8sa1-binutils-gdb/sim/ppc/gen-idecode.c
1999-04-16 01:35:26 +00:00

1546 lines
46 KiB
C

/* This file is part of the program psim.
Copyright (C) 1994-1997, Andrew Cagney <cagney@highland.com.au>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*/
#include "misc.h"
#include "lf.h"
#include "table.h"
#include "filter.h"
#include "ld-decode.h"
#include "ld-cache.h"
#include "ld-insn.h"
#include "igen.h"
#include "gen-idecode.h"
#include "gen-icache.h"
#include "gen-semantics.h"
static void
lf_print_opcodes(lf *file,
insn_table *table)
{
if (table != NULL) {
while (1) {
ASSERT(table->opcode != NULL);
lf_printf(file, "_%d_%d",
table->opcode->first,
table->opcode->last);
if (table->parent == NULL) break;
lf_printf(file, "__%d", table->opcode_nr);
table = table->parent;
}
}
}
/****************************************************************/
static void
lf_print_table_name(lf *file,
insn_table *table)
{
lf_printf(file, "idecode_table");
lf_print_opcodes(file, table);
}
static void
print_idecode_table(lf *file,
insn_table *entry,
const char *result)
{
lf_printf(file, "/* prime the search */\n");
lf_printf(file, "idecode_table_entry *table = ");
lf_print_table_name(file, entry);
lf_printf(file, ";\n");
lf_printf(file, "int opcode = EXTRACTED32(instruction, %d, %d);\n",
i2target(hi_bit_nr, entry->opcode->first),
i2target(hi_bit_nr, entry->opcode->last));
lf_printf(file, "idecode_table_entry *table_entry = table + opcode;\n");
lf_printf(file, "\n");
lf_printf(file, "/* iterate until a leaf */\n");
lf_printf(file, "while (1) {\n");
lf_printf(file, " signed shift = table_entry->shift;\n");
lf_printf(file, "if (shift == function_entry) break;\n");
lf_printf(file, " if (shift >= 0) {\n");
lf_printf(file, " table = ((idecode_table_entry*)\n");
lf_printf(file, " table_entry->function_or_table);\n");
lf_printf(file, " opcode = ((instruction & table_entry->mask)\n");
lf_printf(file, " >> shift);\n");
lf_printf(file, " table_entry = table + opcode;\n");
lf_printf(file, " }\n");
lf_printf(file, " else {\n");
lf_printf(file, " /* must be a boolean */\n");
lf_printf(file, " ASSERT(table_entry->shift == boolean_entry);\n");
lf_printf(file, " opcode = ((instruction & table_entry->mask)\n");
lf_printf(file, " != table_entry->value);\n");
lf_printf(file, " table = ((idecode_table_entry*)\n");
lf_printf(file, " table_entry->function_or_table);\n");
lf_printf(file, " table_entry = table + opcode;\n");
lf_printf(file, " }\n");
lf_printf(file, "}\n");
lf_printf(file, "\n");
lf_printf(file, "/* call the leaf code */\n");
if ((code & generate_jumps)) {
lf_printf(file, "goto *table_entry->function_or_table;\n");
}
else {
lf_printf(file, "%s ", result);
if ((code & generate_with_icache)) {
lf_printf(file, "(((idecode_icache*)table_entry->function_or_table)\n");
lf_printf(file, " (%s));\n", ICACHE_FUNCTION_ACTUAL);
}
else {
lf_printf(file, "((idecode_semantic*)table_entry->function_or_table)\n");
lf_printf(file, " (%s);\n", SEMANTIC_FUNCTION_ACTUAL);
}
}
}
static void
print_idecode_table_start(insn_table *table,
lf *file,
void *data,
int depth)
{
ASSERT(depth == 0);
/* start of the table */
if (table->opcode_rule->gen == array_gen) {
lf_printf(file, "\n");
lf_printf(file, "static idecode_table_entry ");
lf_print_table_name(file, table);
lf_printf(file, "[] = {\n");
}
}
static void
print_idecode_table_leaf(insn_table *entry,
lf *file,
void *data,
insn *instruction,
int depth)
{
ASSERT(entry->parent != NULL);
ASSERT(depth == 0);
/* add an entry to the table */
if (entry->parent->opcode_rule->gen == array_gen) {
lf_printf(file, " /*%d*/ { ", entry->opcode_nr);
if (entry->opcode == NULL) {
/* table leaf entry */
lf_printf(file, "function_entry, 0, 0, ");
if ((code & generate_jumps))
