Dunix" + +/* Print subsidiary information on the compiler version in use. */ + +#define TARGET_VERSION fprintf (stderr, " (Alliant)"); + +/* Run-time compilation parameters selecting different hardware + subsets. The Alliant IP is an mc68020. (Older mc68010-based IPs + are no longer supported.) The Alliant CE is 68020-compatible, and + also has floating point, vector and concurrency instructions. + + Although the IP doesn't have floating point, it emulates it in the + operating system. Using this generally is faster than running code + compiled with -msoft-float, because the soft-float code still uses + (simulated) FP registers and ends up emulating several fmove{s,d} + instructions per call. So I don't recommend using soft-float for + any Alliant code. -- JSW +*/ + +extern int target_flags; + +/* Macros used in the machine description to test the flags. */ + +/* Compile for a 68020 (not a 68000 or 68010). */ +#define TARGET_68020 (target_flags & 1) +/* Compile CE insns for floating point (not library calls). */ +#define TARGET_CE (target_flags & 2) +/* Compile using 68020 bitfield insns. */ +#define TARGET_BITFIELD (target_flags & 4) +/* Compile with 16-bit `int'. */ +#define TARGET_SHORT (target_flags & 040) + +/* Default 3 means compile 68020 and CE instructions. We don't use + bitfield instructions because there appears to be a bug in the + implementation of bfins on the CE. */ + +#define TARGET_DEFAULT 3 + +/* Define __HAVE_CE__ in preprocessor according to the -m flags. + This will control the use of inline FP insns in certain macros. + Also inform the program which CPU this is for. */ + +#if TARGET_DEFAULT & 02 + +/* -mce is the default */ +#define CPP_SPEC \ +"%{!msoft-float:-D__HAVE_CE__ }\ +%{m68000:-Dmc68010}%{mc68000:-Dmc68010}%{!mc68000:%{!m68000:-Dmc68020}}" + +#else + +/* -msoft-float is the default */ +#define CPP_SPEC \ +"%{mce:-D__HAVE_CE__ }\ +%{m68000:-Dmc68010}%{mc68000:-Dmc68010}%{!mc68000:%{!m68000:-Dmc68020}}" + +#endif + +/* Link with libg.a when debugging, for dbx's sake. */ + +#define LIB_SPEC "%{g:-lg} %{!p:%{!pg:-lc}}%{p:-lc_p}%{pg:-lc_p} " + +/* Make the linker remove temporary labels, since the Alliant assembler + doesn't. */ + +#define LINK_SPEC "-X" + +/* Every structure or union's size must be a multiple of 2 bytes. */ + +#define STRUCTURE_SIZE_BOUNDARY 16 + +/* This is BSD, so it wants DBX format. */ + +#define DBX_DEBUGGING_INFO + +/* Macro to define tables used to set the flags. + This is a list in braces of pairs in braces, + each pair being { "NAME", VALUE } + where VALUE is the bits to set or minus the bits to clear. + An empty string NAME is used to identify the default VALUE. */ + +#define TARGET_SWITCHES \ + { { "68020", 5}, \ + { "c68020", 5}, \ + { "bitfield", 4}, \ + { "68000", -7}, \ + { "c68000", -7}, \ + { "soft-float", -2}, \ + { "nobitfield", -4}, \ + { "short", 040}, \ + { "noshort", -040}, \ + { "", TARGET_DEFAULT}} + +/* target machine storage layout */ + +/* Define this if most significant bit is lowest numbered + in instructions that operate on numbered bit-fields. + This is true for 68020 insns such as bfins and bfexts. + We make it true always by avoiding using the single-bit insns + except in special cases with constant bit numbers. */ +#define BITS_BIG_ENDIAN 1 + +/* Define this if most significant byte of a word is the lowest numbered. */ +/* That is true on the 68000. */ +#define BYTES_BIG_ENDIAN 1 + +/* Define this if most significant word of a multiword number is the lowest + numbered. */ +/* For 68000 we can decide arbitrarily + since there are no machine instructions for them. */ +#define WORDS_BIG_ENDIAN 0 + +/* number of bits in an addressible storage unit */ +#define BITS_PER_UNIT 8 + +/* Width in bits of a "word", which is the contents of a machine register. + Note that this is not necessarily the width of data type `int'; + if using 16-bit ints on a 68000, this would still be 32. + But on a machine with 16-bit registers, this would be 16. */ +#define BITS_PER_WORD 32 + +/* Width of a word, in units (bytes). */ +#define UNITS_PER_WORD 4 + +/* Width in bits of a pointer. + See also the macro `Pmode' defined below. */ +#define POINTER_SIZE 32 + +/* Allocation boundary (in *bits*) for storing arguments in argument list. */ +#define PARM_BOUNDARY (TARGET_SHORT ? 16 : 32) + +/* Boundary (in *bits*) on which stack pointer should be aligned. */ +#define STACK_BOUNDARY 16 + +/* Allocation boundary (in *bits*) for the code of a function. */ +#define FUNCTION_BOUNDARY 16 + +/* Alignment of field after `int : 0' in a structure. */ +#define EMPTY_FIELD_BOUNDARY 16 + +/* No data type wants to be aligned rounder than this. */ +#define BIGGEST_ALIGNMENT 16 + +/* Define this if move instructions will actually fail to work + when given unaligned data. */ +#define STRICT_ALIGNMENT + +/* Define number of bits in most basic integer type. + (If undefined, default is BITS_PER_WORD). */ + +#define INT_TYPE_SIZE (TARGET_SHORT ? 16 : 32) + +/* Define these to avoid dependence on meaning of `int'. + Note that WCHAR_TYPE_SIZE is used in cexp.y, + where TARGET_SHORT is not available. */ + +#define WCHAR_TYPE "long int" +#define WCHAR_TYPE_SIZE 32 + +/* Standard register usage. */ + +/* Number of actual hardware registers. + The hardware registers are assigned numbers for the compiler + from 0 to just below FIRST_PSEUDO_REGISTER. + All registers that the compiler knows about must be given numbers, + even those that are not normally considered general registers. + For the Alliant, we give the data registers numbers 0-7, + the address registers numbers 010-017, + and the floating point registers numbers 020-027. */ +#define FIRST_PSEUDO_REGISTER 24 + +/* 1 for registers that have pervasive standard uses + and are not available for the register allocator. + On the Alliant, these are a0 (argument pointer), + a6 (frame pointer) and a7 (stack pointer). */ +#define FIXED_REGISTERS \ + {0, 0, 0, 0, 0, 0, 0, 0, \ + 1, 0, 0, 0, 0, 0, 1, 1, \ + 0, 0, 0, 0, 0, 0, 0, 0 } + +/* 1 for registers not available across function calls. + These must include the FIXED_REGISTERS and also any + registers that can be used without being saved. + The latter must include the registers where values are returned + and the register where structure-value addresses are passed. + Aside from that, you can include as many other registers as you like. + The Alliant calling sequence allows a function to