lf_printf(file, "&&");
print_function_name(file,
entry->insns->file_entry->fields[insn_name],
entry->expanded_bits,
((code & generate_with_icache)
? function_name_prefix_icache
: function_name_prefix_semantics));
}
else if (entry->opcode_rule->gen == switch_gen
|| entry->opcode_rule->gen == goto_switch_gen
|| entry->opcode_rule->gen == padded_switch_gen) {
/* table calling switch statement */
lf_printf(file, "function_entry, 0, 0, ");
if ((code & generate_jumps))
lf_printf(file, "&&");
lf_print_table_name(file, entry);
}
else if (entry->opcode->is_boolean) {
/* table `calling' boolean table */
lf_printf(file, "boolean_entry, ");
lf_printf(file, "MASK32(%d, %d), ",
i2target(hi_bit_nr, entry->opcode->first),
i2target(hi_bit_nr, entry->opcode->last));
lf_printf(file, "INSERTED32(%d, %d, %d), ",
entry->opcode->boolean_constant,
i2target(hi_bit_nr, entry->opcode->first),
i2target(hi_bit_nr, entry->opcode->last));
lf_print_table_name(file, entry);
}
else {
/* table `calling' another table */
lf_printf(file, "%d, ", insn_bit_size - entry->opcode->last - 1);
lf_printf(file, "MASK32(%d,%d), ",
i2target(hi_bit_nr, entry->opcode->first),
i2target(hi_bit_nr, entry->opcode->last));
lf_printf(file, "0, ");
lf_print_table_name(file, entry);
}
lf_printf(file, " },\n");
}
}
static void
print_idecode_table_end(insn_table *table,
lf *file,
void *data,
int depth)
{
ASSERT(depth == 0);
if (table->opcode_rule->gen == array_gen) {
lf_printf(file, "};\n");
}
}
static void
print_idecode_table_padding(insn_table *table,
lf *file,
void *data,
int depth,
int opcode_nr)
{
ASSERT(depth == 0);
if (table->opcode_rule->gen == array_gen) {
lf_printf(file, " /*%d*/ { function_entry, 0, 0, ", opcode_nr);
if ((code & generate_jumps))
lf_printf(file, "&&");
lf_printf(file, "%s_illegal },\n",
((code & generate_with_icache) ? "icache" : "semantic"));
}
}
/****************************************************************/
static void
print_goto_switch_name(lf *file,
insn_table *entry)
{
lf_printf(file, "case_");
if (entry->opcode == NULL)
print_function_name(file,
entry->insns->file_entry->fields[insn_name],
entry->expanded_bits,
((code & generate_with_icache)
? function_name_prefix_icache
: function_name_prefix_semantics));
else
lf_print_table_name(file, entry);
}
static void
print_goto_switch_table_leaf(insn_table *entry,
lf *file,
void *data,
insn *instruction,
int depth)
{
ASSERT(entry->parent != NULL);
ASSERT(depth == 0);
ASSERT(entry->parent->opcode_rule->gen == goto_switch_gen);
ASSERT(entry->parent->opcode);
lf_printf(file, "&&");
print_goto_switch_name(file, entry);
lf_printf(file, ",\n");
}
static void
print_goto_switch_table_padding(insn_table *table,
lf *file,
void *data,
int depth,
int opcode_nr)
{
ASSERT(depth == 0);
ASSERT(table->opcode_rule->gen == goto_switch_gen);
lf_printf(file, "&&illegal_");
lf_print_table_name(file, table);
lf_printf(file, ",\n");
}
static void
print_goto_switch_break(lf *file,
insn_table *entry)
{
lf_printf(file, "goto break_");
lf_print_table_name(file, entry->parent);
lf_printf(file, ";\n");
}
static void
print_goto_switch_table(lf *file,
insn_table *table)
{
lf_printf(file, "const static void *");
lf_print_table_name(file, table);
lf_printf(file, "[] = {\n");
lf_indent(file, +2);
insn_table_traverse_tree(table,
file, NULL/*data*/,
0,
NULL/*start*/,
print_goto_switch_table_leaf,
NULL/*end*/,
print_goto_switch_table_padding);
lf_indent(file, -2);
lf_printf(file, "};\n");
}
void print_idecode_switch
(lf *file,
insn_table *table,
const char *result);
static void
idecode_switch_start(insn_table *table,
lf *file,
void *data,
int depth)
{
/* const char *result = data; */
ASSERT(depth == 0);
ASSERT(table->opcode_rule->gen == switch_gen
|| table->opcode_rule->gen == goto_switch_gen
|| table->opcode_rule->gen == padded_switch_gen);
if (table->opcode->is_boolean
|| table->opcode_rule->gen == switch_gen
|| table->opcode_rule->gen == padded_switch_gen) {
lf_printf(file, "switch (EXTRACTED32(instruction, %d, %d)) {\n",
i2target(hi_bit_nr, table->opcode->first),
i2target(hi_bit_nr, table->opcode->last));
}
else if (table->opcode_rule->gen == goto_switch_gen) {
if (table->parent != NULL
&& (table->parent->opcode_rule->gen == switch_gen
|| table->parent->opcode_rule->gen == goto_switch_gen
|| table->parent->opcode_rule->gen == padded_switch_gen)) {
lf_printf(file, "{\n");
lf_indent(file, +2);
}
print_goto_switch_table(file, table);
lf_printf(file, "ASSERT(EXTRACTED32(instruction, %d, %d)\n",
i2target(hi_bit_nr, table->opcode->first),
i2target(hi_bit_nr, table->opcode->last));
lf_printf(file, " < (sizeof(");
lf_print_table_name(file, table);
lf_printf(file, ") / sizeof(void*)));\n");
lf_printf(file, "goto *");
lf_print_table_name(file, table);
lf_printf(file, "[EXTRACTED32(instruction, %d, %d)];\n",
i2target(hi_bit_nr, table->opcode->first),
i2target(hi_bit_nr, table->opcode->last));
}
else {
ASSERT("bad switch" == NULL);
}
}
static void
idecode_switch_leaf(insn_table *entry,
lf *file,
void *data,
insn *instruction,
int depth)
{
const char *result = data;
ASSERT(entry->parent != NULL);
ASSERT(depth == 0);
ASSERT(entry->parent->opcode_rule->gen == switch_gen
|| entry->parent->opcode_rule->gen == goto_switch_gen
|| entry->parent->opcode_rule->gen == padded_switch_gen);
ASSERT(entry->parent->opcode);
if (entry->parent->opcode->is_boolean
&& entry->opcode_nr == 0) {
/* boolean false target */
lf_printf(file, "case %d:\n", entry->parent->opcode->boolean_constant);
}
else if (entry->parent->opcode->is_boolean
&& entry->opcode_nr != 0) {
/* boolean true case */
lf_printf(file, "default:\n");
}
else if (entry->parent->opcode_rule->gen == switch_gen
|| entry->parent->opcode_rule->gen == padded_switch_gen) {
/* normal goto */
lf_printf(file, "case %d:\n", entry->opcode_nr);
}
else if (entry->parent->opcode_rule->gen == goto_switch_gen) {
/* lf_indent(file, -1); */
print_goto_switch_name(file, entry);
lf_printf(file, ":\n");
/* lf_indent(file, +1); */
}
else {
ASSERT("bad switch" == NULL);
}
lf_indent(file, +2);
{
if (entry->opcode == NULL) {
/* switch calling leaf */
if ((code & generate_jumps))
lf_printf(file, "goto ");
if ((code & generate_calls))
lf_printf(file, "%s ", result);
print_function_name(file,
entry->insns->file_entry->fields[insn_name],
entry->expanded_bits,
((code & generate_with_icache)
? function_name_prefix_icache
: function_name_prefix_semantics));
if ((code & generate_calls))
lf_printf(file, "(%s)", SEMANTIC_FUNCTION_ACTUAL);
lf_printf(file, ";\n");
}
else if (entry->opcode_rule->gen == switch_gen
|| entry->opcode_rule->gen == goto_switch_gen
|| entry->opcode_rule->gen == padded_switch_gen) {
/* switch calling switch */
print_idecode_switch(file, entry, result);
}
else {
/* switch looking up a table */
lf_printf(file, "{\n");
lf_indent(file, -2);
print_idecode_table(file, entry, result);
lf_indent(file, -2);
lf_printf(file, "}\n");
}
if (entry->parent->opcode->is_boolean
|| entry->parent->opcode_rule->gen == switch_gen
|| entry->parent->opcode_rule->gen == padded_switch_gen) {
lf_printf(file, "break;\n");
}
else if (entry->parent->opcode_rule->gen == goto_switch_gen) {
print_goto_switch_break(file, entry);
}
else {
ASSERT("bad switch" == NULL);
}
}
lf_indent(file, -2);
}
static void
print_idecode_switch_illegal(lf *file,
const char *result)
{
lf_indent(file, +2);
print_idecode_illegal(file, result);
lf_printf(file, "break;\n");
lf_indent(file, -2);
}
static void