use any register, + so we include them all here. */ + +#define CALL_USED_REGISTERS \ + {1, 1, 1, 1, 1, 1, 1, 1, \ + 1, 1, 1, 1, 1, 1, 1, 1, \ + 1, 1, 1, 1, 1, 1, 1, 1 } + +/* Return number of consecutive hard regs needed starting at reg REGNO + to hold something of mode MODE. + This is ordinarily the length in words of a value of mode MODE + but can be less for certain modes in special long registers. + + On the Alliant, ordinary registers hold 32 bits worth; + for the FP registers, a single register is always enough for + any floating-point value. */ +#define HARD_REGNO_NREGS(REGNO, MODE) \ + ((REGNO) >= 16 ? GET_MODE_NUNITS (MODE) \ + : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)) + +/* Value is 1 if hard register REGNO can hold a value of machine-mode MODE. + On the Alliant, the cpu registers can hold any mode but the FP registers + can hold only floating point. */ +#define HARD_REGNO_MODE_OK(REGNO, MODE) \ + ((REGNO) < 16 || GET_MODE_CLASS (MODE) == MODE_FLOAT \ + || GET_MODE_CLASS (MODE) == MODE_COMPLEX_FLOAT) + +/* Value is 1 if it is a good idea to tie two pseudo registers + when one has mode MODE1 and one has mode MODE2. + If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2, + for any hard reg, then this must be 0 for correct output. */ +#define MODES_TIEABLE_P(MODE1, MODE2) \ + (((MODE1) == SFmode || (MODE1) == DFmode \ + || (MODE1) == SCmode || (MODE1) == DCmode) \ + == ((MODE2) == SFmode || (MODE2) == DFmode \ + || (MODE2) == SCmode || (MODE2) == DCmode)) + +/* Specify the registers used for certain standard purposes. + The values of these macros are register numbers. */ + +/* m68000 pc isn't overloaded on a register. */ +/* #define PC_REGNUM */ + +/* Register to use for pushing function arguments. */ +#define STACK_POINTER_REGNUM 15 + +/* Base register for access to local variables of the function. */ +#define FRAME_POINTER_REGNUM 14 + +/* Value should be nonzero if functions must have frame pointers. + Zero means the frame pointer need not be set up (and parms + may be accessed via the stack pointer) in functions that seem suitable. + This is computed in `reload', in reload1.c. */ +/* Set for now on Alliant until we find a way to make this work with + their calling sequence. */ +#define FRAME_POINTER_REQUIRED 1 + +/* Base register for access to arguments of the function. */ +#define ARG_POINTER_REGNUM 8 + +/* Register in which static-chain is passed to a function. */ +#define STATIC_CHAIN_REGNUM 10 + +/* Register in which address to store a structure value + is passed to a function. */ +#define STRUCT_VALUE_REGNUM 9 + +/* Define the classes of registers for register constraints in the + machine description. Also define ranges of constants. + + One of the classes must always be named ALL_REGS and include all hard regs. + If there is more than one class, another class must be named NO_REGS + and contain no registers. + + The name GENERAL_REGS must be the name of a class (or an alias for + another name such as ALL_REGS). This is the class of registers + that is allowed by "g" or "r" in a register constraint. + Also, registers outside this class are allocated only when + instructions express preferences for them. + + The classes must be numbered in nondecreasing order; that is, + a larger-numbered class must never be contained completely + in a smaller-numbered class. + + For any two classes, it is very desirable that there be another + class that represents their union. */ + +/* The Alliant has three kinds of registers, so eight classes would be + a complete set. One of them is not needed. */ + +enum reg_class { NO_REGS, FP_REGS, DATA_REGS, DATA_OR_FP_REGS, + ADDR_REGS, GENERAL_REGS, ALL_REGS, LIM_REG_CLASSES }; + +#define N_REG_CLASSES (int) LIM_REG_CLASSES + +/* Give names of register classes as strings for dump file. */ + +#define REG_CLASS_NAMES \ + { "NO_REGS", "FP_REGS", "DATA_REGS", "DATA_OR_FP_REGS", \ + "ADDR_REGS", "GENERAL_REGS", "ALL_REGS" } + +/* Define which registers fit in which classes. + This is an initializer for a vector of HARD_REG_SET + of length N_REG_CLASSES. */ + +#define REG_CLASS_CONTENTS \ +{ \ + 0, /* NO_REGS */ \ + 0x00ff0000, /* FP_REGS */ \ + 0x000000ff, /* DATA_REGS */ \ + 0x00ff00ff, /* DATA_OR_FP_REGS */ \ + 0x0000ff00, /* ADDR_REGS */ \ + 0x0000ffff, /* GENERAL_REGS */ \ + 0x00ffffff /* ALL_REGS */ \ +} + +/* The same information, inverted: + Return the class number of the smallest class containing + reg number REGNO. This could be a conditional expression + or could index an array. */ + +extern enum reg_class regno_reg_class[]; +#define REGNO_REG_CLASS(REGNO) (regno_reg_class[(REGNO)>>3]) + +/* The class value for index registers, and the one for base regs. */ + +#define INDEX_REG_CLASS GENERAL_REGS +#define BASE_REG_CLASS ADDR_REGS + +/* Get reg_class from a letter such as appears in the machine description. */ + +#define REG_CLASS_FROM_LETTER(C) \ + ((C) == 'a' ? ADDR_REGS : \ + ((C) == 'd' ? DATA_REGS : \ + ((C) == 'f' ? FP_REGS : \ + NO_REGS))) + +/* The letters I, J, K, L and M in a register constraint string + can be used to stand for particular ranges of immediate operands. + This macro defines what the ranges are. + C is the letter, and VALUE is a constant value. + Return 1 if VALUE is in the range specified by C. + + For the 68000, `I' is used for the range 1 to 8 + allowed as immediate shift counts and in addq. + `J' is used for the range of signed numbers that fit in 16 bits. + `K' is for numbers that moveq can't handle. + `L' is for range -8 to -1, range of values that can be added with subq. */ + +#define CONST_OK_FOR_LETTER_P(VALUE, C) \ + ((C) == 'I' ? (VALUE) > 0 && (VALUE) <= 8 : \ + (C) == 'J' ? (VALUE) >= -0x8000 && (VALUE) <= 0x7FFF : \ + (C) == 'K' ? (VALUE) < -0x80 || (VALUE) >= 0x80 : \ + (C) == 'L' ? (VALUE) < 0 && (VALUE) >= -8 : 0) + +#define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) 0 + +/* Given an rtx X being reloaded into a reg required to be + in class CLASS, return the class of reg to actually use. + In general this is just CLASS; but on some machines + in some cases it is preferable to use a more restrictive class. + On the 68000 series, use a data reg if possible when the + value is a constant in the range where moveq could be used + and we ensure that QImodes are reloaded into data regs. */ + +#define PREFERRED_RELOAD_CLASS(X,CLASS) \ + ((GET_CODE (X) == CONST_INT \ + && (unsigned) (INTVAL (X) + 0x80) < 0x100 \ + && (CLASS) != ADDR_REGS) \ + ? DATA_REGS \ + : GET_MODE (X) == QImode \ + ? DATA_REGS \ + : (CLASS)) + +/* Return the maximum number of consecutive registers + needed to represent mode MODE in a register of class CLASS. */ +/* On the 68000, this is the size of MODE in words, + except in the FP regs, where a single reg is always enough. */ +#define CLASS_MAX_NREGS(CLASS, MODE) \ + ((CLASS) == FP_REGS ? 