idecode_switch_end(insn_table *table,
lf *file,
void *data,
int depth)
{
const char *result = data;
ASSERT(depth == 0);
ASSERT(table->opcode_rule->gen == switch_gen
|| table->opcode_rule->gen == goto_switch_gen
|| table->opcode_rule->gen == padded_switch_gen);
ASSERT(table->opcode);
if (table->opcode->is_boolean) {
lf_printf(file, "}\n");
}
else if (table->opcode_rule->gen == switch_gen
|| table->opcode_rule->gen == padded_switch_gen) {
lf_printf(file, "default:\n");
switch (table->opcode_rule->gen) {
case switch_gen:
print_idecode_switch_illegal(file, result);
break;
case padded_switch_gen:
lf_printf(file, " error(\"Internal error - bad switch generated\\n\");\n");
lf_printf(file, " break;\n");
break;
default:
ASSERT("bad switch" == NULL);
}
lf_printf(file, "}\n");
}
else if (table->opcode_rule->gen == goto_switch_gen) {
lf_printf(file, "illegal_");
lf_print_table_name(file, table);
lf_printf(file, ":\n");
print_idecode_illegal(file, result);
lf_printf(file, "break_");
lf_print_table_name(file, table);
lf_printf(file, ":;\n");
if (table->parent != NULL
&& (table->parent->opcode_rule->gen == switch_gen
|| table->parent->opcode_rule->gen == goto_switch_gen
|| table->parent->opcode_rule->gen == padded_switch_gen)) {
lf_indent(file, -2);
lf_printf(file, "}\n");
}
}
else {
ASSERT("bad switch" == NULL);
}
}
static void
idecode_switch_padding(insn_table *table,
lf *file,
void *data,
int depth,
int opcode_nr)
{
const char *result = data;
ASSERT(depth == 0);
ASSERT(table->opcode_rule->gen == switch_gen
|| table->opcode_rule->gen == goto_switch_gen
|| table->opcode_rule->gen == padded_switch_gen);
switch (table->opcode_rule->gen) {
case switch_gen:
break;
case padded_switch_gen:
lf_printf(file, "case %d:\n", opcode_nr);
print_idecode_switch_illegal(file, result);
break;
case goto_switch_gen:
/* no padding needed */
break;
default:
ASSERT("bad switch" != NULL);
}
}
void
print_idecode_switch(lf *file,
insn_table *table,
const char *result)
{
insn_table_traverse_tree(table,
file, (void*)result,
0,
idecode_switch_start,
idecode_switch_leaf,
idecode_switch_end,
idecode_switch_padding);
}
static void
print_idecode_switch_function_header(lf *file,
insn_table *table,
int is_function_definition)
{
lf_printf(file, "\n");
if ((code & generate_calls)) {
lf_printf(file, "static ");
if ((code & generate_with_icache))
lf_printf(file, "idecode_semantic *");
else
lf_printf(file, "unsigned_word");
if (is_function_definition)
lf_printf(file, "\n");
else
lf_printf(file, " ");
lf_print_table_name(file, table);
lf_printf(file, "\n(%s)", ICACHE_FUNCTION_FORMAL);
if (!is_function_definition)
lf_printf(file, ";");
lf_printf(file, "\n");
}
if ((code & generate_jumps) && is_function_definition) {
lf_indent(file, -1);
lf_print_table_name(file, table);
lf_printf(file, ":\n");
lf_indent(file, +1);
}
}
static void
idecode_declare_if_switch(insn_table *table,
lf *file,
void *data,
int depth)
{
if ((table->opcode_rule->gen == switch_gen
|| table->opcode_rule->gen == goto_switch_gen
|| table->opcode_rule->gen == padded_switch_gen)
&& table->parent != NULL /* don't declare the top one yet */
&& table->parent->opcode_rule->gen == array_gen) {
print_idecode_switch_function_header(file,
table,
0/*isnt function definition*/);
}
}
static void
idecode_expand_if_switch(insn_table *table,
lf *file,
void *data,
int depth)
{
if ((table->opcode_rule->gen == switch_gen
|| table->opcode_rule->gen == goto_switch_gen
|| table->opcode_rule->gen == padded_switch_gen)
&& table->parent != NULL /* don't expand the top one yet */
&& table->parent->opcode_rule->gen == array_gen) {
print_idecode_switch_function_header(file,
table,
1/*is function definition*/);
if ((code & generate_calls)) {
lf_printf(file, "{\n");
lf_indent(file, +2);
}
print_idecode_switch(file, table, "return");
if ((code & generate_calls)) {
lf_indent(file, -2);
lf_printf(file, "}\n");
}
}
}
/****************************************************************/
static void
print_idecode_lookups(lf *file,
insn_table *table,
cache_table *cache_rules)
{
int depth;
/* output switch function declarations where needed by tables */
insn_table_traverse_tree(table,
file, NULL,
1,
idecode_declare_if_switch, /* START */
NULL, NULL, NULL);
/* output tables where needed */
for (depth = insn_table_depth(table);
depth > 0;
depth--) {
insn_table_traverse_tree(table,
file, NULL,
1-depth,
print_idecode_table_start,
print_idecode_table_leaf,
print_idecode_table_end,
print_idecode_table_padding);
}
/* output switch functions where needed */
insn_table_traverse_tree(table,
file, NULL,
1,
idecode_expand_if_switch, /* START */
NULL, NULL, NULL);
}
static void
print_idecode_body(lf *file,
insn_table *table,
const char *result)
{
if (table->opcode_rule->gen == switch_gen
|| table->opcode_rule->gen == goto_switch_gen
|| table->opcode_rule->gen == padded_switch_gen)
print_idecode_switch(file, table, result);
else
print_idecode_table(file, table, result);
}
/****************************************************************/
static void
print_run_until_stop_body(lf *file,
insn_table *table,
int can_stop)
{
/* Output the function to execute real code:
Unfortunatly, there are multiple cases to consider vis:
<icache> X <smp> X <events> X <keep-running-flag> X ...
Consequently this function is written in multiple different ways */
lf_putstr(file, "{\n");
lf_indent(file, +2);
lf_putstr(file, "jmp_buf halt;\n");
lf_putstr(file, "jmp_buf restart;\n");
if (!generate_smp) {
lf_putstr(file, "cpu *processor = NULL;\n");
lf_putstr(file, "unsigned_word cia = -1;\n");
}
lf_putstr(file, "int last_cpu;\n");
if (generate_smp) {
lf_putstr(file, "int current_cpu;\n");
}
if ((code & generate_with_icache)) {
lf_putstr(file, "int cpu_nr;\n");
lf_putstr(file, "\n");
lf_putstr(file, "/* flush the icache of a possible break insn */\n");
lf_putstr(file, "for (cpu_nr = 0; cpu_nr < nr_cpus; cpu_nr++)\n");
lf_putstr(file, " cpu_flush_icache(processors[cpu_nr]);\n");
}
lf_putstr(file, "\n");
lf_putstr(file, "/* set the halt target initially */\n");
lf_putstr(file, "psim_set_halt_and_restart(system, &halt, NULL);\n");
lf_putstr(file, "if (setjmp(halt))\n");
lf_putstr(file, " return;\n");
lf_putstr(file, "\n");
lf_putstr(file, "/* where were we before the halt? */\n");
lf_putstr(file, "last_cpu = psim_last_cpu(system);\n");
lf_putstr(file, "\n");
lf_putstr(file, "/* check for need to force event processing first */\n");
lf_putstr(file, "if (WITH_EVENTS) {\n");
lf_putstr(file, " if (last_cpu == nr_cpus) {\n");
lf_putstr(file, " /* halted during event processing */\n");
lf_putstr(file, " event_queue_process(events);\n");
lf_putstr(file, " last_cpu = -1;\n");
lf_putstr(file, " }\n");
lf_putstr(file, " else if (last_cpu == nr_cpus - 1) {\n");
lf_putstr(file, " /* last cpu did halt */\n");
lf_putstr(file, " if (event_queue_tick(events)) {\n");
lf_putstr(file, " event_queue_process(events);\n");
lf_putstr(file, " }\n");
lf_putstr(file, " last_cpu = -1;\n");
lf_putstr(file, " }\n");
lf_putstr(file, "}\n");
lf_putstr(file, "else {\n");
lf_putstr(file, " if (last_cpu == nr_cpus - 1)\n");
lf_putstr(file, " /* cpu zero is next */\n");
lf_putstr(file, " last_cpu = -1;\n");
lf_putstr(file, "}\n");
lf_putstr(file, "\n");
lf_putstr(file, "/* have ensured that the event queue can not be first */\n");
lf_putstr(file, "ASSERT(last_cpu >= -1 && last_cpu < nr_cpus - 1);\n");
if (!generate_smp) {
lf_putstr(file, "
/* CASE 1: NO SMP (with or with out instruction cache).