1 \ + : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)) + +/* Moves between fp regs and other regs are two insns. */ +#define REGISTER_MOVE_COST(CLASS1, CLASS2) \ + ((((CLASS1) == FP_REGS && (CLASS2) != FP_REGS) \ + || ((CLASS2) == FP_REGS && (CLASS1) != FP_REGS)) \ + ? 4 : 2) + +/* Stack layout; function entry, exit and calling. */ + +/* Define this if pushing a word on the stack + makes the stack pointer a smaller address. */ +#define STACK_GROWS_DOWNWARD + +/* Define this if the nominal address of the stack frame + is at the high-address end of the local variables; + that is, each additional local variable allocated + goes at a more negative offset in the frame. */ +#define FRAME_GROWS_DOWNWARD + +/* The Alliant uses -fcaller-saves by default. */ +#define DEFAULT_CALLER_SAVES + +/* Offset within stack frame to start allocating local variables at. + If FRAME_GROWS_DOWNWARD, this is the offset to the END of the + first local allocated. Otherwise, it is the offset to the BEGINNING + of the first local allocated. */ +#define STARTING_FRAME_OFFSET -4 + +/* If we generate an insn to push BYTES bytes, + this says how many the stack pointer really advances by. + On the 68000, sp@- in a byte insn really pushes a word. */ +#define PUSH_ROUNDING(BYTES) (((BYTES) + 1) & ~1) + +/* Offset of first parameter from the argument pointer register value. */ +#define FIRST_PARM_OFFSET(FNDECL) 0 + +/* Value is the number of bytes of arguments automatically + popped when returning from a subroutine call. + FUNTYPE is the data type of the function (as a tree), + or for a library call it is an identifier node for the subroutine name. + SIZE is the number of bytes of arguments passed on the stack. + + On the Alliant we define this as SIZE and make the calling sequence + (in alliant.md) pop the args. This wouldn't be necessary if we + could add to the pending stack adjustment the size of the argument + descriptors that are pushed after the arguments. */ + +#define RETURN_POPS_ARGS(FUNTYPE,SIZE) (SIZE) + +/* Define how to find the value returned by a function. + VALTYPE is the data type of the value (as a tree). + If the precise function being called is known, FUNC is its FUNCTION_DECL; + otherwise, FUNC is 0. */ + +/* On the Alliant the return value is in FP0 if real, else D0. */ + +#define FUNCTION_VALUE(VALTYPE, FUNC) \ + (TREE_CODE (VALTYPE) == REAL_TYPE \ + ? gen_rtx (REG, TYPE_MODE (VALTYPE), 16) \ + : gen_rtx (REG, TYPE_MODE (VALTYPE), 0)) + +/* Define how to find the value returned by a library function + assuming the value has mode MODE. */ + +/* On the Alliant the return value is in FP0 if real, else D0. The + Alliant library functions for floating-point emulation return their + values both in FP0 and in D0/D1. But since not all libgcc functions + return the results of these directly, we cannot assume that D0/D1 + contain the values we expect on return from a libgcc function. */ + +#define LIBCALL_VALUE(MODE) \ + (((MODE) == DFmode || (MODE) == SFmode) \ + ? gen_rtx (REG, MODE, 16) \ + : gen_rtx (REG, MODE, 0)) + +/* 1 if N is a possible register number for a function value. + On the Alliant, D0 and FP0 are the only registers thus used. + (No need to mention D1 when used as a pair with D0.) */ + +#define FUNCTION_VALUE_REGNO_P(N) (((N) & ~16) == 0) + +/* Define this if PCC uses the nonreentrant convention for returning + structure and union values. */ + +#define PCC_STATIC_STRUCT_RETURN + +/* 1 if N is a possible register number for function argument passing. + On the Alliant, no registers are used in this way. */ + +#define FUNCTION_ARG_REGNO_P(N) 0 + +/* Define a data type for recording info about an argument list + during the scan of that argument list. This data type should + hold all necessary information about the function itself + and about the args processed so far, enough to enable macros + such as FUNCTION_ARG to determine where the next arg should go. + + On the Alliant, this is a single integer, which is a number of bytes + of arguments scanned so far. */ + +#define CUMULATIVE_ARGS int + +/* Initialize a variable CUM of type CUMULATIVE_ARGS + for a call to a function whose data type is FNTYPE. + For a library call, FNTYPE is 0. + + On the Alliant, the offset starts at 0. */ + +#define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME) \ + ((CUM) = 0) + +/* Update the data in CUM to advance over an argument + of mode MODE and data type TYPE. + (TYPE is null for libcalls where that information may not be available.) */ + +#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \ + ((CUM) += ((MODE) != BLKmode \ + ? (GET_MODE_SIZE (MODE) + 3) & ~3 \ + : (int_size_in_bytes (TYPE) + 3) & ~3)) + +/* Define where to put the arguments to a function. + Value is zero to push the argument on the stack, + or a hard register in which to store the argument. + + MODE is the argument's machine mode. + TYPE is the data type of the argument (as a tree). + This is null for libcalls where that information may + not be available. + CUM is a variable of type CUMULATIVE_ARGS which gives info about + the preceding args and about the function being called. + NAMED is nonzero if this argument is a named parameter + (otherwise it is an extra parameter matching an ellipsis). */ + +/* On the Alliant all args are pushed. */ + +#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) 0 + +/* For an arg passed partly in registers and partly in memory, + this is the number of registers used. + For args passed entirely in registers or entirely in memory, zero. */ + +#define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) 0 + +/* This macro generates the assembly code for function entry. + FILE is a stdio stream to output the code to. + SIZE is an int: how many units of temporary storage to allocate. + Refer to the array `regs_ever_live' to determine which registers + to save; `regs_ever_live[I]' is nonzero if register number I + is ever used in the function. This macro is responsible for + knowing which registers should not be saved even if used. + The Alliant uses caller-saves, so this macro is very simple. */ + +#define FUNCTION_PROLOGUE(FILE, SIZE) \ +{ int fsize = ((SIZE) - STARTING_FRAME_OFFSET + 3) & -4; \ + if (frame_pointer_needed) \ + { \ + if (fsize < 0x8000) \ + fprintf(FILE,"\tlinkw a6,#%d\n", -fsize); \ + else if (TARGET_68020) \ + fprintf(FILE,"\tlinkl a6,#%d\n", -fsize); \ + else \ + fprintf(FILE,"\tlinkw a6,#0\n\tsubl #%d,sp\n", fsize); \ + fprintf(FILE, "\tmovl a0,a6@(-4)\n" ); }} + +/* Output assembler code to FILE to increment profiler label # LABELNO + for profiling a function entry. */ + +#define FUNCTION_PROFILER(FILE, LABELNO) \ + fprintf (FILE, "\tjbsr __mcount_\n") + +/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function, + the stack pointer does not matter. The value is tested only in + functions that have frame pointers. + No definition is equivalent to always zero. */ + +#define EXIT_IGNORE_STACK 1 + +/* This macro generates the assembly code for function exit, + on machines that need it. If FUNCTION_EPILOGUE is not defined + then individual return instructions are generated for each + return statement. Args are same as for FUNCTION_PROLOGUE. + + The function epilogue should not depend on the current stack pointer! + It should use the frame pointer only. This is mandatory because + of alloca; we also take advantage of it to omit stack adjustments + before returning. */ + +#define FUNCTION_EPILOGUE(FILE, SIZE) \ +{ if (frame_pointer_needed) \ + fprintf (FILE, "\tunlk a6\n"); \ + fprintf (FILE, "\trts\n"); } + +/* Store in the variable DEPTH the initial difference between the + frame pointer reg contents and the stack pointer reg contents, + as of the start of the function body. This depends on the layout + of the fixed parts of the stack frame and on how registers are saved. */ + +#define INITIAL_FRAME_POINTER_OFFSET(DEPTH) \ +{ \ + int regno; \ + int offset = -4; \ + for (regno = 16; regno < FIRST_PSEUDO_REGISTER; regno++) \ + if (regs_ever_live[regno] && ! call_used_regs[regno]) \ + offset += 12; \ + for (regno = 0; regno < 16; regno++) \ + if (regs_ever_live[regno] && ! call_used_regs[regno]) \ + offset += 4; \ + (DEPTH) = offset - ((get_frame_size () + 3) & -4); \ +} + +/* Addressing modes, and classification of registers for them. */ + +#define HAVE_POST_INCREMENT +/* #define HAVE_POST_DECREMENT */ + +#define HAVE_PRE_DECREMENT +/* #define HAVE_PRE_INCREMENT */ + +/* Macros to check register numbers against specific register classes. */ + +/* These assume that REGNO is a hard or pseudo reg number. + They give nonzero only if REGNO is a hard reg of the suitable class + or a pseudo reg currently allocated to a suitable hard reg. + Since they use reg_renumber, they are safe only once reg_renumber + has been allocated, which happens in local-alloc.c. */ + +#define REGNO_OK_FOR_INDEX_P(REGNO) \ +((REGNO) < 16 || (unsigned) reg_renumber[REGNO] < 16) +#define REGNO_OK_FOR_BASE_P(REGNO) \ +(((REGNO) ^ 010) < 8 || (unsigned) (reg_renumber[REGNO] ^ 010) < 8) +#define REGNO_OK_FOR_DATA_P(REGNO) \ +((REGNO) < 8 || (unsigned) reg_renumber[REGNO] < 8) +#define REGNO_OK_FOR_FP_P(REGNO) \ +(((REGNO) ^ 020) < 8 || (unsigned) (reg_renumber[REGNO] ^ 020) < 8) + +/* Now macros that check whether X is a register and also, + strictly, whether it is in a specified class. + + These macros are specific to the 68000, and may be used only + in code for printing assembler insns and in conditions for + define_optimization. */ + +/* 1 if X is a data register. */ + +#define DATA_REG_P(X) (REG_P (X) && REGNO_OK_FOR_DATA_P (REGNO (X))) + +/* 1 if X is an fp register. */ + +#define FP_REG_P(X) (REG_P (X) && REGNO_OK_FOR_FP_P (REGNO (X))) + +/* 1 if X is an address register */ + +#define ADDRESS_REG_P(X) (REG_P (X) && REGNO_OK_FOR_BASE_P (REGNO (X))) + +/* Maximum number of registers that can appear in a valid memory address. */ + +#define MAX_REGS_PER_ADDRESS 2 + +/* Recognize any constant value that is a valid address. */ + +#define CONSTANT_ADDRESS_P(X) CONSTANT_P (X) + +/* Nonzero if the constant value X is a legitimate general operand. + It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE. */ + +/* Alliant FP instructions don't take immediate operands, so this + forces them into memory. */ +#define LEGITIMATE_CONSTANT_P(X) (GET_CODE (X) != CONST_DOUBLE) + +/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx + and check its validity for a certain class. + We have two alternate definitions for each of them. + The usual definition accepts all pseudo regs; the other rejects + them unless they have been allocated suitable hard regs. + The symbol REG_OK_STRICT causes the latter definition to be used. + + Most source files want to accept pseudo regs in the hope that + they will get allocated to the class that the insn wants them to be in. + Source files for reload pass need to be strict. + After reload, it makes no difference, since pseudo regs have + been eliminated by then. */ + +#ifndef REG_OK_STRICT + +/* Nonzero if X is a hard reg that can be used as an index + or if it is a pseudo reg. */ +#define REG_OK_FOR_INDEX_P(X) ((REGNO (X) ^ 020) >= 8) +/* Nonzero if X is a hard reg that can be used as a base reg + or if it is a pseudo reg. */ +#define REG_OK_FOR_BASE_P(X) ((REGNO (X) & ~027) != 0) + +#else + +/* Nonzero if X is a hard reg that can be used as an index. */ +#define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X)) +/* Nonzero if X is a hard reg that can be used as a base reg. */ +#define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X)) + +#endif + +/* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression + that is a valid memory address for an instruction. + The MODE argument is the machine mode for the MEM expression + that wants to use this address. + + The other macros defined here are used only in GO_IF_LEGITIMATE_ADDRESS. */ + +#define INDIRECTABLE_1_ADDRESS_P(X) \ + (CONSTANT_ADDRESS_P (X) \ + || (GET_CODE (X) == REG && REG_OK_FOR_BASE_P (X)) \ + || ((GET_CODE (X) == PRE_DEC || GET_CODE (X) == POST_INC) \ + && REG_P (XEXP (X, 0)) \ + && REG_OK_FOR_BASE_P (XEXP (X, 0))) \ + || (GET_CODE (X) == PLUS \ + && REG_P (XEXP (X, 0)) && REG_OK_FOR_BASE_P (XEXP (X, 0)) \ + && GET_CODE (XEXP (X, 1)) == CONST_INT \ + && ((unsigned) INTVAL (XEXP (X, 1)) + 0x8000) < 0x10000)) + +#define GO_IF_NONINDEXED_ADDRESS(X, ADDR) \ +{ if (INDIRECTABLE_1_ADDRESS_P (X)) goto ADDR; } + +#define