In this case, we can take advantage of the fact that the current
instruction address does not need to be returned to the cpu object
after every execution of an instruction. Instead it only needs to
be saved when either A. the main loop exits or B. A cpu-halt or
cpu-restart call forces the loop to be re-enered. The later
functions always save the current cpu instruction address.
Two subcases also exist that with and that without an instruction
cache.
An additional complexity is the need to ensure that a 1:1 ratio
is maintained between the execution of an instruction and the
incrementing of the simulation clock */");
lf_putstr(file, "\n");
lf_putstr(file, "\n");
lf_putstr(file, "/* now add restart target as ready to run */\n");
lf_putstr(file, "psim_set_halt_and_restart(system, &halt, &restart);\n");
lf_putstr(file, "if (setjmp(restart)) {\n");
lf_putstr(file, " if (WITH_EVENTS) {\n");
lf_putstr(file, " /* when restart, cpu must have been last, clock next */\n");
lf_putstr(file, " if (event_queue_tick(events)) {\n");
lf_putstr(file, " event_queue_process(events);\n");
lf_putstr(file, " }\n");
lf_putstr(file, " }\n");
lf_putstr(file, "}\n");
lf_putstr(file, "\n");
lf_putstr(file, "/* prime the main loop */\n");
lf_putstr(file, "processor = processors[0];\n");
lf_putstr(file, "cia = cpu_get_program_counter(processor);\n");
lf_putstr(file, "\n");
lf_putstr(file, "while (1) {\n");
lf_indent(file, +2);
if (!(code & generate_with_icache)) {
lf_putstr(file, "instruction_word instruction =\n");
lf_putstr(file, " vm_instruction_map_read(cpu_instruction_map(processor), processor, cia);\n");
lf_putstr(file, "\n");
print_idecode_body(file, table, "cia =");;
}
if ((code & generate_with_icache)) {
lf_putstr(file, "idecode_cache *cache_entry =\n");
lf_putstr(file, " cpu_icache_entry(processor, cia);\n");
lf_putstr(file, "if (cache_entry->address == cia) {\n");
lf_putstr(file, " /* cache hit */\n");
lf_putstr(file, " idecode_semantic *const semantic = cache_entry->semantic;\n");
lf_putstr(file, " cia = semantic(processor, cache_entry, cia);\n");
/* tail */
if (can_stop) {
lf_putstr(file, "if (keep_running != NULL && !*keep_running)\n");
lf_putstr(file, " cpu_halt(processor, cia, was_continuing, 0/*ignore*/);\n");
}
lf_putstr(file, "}\n");
lf_putstr(file, "else {\n");
lf_putstr(file, " /* cache miss */\n");
if (!(code & generate_with_semantic_icache)) {
lf_indent(file, +2);
lf_putstr(file, "idecode_semantic *semantic;\n");
lf_indent(file, -2);
}
lf_putstr(file, " instruction_word instruction =\n");
lf_putstr(file, " vm_instruction_map_read(cpu_instruction_map(processor), processor, cia);\n");
lf_putstr(file, " if (WITH_MON != 0)\n");
lf_putstr(file, " mon_event(mon_event_icache_miss, processor, cia);\n");
if ((code & generate_with_semantic_icache)) {
lf_putstr(file, "{\n");
lf_indent(file, +2);
print_idecode_body(file, table, "cia =");
lf_indent(file, -2);
lf_putstr(file, "}\n");
}
else {
print_idecode_body(file, table, "semantic =");
lf_putstr(file, " cia = semantic(processor, cache_entry, cia);\n");
}
lf_putstr(file, "}\n");
}
/* events */
lf_putstr(file, "\n");
lf_putstr(file, "/* process any events */\n");
lf_putstr(file, "if (WITH_EVENTS) {\n");
lf_putstr(file, " if (event_queue_tick(events)) {\n");
lf_putstr(file, " cpu_set_program_counter(processor, cia);\n");
lf_putstr(file, " event_queue_process(events);\n");
lf_putstr(file, " cia = cpu_get_program_counter(processor);\n");
lf_putstr(file, " }\n");
lf_putstr(file, "}\n");
/* tail */
if (can_stop) {
lf_putstr(file, "\n");
lf_putstr(file, "/* abort if necessary */\n");
lf_putstr(file, "if (keep_running != NULL && !*keep_running)\n");