GO_IF_INDEXABLE_BASE(X, ADDR) \ +{ if (GET_CODE (X) == LABEL_REF) goto ADDR; \ + if (GET_CODE (X) == REG && REG_OK_FOR_BASE_P (X)) goto ADDR; } + +#define GO_IF_INDEXING(X, ADDR) \ +{ if (GET_CODE (X) == PLUS && LEGITIMATE_INDEX_P (XEXP (X, 0))) \ + { GO_IF_INDEXABLE_BASE (XEXP (X, 1), ADDR); } \ + if (GET_CODE (X) == PLUS && LEGITIMATE_INDEX_P (XEXP (X, 1))) \ + { GO_IF_INDEXABLE_BASE (XEXP (X, 0), ADDR); } } + +#define GO_IF_INDEXED_ADDRESS(X, ADDR) \ +{ GO_IF_INDEXING (X, ADDR); \ + if (GET_CODE (X) == PLUS) \ + { if (GET_CODE (XEXP (X, 1)) == CONST_INT \ + && (unsigned) INTVAL (XEXP (X, 1)) + 0x80 < 0x100) \ + { rtx go_temp = XEXP (X, 0); GO_IF_INDEXING (go_temp, ADDR); } \ + if (GET_CODE (XEXP (X, 0)) == CONST_INT \ + && (unsigned) INTVAL (XEXP (X, 0)) + 0x80 < 0x100) \ + { rtx go_temp = XEXP (X, 1); GO_IF_INDEXING (go_temp, ADDR); } } } + +#define LEGITIMATE_INDEX_REG_P(X) \ + ((GET_CODE (X) == REG && REG_OK_FOR_INDEX_P (X)) \ + || (GET_CODE (X) == SIGN_EXTEND \ + && GET_CODE (XEXP (X, 0)) == REG \ + && GET_MODE (XEXP (X, 0)) == HImode \ + && REG_OK_FOR_INDEX_P (XEXP (X, 0)))) + +#define LEGITIMATE_INDEX_P(X) \ + (LEGITIMATE_INDEX_REG_P (X) \ + || (TARGET_68020 && GET_CODE (X) == MULT \ + && LEGITIMATE_INDEX_REG_P (XEXP (X, 0)) \ + && GET_CODE (XEXP (X, 1)) == CONST_INT \ + && (INTVAL (XEXP (X, 1)) == 2 \ + || INTVAL (XEXP (X, 1)) == 4 \ + || INTVAL (XEXP (X, 1)) == 8))) + +#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \ +{ GO_IF_NONINDEXED_ADDRESS (X, ADDR); \ + GO_IF_INDEXED_ADDRESS (X, ADDR); } + +/* Try machine-dependent ways of modifying an illegitimate address + to be legitimate. If we find one, return the new, valid address. + This macro is used in only one place: `memory_address' in explow.c. + + OLDX is the address as it was before break_out_memory_refs was called. + In some cases it is useful to look at this to decide what needs to be done. + + MODE and WIN are passed so that this macro can use + GO_IF_LEGITIMATE_ADDRESS. + + It is always safe for this macro to do nothing. It exists to recognize + opportunities to optimize the output. + + For the 68000, we handle X+REG by loading X into a register R and + using R+REG. R will go in an address reg and indexing will be used. + However, if REG is a broken-out memory address or multiplication, + nothing needs to be done because REG can certainly go in an address reg. */ + +#define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) \ +{ register int ch = (X) != (OLDX); \ + if (GET_CODE (X) == PLUS) \ + { if (GET_CODE (XEXP (X, 0)) == MULT) \ + ch = 1, XEXP (X, 0) = force_operand (XEXP (X, 0), 0); \ + if (GET_CODE (XEXP (X, 1)) == MULT) \ + ch = 1, XEXP (X, 1) = force_operand (XEXP (X, 1), 0); \ + if (ch && GET_CODE (XEXP (X, 1)) == REG \ + && GET_CODE (XEXP (X, 0)) == REG) \ + goto WIN; \ + if (ch) { GO_IF_LEGITIMATE_ADDRESS (MODE, X, WIN); } \ + if (GET_CODE (XEXP (X, 0)) == REG \ + || (GET_CODE (XEXP (X, 0)) == SIGN_EXTEND \ + && GET_CODE (XEXP (XEXP (X, 0), 0)) == REG \ + && GET_MODE (XEXP (XEXP (X, 0), 0)) == HImode)) \ + { register rtx temp = gen_reg_rtx (Pmode); \ + register rtx val = force_operand (XEXP (X, 1), 0); \ + emit_move_insn (temp, val); \ + XEXP (X, 1) = temp; \ + goto WIN; } \ + else if (GET_CODE (XEXP (X, 1)) == REG \ + || (GET_CODE (XEXP (X, 1)) == SIGN_EXTEND \ + && GET_CODE (XEXP (XEXP (X, 1), 0)) == REG \ + && GET_MODE (XEXP (XEXP (X, 1), 0)) == HImode)) \ + { register rtx temp = gen_reg_rtx (Pmode); \ + register rtx val = force_operand (XEXP (X, 0), 0); \ + emit_move_insn (temp, val); \ + XEXP (X, 0) = temp; \ + goto WIN; }}} + +/* Go to LABEL if ADDR (a legitimate address expression) + has an effect that depends on the machine mode it is used for. + On the 68000, only predecrement and postincrement address depend thus + (the amount of decrement or increment being the length of the operand). */ + +#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) \ + if (GET_CODE (ADDR) == POST_INC || GET_CODE (ADDR) == PRE_DEC) goto LABEL + +/* Specify the machine mode that this machine uses + for the index in the tablejump instruction. */ +#define CASE_VECTOR_MODE HImode + +/* Define this if the tablejump instruction expects the table + to contain offsets from the address of the table. + Do not define this if the table should contain absolute addresses. */ +#define CASE_VECTOR_PC_RELATIVE + +/* Specify the tree operation to be used to convert reals to integers. */ +#define IMPLICIT_FIX_EXPR FIX_ROUND_EXPR + +/* This is the kind of divide that is easiest to do in the general case. */ +#define EASY_DIV_EXPR TRUNC_DIV_EXPR + +/* Define this as 1 if `char' should by default be signed; else as 0. */ +#define DEFAULT_SIGNED_CHAR 1 + +/* Max number of bytes we can move from memory to memory + in one reasonably fast instruction. */ +#define MOVE_MAX 4 + +/* Define this if zero-extension is slow (more than one real instruction). */ +#define SLOW_ZERO_EXTEND + +/* Nonzero if access to memory by bytes is slow and undesirable. */ +#define SLOW_BYTE_ACCESS 0 + +/* Define if shifts truncate the shift count + which implies one can omit a sign-extension or zero-extension + of a shift count. */ +#define SHIFT_COUNT_TRUNCATED + +/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits + is done just by pretending it is already truncated. */ +#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1 + +/* We assume that the store-condition-codes instructions store 0 for false + and some other value for true. This is the value stored for true. */ + +#define STORE_FLAG_VALUE -1 + +/* When a prototype says `char' or `short', really pass an `int'. */ +#define PROMOTE_PROTOTYPES + +/* Specify the machine mode that pointers have. + After generation of rtl, the compiler makes no further distinction + between pointers and any other objects of this machine mode. */ +#define Pmode SImode + +/* A function address in a call instruction + is a byte address (for indexing purposes) + so give the MEM rtx a byte's mode. */ +#define FUNCTION_MODE QImode + +/* Compute the cost of computing a constant rtl expression RTX + whose rtx-code is CODE. The body of this macro is a portion + of a switch statement. If the code is computed here, + return it with a return statement. Otherwise, break from the switch. */ + +#define CONST_COSTS(RTX,CODE) \ + case CONST_INT: \ + /* Constant zero is super cheap due to clr instruction. */ \ + if (RTX == const0_rtx) return 0; \ + if ((unsigned) INTVAL (RTX) < 077) return 1; \ + case CONST: \ + case LABEL_REF: \ + case SYMBOL_REF: \ + return 3; \ + case CONST_DOUBLE: \ + return 5; + +/* Check a `double' value for validity for a particular machine mode. + This is defined to avoid crashes outputting certain constants. */ + +#define CHECK_FLOAT_VALUE(mode, d) \ + if ((mode) == SFmode) \ + { \ + if ((d) > 3.4028234663852890e+38) \ + { warning ("magnitude of value too large for `float'"); \ + (d) = 3.4028234663852890e+38; } \ + else if ((d) < -3.4028234663852890e+38) \ + { warning ("magnitude of value too large for `float'"); \ + (d) = -3.4028234663852890e+38; } \ + else if (((d) > 0) && ((d) < 1.1754943508222873e-38)) \ + (d) = 0.0; \ + else if (((d) < 0) && ((d) > -1.1754943508222873e-38)) \ + (d) = 0.0; \ + } + +/* Tell final.c how to eliminate redundant test instructions. */ + +/* Here we define machine-dependent flags and fields in cc_status + (see `conditions.h'). */ + +/* On the Alliant, floating-point instructions do not modify the + ordinary CC register. Only fcmp and ftest instructions modify the + floating-point CC register. We should actually keep track of what + both kinds of CC registers contain, but for now we only consider + the most recent instruction that has set either register. */ + +/* Set if the cc value came from a floating point test, so a floating + point conditional branch must be output. */ +#define CC_IN_FP 04000 + +/* Store in cc_status the expressions + that the condition codes will describe + after execution of an instruction whose pattern is EXP. + Do not alter them if the instruction would not alter the cc's. */ + +/* On the 68000, all the insns to store in an address register + fail to set the cc's. However, in some cases these instructions + can make it possibly invalid to use the saved cc's. In those + cases we clear out some or all of the saved cc's so they won't be used. */ + +#define NOTICE_UPDATE_CC(EXP, INSN) \ +{ \ + if (GET_CODE (EXP) == SET) \ + { if (ADDRESS_REG_P (SET_DEST (EXP)) || FP_REG_P (SET_DEST (EXP))) \ + { if (cc_status.value1 \ + && reg_overlap_mentioned_p (SET_DEST (EXP), cc_status.value1)) \ + cc_status.value1 = 0; \ + if (cc_status.value2 \ + && reg_overlap_mentioned_p (SET_DEST (EXP), cc_status.value2)) \ + cc_status.value2 = 0; } \ + else if (GET_CODE (SET_SRC (EXP)) == MOD \ + || GET_CODE (SET_SRC (EXP)) == UMOD \ + || (GET_CODE (SET_SRC (EXP)) == TRUNCATE \ + && (GET_CODE (XEXP (SET_SRC (EXP))) == MOD \ + || GET_CODE (XEXP (SET_SRC (EXP))) == UMOD))) \ + /* The swap insn produces cc's that don't correspond to the \ + result. */ \ + CC_STATUS_INIT; \ + else if (SET_DEST (EXP) != cc0_rtx \ + && (FP_REG_P (SET_SRC (EXP)) \ + || GET_CODE (SET_SRC (EXP)) == FIX \ + || GET_CODE (SET_SRC (EXP)) == FLOAT_TRUNCATE \ + || GET_CODE (SET_SRC (EXP)) == FLOAT_EXTEND)) \ + { CC_STATUS_INIT; } \ + /* A pair of move insns doesn't produce a useful overall cc. */ \ + else if (!FP_REG_P (SET_DEST (EXP)) \ + && !FP_REG_P (SET_SRC (EXP)) \ + && GET_MODE_SIZE (GET_MODE (SET_SRC (EXP))) > 4 \ + && (GET_CODE (SET_SRC (EXP)) == REG \ + || GET_CODE (SET_SRC (EXP)) == MEM \ + || GET_CODE (SET_SRC (EXP)) == CONST_DOUBLE))\ + { CC_STATUS_INIT; } \ + else if (GET_CODE (SET_SRC (EXP)) == CALL) \ + { CC_STATUS_INIT; } \ + else if (XEXP (EXP, 0) != pc_rtx) \ + { cc_status.flags = 0; \ + cc_status.value1 = XEXP (EXP, 0); \ + cc_status.value2 = XEXP (EXP, 1); } } \ + else if (GET_CODE (EXP) == PARALLEL \ + && GET_CODE (XVECEXP (EXP, 0, 0)) == SET) \ + { \ + if (ADDRESS_REG_P (XEXP (XVECEXP (EXP, 0, 0), 0))) \ + CC_STATUS_INIT; \ + else if (XEXP (XVECEXP (EXP, 0, 0), 0) != pc_rtx) \ + { cc_status.flags = 0; \ + cc_status.value1 = XEXP (XVECEXP (EXP, 0, 0), 0); \ + cc_status.value2 = XEXP (XVECEXP (EXP, 0, 0), 1); } } \ + else CC_STATUS_INIT; \ + if (cc_status.value2 != 0 \ + && ADDRESS_REG_P (cc_status.value2) \ + && GET_MODE (cc_status.value2) == QImode) \ + CC_STATUS_INIT; \ + if (cc_status.value2 != 0) \ + switch (GET_CODE (cc_status.value2)) \ + { case PLUS: case MINUS: case MULT: \ + case DIV: case UDIV: case MOD: case UMOD: case NEG: \ + case ASHIFT: case LSHIFT: case ASHIFTRT: case LSHIFTRT: \ + case ROTATE: case ROTATERT: \ + if (GET_MODE (cc_status.value2) != VOIDmode) \ + cc_status.flags |= CC_NO_OVERFLOW; \ + break; \ + case ZERO_EXTEND: \ + /* (SET r1 (ZERO_EXTEND r2)) on this machine + ends with a move insn moving r2 in r2's mode. + Thus, the cc's are set for r2. + This can set N bit spuriously. */ \ + cc_status.flags |= CC_NOT_NEGATIVE; } \ + if (cc_status.value1 && GET_CODE (cc_status.value1) == REG \ + && cc_status.value2 \ + && reg_overlap_mentioned_p (cc_status.value1, cc_status.value2)) \ + cc_status.value2 = 0; \ + if ((cc_status.value1 && FP_REG_P (cc_status.value1)) \ + || (cc_status.value2 && FP_REG_P (cc_status.value2))) \ + cc_status.flags = CC_IN_FP; } + +#define OUTPUT_JUMP(NORMAL, FLOAT, NO_OV) \ +{ if (cc_prev_status.flags & CC_IN_FP) \ + return FLOAT; \ + if (cc_prev_status.flags & CC_NO_OVERFLOW) \ + return NO_OV; \ + return NORMAL; } + +/* Control the assembler format that we output. */ + +/* Output at beginning of assembler file. */ + +#define ASM_FILE_START(FILE) \ + fprintf (FILE, "#NO_APP\n"); + +/* Output to assembler file text saying following lines + may contain character constants, extra white space, comments, etc. */ + +#define ASM_APP_ON "#APP\n" + +/* Output to assembler file text saying following lines + no longer contain unusual constructs. */ + +#define ASM_APP_OFF "#NO_APP\n" + +/* Output before read-only data. */ + +#define TEXT_SECTION_ASM_OP "\t.text" + +/* Output before writable data. */ + +#define DATA_SECTION_ASM_OP "\t.data" + +/* How to refer to registers in assembler output. + This sequence is indexed by compiler's hard-register-number (see above). */ + +#define REGISTER_NAMES \ +{"d0", "d1", "d2", "d3", "d4", "d5", "d6", "d7", \ + "a0", "a1", "a2", "a3", "a4", "a5", "a6", "sp", \ + "fp0", "fp1", "fp2", "fp3", "fp4", "fp5", "fp6", "fp7" } + +/* How to renumber registers for dbx and gdb. + On the Sun-3, the floating point registers have numbers + 18 to 25, not 16 to 23 as they do in the compiler. */ +/* (On the Alliant, dbx isn't working yet at all. */ + +#define DBX_REGISTER_NUMBER(REGNO) ((REGNO) < 16 ? (REGNO) : (REGNO) + 2) + +/* This is how to output the definition of a user-level label named NAME, + such as the label on a static function or variable NAME. */ + +#define