lf_putstr(file, " cpu_halt(processor, cia, was_continuing, 0/*not important*/);\n");
}
lf_indent(file, -2);
lf_putstr(file, "}\n");
}
if (generate_smp) {
lf_putstr(file, "
/* CASE 2: SMP (With or without ICACHE)
The complexity here comes from needing to correctly restart the
system when it is aborted. In particular if cpu0 requests a
restart, the next cpu is still cpu1. Cpu0 being restarted after
all the other CPU's and the event queue have been processed */");
lf_putstr(file, "\n");
lf_putstr(file, "\n");
lf_putstr(file, "/* now establish the restart target */\n");
lf_putstr(file, "psim_set_halt_and_restart(system, &halt, &restart);\n");
lf_putstr(file, "if (setjmp(restart)) {\n");
lf_putstr(file, " current_cpu = psim_last_cpu(system);\n");
lf_putstr(file, " ASSERT(current_cpu >= 0 && current_cpu < nr_cpus);\n");
lf_putstr(file, "}\n");
lf_putstr(file, "else {\n");
lf_putstr(file, " current_cpu = last_cpu;\n");
lf_putstr(file, " ASSERT(current_cpu >= -1 && current_cpu < nr_cpus);\n");
lf_putstr(file, "}\n");
lf_putstr(file, "\n");
lf_putstr(file, "while (1) {\n");
lf_indent(file, +2);
lf_putstr(file, "\n");
lf_putstr(file, "if (WITH_EVENTS) {\n");
lf_putstr(file, " current_cpu += 1;\n");
lf_putstr(file, " if (current_cpu == nr_cpus) {\n");
lf_putstr(file, " if (event_queue_tick(events)) {\n");
lf_putstr(file, " event_queue_process(events);\n");
lf_putstr(file, " }\n");
lf_putstr(file, " current_cpu = 0;\n");
lf_putstr(file, " }\n");
lf_putstr(file, "}\n");
lf_putstr(file, "else {\n");
lf_putstr(file, " current_cpu = (current_cpu + 1) % nr_cpus;\n");
lf_putstr(file, "}\n");
lf_putstr(file, "\n");
lf_putstr(file, "{\n");
lf_indent(file, +2);
lf_putstr(file, "cpu *processor = processors[current_cpu];\n");
lf_putstr(file, "unsigned_word cia =\n");
lf_putstr(file, " cpu_get_program_counter(processor);\n");
if (!(code & generate_with_icache)) {
lf_putstr(file, "instruction_word instruction =\n");
lf_putstr(file, " vm_instruction_map_read(cpu_instruction_map(processor), processor, cia);\n");
print_idecode_body(file, table, "cia =");
if (can_stop) {
lf_putstr(file, "if (keep_running != NULL && !*keep_running)\n");
lf_putstr(file, " cpu_halt(processor, cia, was_continuing, 0/*ignore*/);\n");
}
lf_putstr(file, "cpu_set_program_counter(processor, cia);\n");
}
if ((code & generate_with_icache)) {
lf_putstr(file, "idecode_cache *cache_entry =\n");
lf_putstr(file, " cpu_icache_entry(processor, cia);\n");
lf_putstr(file, "\n");
lf_putstr(file, "if (cache_entry->address == cia) {\n");
{
lf_indent(file, +2);
lf_putstr(file, "\n");
lf_putstr(file, "/* cache hit */\n");
lf_putstr(file, "idecode_semantic *semantic = cache_entry->semantic;\n");
lf_putstr(file, "cia = semantic(processor, cache_entry, cia);\n");
/* tail */
if (can_stop) {
lf_putstr(file, "if (keep_running != NULL && !*keep_running)\n");
lf_putstr(file, " cpu_halt(processor, cia, was_continuing, 0/*ignore-signal*/);\n");
}
lf_putstr(file, "cpu_set_program_counter(processor, cia);\n");
lf_putstr(file, "\n");
lf_indent(file, -2);
}
lf_putstr(file, "}\n");
lf_putstr(file, "else {\n");
{
lf_indent(file, +2);
lf_putstr(file, "\n");
lf_putstr(file, "/* cache miss */\n");
if (!(code & generate_with_semantic_icache)) {
lf_putstr(file, "idecode_semantic *semantic;\n");
}
lf_putstr(file, "instruction_word instruction =\n");
lf_putstr(file, " vm_instruction_map_read(cpu_instruction_map(processor), processor, cia);\n");
lf_putstr(file, "if (WITH_MON != 0)\n");
lf_putstr(file, " mon_event(mon_event_icache_miss, processors[current_cpu], cia);\n");
if ((code & generate_with_semantic_icache)) {