ASM_OUTPUT_LABEL(FILE,NAME) \ + do { assemble_name (FILE, NAME); fputs (":\n", FILE); } while (0) + +/* This is how to output a command to make the user-level label named NAME + defined for reference from other files. */ + +#define ASM_GLOBALIZE_LABEL(FILE,NAME) \ + do { fputs ("\t.globl ", FILE); assemble_name (FILE, NAME); fputs ("\n", FILE);} while (0) + +/* This is how to output a reference to a user-level label named NAME. + `assemble_name' uses this. */ + +#define ASM_OUTPUT_LABELREF(FILE,NAME) \ + fprintf (FILE, "_%s", NAME) + +/* This is how to output an internal numbered label where + PREFIX is the class of label and NUM is the number within the class. */ + +#define ASM_OUTPUT_INTERNAL_LABEL(FILE,PREFIX,NUM) \ + fprintf (FILE, "%s%d:\n", PREFIX, NUM) + +/* This is how to store into the string LABEL + the symbol_ref name of an internal numbered label where + PREFIX is the class of label and NUM is the number within the class. + This is suitable for output with `assemble_name'. */ + +#define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \ + sprintf (LABEL, "*%s%d", PREFIX, NUM) + +/* This is how to output an assembler line defining a `double' constant. */ + +#define ASM_OUTPUT_DOUBLE(FILE,VALUE) \ +do { union { double d; long v[2];} tem; \ + tem.d = (VALUE); \ + fprintf (FILE, "\t.long 0x%x,0x%x\n", tem.v[0], tem.v[1]); \ + } while (0) + +/* This is how to output an assembler line defining a `float' constant. */ + +#define ASM_OUTPUT_FLOAT(FILE,VALUE) \ +do { union { float f; long l;} tem; \ + tem.f = (VALUE); \ + fprintf (FILE, "\t.long 0x%x\n", tem.l); \ + } while (0) + +/* This is how to output an assembler line defining an `int' constant. */ + +#define ASM_OUTPUT_INT(FILE,VALUE) \ +( fprintf (FILE, "\t.long "), \ + output_addr_const (FILE, (VALUE)), \ + fprintf (FILE, "\n")) + +/* Likewise for `char' and `short' constants. */ + +#define ASM_OUTPUT_SHORT(FILE,VALUE) \ +( fprintf (FILE, "\t.word "), \ + output_addr_const (FILE, (VALUE)), \ + fprintf (FILE, "\n")) + +#define ASM_OUTPUT_CHAR(FILE,VALUE) \ +( fprintf (FILE, "\t.byte "), \ + output_addr_const (FILE, (VALUE)), \ + fprintf (FILE, "\n")) + +#define ASM_OUTPUT_ASCII(FILE,PTR,SIZE) \ +{ int i; unsigned char *pp = (unsigned char *) (PTR); \ + fprintf((FILE), "\t.byte %d", (unsigned int)*pp++); \ + for (i = 1; i < (SIZE); ++i, ++pp) { \ + if ((i % 8) == 0) \ + fprintf((FILE), "\n\t.byte %d", (unsigned int) *pp); \ + else \ + fprintf((FILE), ",%d", (unsigned int) *pp); } \ + fprintf ((FILE), "\n"); } + +/* This is how to output an assembler line for a numeric constant byte. */ + +#define ASM_OUTPUT_BYTE(FILE,VALUE) \ + fprintf (FILE, "\t.byte 0x%x\n", (VALUE)) + +/* This is how to output an insn to push a register on the stack. + It need not be very fast code. */ + +#define ASM_OUTPUT_REG_PUSH(FILE,REGNO) \ + fprintf (FILE, "\tmovl %s,sp@-\n", reg_names[REGNO]) + +/* This is how to output an insn to pop a register from the stack. + It need not be very fast code. */ + +#define ASM_OUTPUT_REG_POP(FILE,REGNO) \ + fprintf (FILE, "\tmovl sp@+,%s\n", reg_names[REGNO]) + +/* This is how to output an element of a case-vector that is absolute. + (The 68000 does not use such vectors, + but we must define this macro anyway.) */ + +#define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \ + fprintf (FILE, "\t.long L%d\n", VALUE) + +/* This is how to output an element of a case-vector that is relative. */ + +#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, VALUE, REL) \ + fprintf (FILE, "\t.word L%d-L%d\n", VALUE, REL) + +/* This is how to output an assembler line + that says to advance the location counter + to a multiple of 2**LOG bytes. */ + +#define ASM_OUTPUT_ALIGN(FILE,LOG) \ + if ((LOG) == 1) \ + fprintf (FILE, "\t.even\n"); \ + else if ((LOG) != 0) \ + fprintf (FILE, "\t.align %dn", (LOG)); + +#define ASM_OUTPUT_SKIP(FILE,SIZE) \ + fprintf (FILE, "\t. = . + %u\n", (SIZE)) + +/* This says how to output an assembler line + to define a global common symbol. */ + +#define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED) \ +( fputs ("\t.comm ", (FILE)), \ + assemble_name ((FILE), (NAME)), \ + fprintf ((FILE), ",%u\n", (ROUNDED))) + +/* This says how to output an assembler line + to define a local common symbol. */ + +#define ASM_OUTPUT_LOCAL(FILE, NAME, SIZE, ROUNDED) \ +( fputs ("\t.lcomm ", (FILE)), \ + assemble_name ((FILE), (NAME)), \ + fprintf ((FILE), ",%u\n", (ROUNDED))) + +/* Store in OUTPUT a string (made with alloca) containing + an assembler-name for a local static variable named NAME. + LABELNO is an integer which is different for each call. */ + +#define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \ +( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \ + sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO))) + +/* Define the parentheses used to group arithmetic operations + in assembler code. */ + +#define ASM_OPEN_PAREN "(" +#define ASM_CLOSE_PAREN ")" + +/* Define results of standard character escape sequences. */ +#define TARGET_BELL 007 +#define TARGET_BS 010 +#define TARGET_TAB 011 +#define TARGET_NEWLINE 012 +#define TARGET_VT 013 +#define TARGET_FF 014 +#define TARGET_CR 015 + +/* Print operand X (an rtx) in assembler syntax to file FILE. + CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified. + For `%' followed by punctuation, CODE is the punctuation and X is null. + + On the Alliant, we use several CODE characters: + '.' for dot needed in Motorola-style opcode names. + '-' for an operand pushing on the stack: + sp@-, -(sp) or -(%sp) depending on the style of syntax. + '+' for an operand pushing on the stack: + sp@+, (sp)+ or (%sp)+ depending on the style of syntax. + '@' for a reference to the top word on the stack: + sp@, (sp) or (%sp) depending on the style of syntax. + '#' for an immediate operand prefix (# in MIT and Motorola syntax + but & in SGS syntax). + '!' for the cc register (used in an `and to cc' insn). + + 'b' for byte insn (no effect, on the Sun; this is for the ISI). + 'd' to force memory addressing to be absolute, not relative. + 'f' for float insn (print a CONST_DOUBLE as a float rather than in hex) + 'x' for float insn (print a CONST_DOUBLE as a float rather than in hex), + or print pair of registers as rx:ry. */ + +#define PRINT_OPERAND_PUNCT_VALID_P(CODE) \ + ((CODE) == '.' || (CODE) == '#' || (CODE) == '-' \ + || (CODE) == '+' || (CODE) == '@' || (CODE) == '!') + +#define PRINT_OPERAND(FILE, X, CODE) \ +{ int i; \ + if (CODE == '.') ; \ + else if (CODE == '#') fprintf (FILE, "#"); \ + else if (CODE == '-') fprintf (FILE, "sp@-"); \ + else if (CODE == '+') fprintf (FILE, "sp@+"); \ + else if (CODE == '@') fprintf (FILE, "sp@"); \ + else if (CODE == '!') fprintf (FILE, "cc"); \ + else if ((X) == 0 ) ; \ + else if (GET_CODE (X) == REG) \ + { if (REGNO (X) < 16 && (CODE == 'y' || CODE == 'x') && GET_MODE (X) == DFmode) \ + fprintf (FILE, "%s,%s", reg_names[REGNO (X)], reg_names[REGNO (X)+1]); \ + else \ + fprintf (FILE, "%s", reg_names[REGNO (X)]); \ + } \ + else if (GET_CODE (X) == MEM) \ + { \ + output_address (XEXP (X, 0)); \ + if (CODE == 'd' && ! TARGET_68020 \ + && CONSTANT_ADDRESS_P (XEXP (X, 0)) \ + && !(GET_CODE (XEXP (X, 0)) == CONST_INT \ + && INTVAL (XEXP (X, 0)) < 0x8000 \ + && INTVAL (XEXP (X, 0)) >= -0x8000)) \ + fprintf (FILE, ":l"); \ + } \ + else if (GET_CODE (X) == CONST_DOUBLE && GET_MODE (X) == SFmode) \ + { union { double d; int i[2]; } u; \ + union { float f; int i; } u1; \ + u.i[0] = CONST_DOUBLE_LOW (X); u.i[1] = CONST_DOUBLE_HIGH (X); \ + u1.f = u.d; \ + if (CODE == 'f') \ + fprintf (FILE, "#0r%.9g", u1.f); \ + else \ + fprintf (FILE, "#0x%x", u1.i); } \ + else if (GET_CODE (X) == CONST_DOUBLE && GET_MODE (X) != DImode) \ + { union { double d; int i[2]; } u; \ + u.i[0] = CONST_DOUBLE_LOW (X); u.i[1] = CONST_DOUBLE_HIGH (X); \ + fprintf (FILE, "#0r%.20g", u.d); } \ + else { putc ('#', FILE); output_addr_const (FILE, X); }} + +/* Note that this contains a kludge that knows that the only reason + we have an address (plus (label_ref...) (reg...)) + is in the insn before a tablejump, and we know that m68k.md + generates a label LInnn: on such an insn. */ +#define PRINT_OPERAND_ADDRESS(FILE, ADDR) \ +{ register rtx reg1, reg2, breg, ireg; \ + register rtx addr = ADDR; \ + static char *sz = ".BW.L...D"; \ + rtx offset; \ + switch (GET_CODE (addr)) \ + { \ + case REG: \ + fprintf (FILE, "%s@", reg_names[REGNO (addr)]); \ + break; \ + case PRE_DEC: \ + fprintf (FILE, "%s@-", reg_names[REGNO (XEXP (addr, 0))]); \ + break; \ + case POST_INC: \ + fprintf (FILE, "%s@+", reg_names[REGNO (XEXP (addr, 0))]); \ + break; \ + case PLUS: \ + reg1 = 0; reg2 = 0; \ + ireg = 0; breg = 0; \ + offset = 0; \ + if (CONSTANT_ADDRESS_P (XEXP (addr, 0))) \ + { \ + offset = XEXP (addr, 0); \ + addr = XEXP (addr, 1); \ + } \ + else if (CONSTANT_ADDRESS_P (XEXP (addr, 1))) \ + { \ + offset = XEXP (addr, 1); \ + addr = XEXP (addr, 0); \ + } \ + if (GET_CODE (addr) != PLUS) ; \ + else if (GET_CODE (XEXP (addr, 0)) == SIGN_EXTEND) \ + { \ + reg1 = XEXP (addr, 0); \ + addr = XEXP (addr, 1); \ + } \ + else if (GET_CODE (XEXP (addr, 1)) == SIGN_EXTEND) \ + { \ + reg1 = XEXP (addr, 1); \ + addr = XEXP (addr, 0); \ + } \ + else if (GET_CODE (XEXP (addr, 0)) == MULT) \ + { \ + reg1 = XEXP (addr, 0); \ + addr = XEXP (addr, 1); \ + } \ + else if (GET_CODE (XEXP (addr, 1)) == MULT) \ + { \ + reg1 = XEXP (addr, 1); \ + addr = XEXP (addr, 0); \ + } \ + else if (GET_CODE (XEXP (addr, 0)) == REG) \ + { \ + reg1 = XEXP (addr, 0); \ + addr = XEXP (addr, 1); \ + } \ + else if (GET_CODE (XEXP (addr, 1)) == REG) \ + { \ + reg1 = XEXP (addr, 1); \ + addr = XEXP (addr, 0); \ + } \ + if (GET_CODE (addr) == REG || GET_CODE (addr) == MULT \ + || GET_CODE (addr) == SIGN_EXTEND) \ + { if (reg1 == 0) reg1 = addr; else reg2 = addr; addr = 0; } \ +/* for OLD_INDEXING \ + else if (GET_CODE (addr) == PLUS) \ + { \ + if (GET_CODE (XEXP (addr, 0)) == REG) \ + { \ + reg2 = XEXP (addr, 0); \ + addr = XEXP (addr, 1); \ + } \ + else if (GET_CODE (XEXP (addr, 1)) == REG) \ + { \ + reg2 = XEXP (addr, 1); \ + addr = XEXP (addr, 0); \ + } \ + } \ + */ \ + if (offset != 0) { if (addr != 0) abort (); addr = offset; } \ + if ((reg1 && (GET_CODE (reg1) == SIGN_EXTEND \ + || GET_CODE (reg1) == MULT)) \ + || (reg2 != 0 && REGNO_OK_FOR_BASE_P (REGNO (reg2)))) \ + { breg = reg2; ireg = reg1; } \ + else if (reg1 != 0 && REGNO_OK_FOR_BASE_P (REGNO (reg1))) \ + { breg = reg1; ireg = reg2; } \ + if (ireg != 0 && breg == 0 && GET_CODE (addr) == LABEL_REF) \ + { int scale = 1; \ + if (GET_CODE (ireg) == MULT) \ + { scale = INTVAL (XEXP (ireg, 1)); \ + ireg = XEXP (ireg, 0); } \ + if (GET_CODE (ireg) == SIGN_EXTEND) \ + fprintf (FILE, "pc@(L%d-LI%d-2:B)[%s:W", \ + CODE_LABEL_NUMBER (XEXP (addr, 0)), \ + CODE_LABEL_NUMBER (XEXP (addr, 0)), \ + reg_names[REGNO (XEXP (ireg, 0))]); \ + else \ + fprintf (FILE, "pc@(L%d-LI%d-2:B)[%s:L", \ + CODE_LABEL_NUMBER (XEXP (addr, 0)), \ + CODE_LABEL_NUMBER (XEXP (addr, 0)), \ + reg_names[REGNO (ireg)]); \ + fprintf (FILE, ":%c", sz[scale]); \ + putc (']', FILE); \ + break; } \ + if (breg != 0 && ireg == 0 && GET_CODE (addr) == LABEL_REF) \ + { fprintf (FILE, "pc@(L%d-LI%d-2:B)[%s:L:B]", \ + CODE_LABEL_NUMBER (XEXP (addr, 0)), \ + CODE_LABEL_NUMBER (XEXP (addr, 0)), \ + reg_names[REGNO (breg)]); \ + break; } \ + if (ireg != 0 || breg != 0) \ + { int scale = 1; \ + if (breg == 0) \ + abort (); \ + if (addr && GET_CODE (addr) == LABEL_REF) abort (); \ + fprintf (FILE, "%s@", reg_names[REGNO (breg)]); \ + if (addr != 0) { \ + putc( '(', FILE ); \ + output_addr_const (FILE, addr); \ + if (ireg != 0) { \ + if (GET_CODE(addr) == CONST_INT) { \ + int size_of = 1, val = INTVAL(addr); \ + if (val < -0x8000 || val >= 0x8000) \ + size_of = 4; \ + else if (val < -0x80 || val >= 0x80) \ + size_of = 2; \ + fprintf(FILE, ":%c", sz[size_of]); \ + } \ + else \ + fprintf(FILE, ":L"); } \ + putc( ')', FILE ); } \ + if (ireg != 0) { \ + putc ('[', FILE); \ + if (ireg != 0 && GET_CODE (ireg) == MULT) \ + { scale = INTVAL (XEXP (ireg, 1)); \ + ireg = XEXP (ireg, 0); } \ + if (ireg != 0 && GET_CODE (ireg) == SIGN_EXTEND) \ + fprintf (FILE, "%s:W", reg_names[REGNO (XEXP (ireg, 0))]); \ + else if (ireg != 0) \ + fprintf (FILE, "%s:L", reg_names[REGNO (ireg)]); \ + fprintf (FILE, ":%c", sz[scale]); \ + putc (']', FILE); \ + } \ + break; \ + } \ + else if (reg1 != 0 && GET_CODE (addr) == LABEL_REF) \ + { fprintf (FILE, "pc@(L%d-LI%d-2:B)[%s:L:B]", \ + CODE_LABEL_NUMBER (XEXP (addr, 0)), \ + CODE_LABEL_NUMBER (XEXP (addr, 0)), \ + reg_names[REGNO (reg1)]); \ + break; } \ + default: \ + if (GET_CODE (addr) == CONST_INT \ + && INTVAL (addr) < 0x8000 \ + && INTVAL (addr) >= -0x8000) \ + fprintf (FILE, "%d:W", INTVAL (addr)); \ + else \ + output_addr_const (FILE, addr); \ + }} + +/* +Local variables: +version-control: t +End: +*/ +