lf_putstr(file, "{\n");
lf_indent(file, +2);
print_idecode_body(file, table, "cia =");
lf_indent(file, -2);
lf_putstr(file, "}\n");
}
else {
print_idecode_body(file, table, "semantic = ");
lf_putstr(file, "cia = semantic(processor, cache_entry, cia);\n");
}
/* tail */
if (can_stop) {
lf_putstr(file, "if (keep_running != NULL && !*keep_running)\n");
lf_putstr(file, " cpu_halt(processor, cia, was_continuing, 0/*ignore-signal*/);\n");
}
lf_putstr(file, "cpu_set_program_counter(processor, cia);\n");
lf_putstr(file, "\n");
lf_indent(file, -2);
}
lf_putstr(file, "}\n");
}
/* close */
lf_indent(file, -2);
lf_putstr(file, "}\n");
/* tail */
lf_indent(file, -2);
lf_putstr(file, "}\n");
}
lf_indent(file, -2);
lf_putstr(file, "}\n");
}
/****************************************************************/
static void
print_jump(lf *file,
int is_tail)
{
if (is_tail) {
lf_putstr(file, "if (keep_running != NULL && !*keep_running)\n");
lf_putstr(file, " cpu_halt(processor, nia, was_continuing, 0/*na*/);\n");
}
if (!generate_smp) {
lf_putstr(file, "if (WITH_EVENTS) {\n");
lf_putstr(file, " if (event_queue_tick(events)) {\n");
lf_putstr(file, " cpu_set_program_counter(processor, nia);\n");
lf_putstr(file, " event_queue_process(events);\n");
lf_putstr(file, " nia = cpu_get_program_counter(processor);\n");
lf_putstr(file, " }\n");
lf_putstr(file, "}\n");
}
if (generate_smp) {
if (is_tail)
lf_putstr(file, "cpu_set_program_counter(processor, nia);\n");
lf_putstr(file, "if (WITH_EVENTS) {\n");
lf_putstr(file, " current_cpu += 1;\n");
lf_putstr(file, " if (current_cpu >= nr_cpus) {\n");
lf_putstr(file, " if (event_queue_tick(events)) {\n");
lf_putstr(file, " event_queue_process(events);\n");
lf_putstr(file, " }\n");
lf_putstr(file, " current_cpu = 0;\n");
lf_putstr(file, " }\n");
lf_putstr(file, "}\n");
lf_putstr(file, "else {\n");
lf_putstr(file, " current_cpu = (current_cpu + 1) % nr_cpus;\n");
lf_putstr(file, "}\n");
lf_putstr(file, "processor = processors[current_cpu];\n");
lf_putstr(file, "nia = cpu_get_program_counter(processor);\n");
}
if ((code & generate_with_icache)) {
lf_putstr(file, "cache_entry = cpu_icache_entry(processor, nia);\n");
lf_putstr(file, "if (cache_entry->address == nia) {\n");
lf_putstr(file, " /* cache hit */\n");
lf_putstr(file, " goto *cache_entry->semantic;\n");
lf_putstr(file, "}\n");
if (is_tail) {
lf_putstr(file, "goto cache_miss;\n");
}
}
if (!(code & generate_with_icache) && is_tail) {
lf_printf(file, "goto idecode;\n");
}
}
static void
print_jump_insn(lf *file,
insn *instruction,
insn_bits *expanded_bits,
opcode_field *opcodes,
cache_table *cache_rules)
{
/* what we are for the moment */
lf_printf(file, "\n");
print_my_defines(file, expanded_bits, instruction->file_entry);
/* output the icache entry */
if ((code & generate_with_icache)) {
lf_printf(file, "\n");
lf_indent(file, -1);
print_function_name(file,
instruction->file_entry->fields[insn_name],
expanded_bits,
function_name_prefix_icache);
lf_printf(file, ":\n");
lf_indent(file, +1);
lf_printf(file, "{\n");
lf_indent(file, +2);
lf_putstr(file, "const unsigned_word cia = nia;\n");
print_itrace(file, instruction->file_entry, 1/*putting-value-in-cache*/);
print_idecode_validate(file, instruction, opcodes);
lf_printf(file, "\n");
lf_printf(file, "{\n");
lf_indent(file, +2);
print_icache_body(file,
instruction,
expanded_bits,
cache_rules,
0, /*use_defines*/
put_values_in_icache);
lf_printf(file, "cache_entry->address = nia;\n");
lf_printf(file, "cache_entry->semantic = &&");
print_function_name(file,
instruction->file_entry->fields[insn_name],
expanded_bits,
function_name_prefix_semantics);
lf_printf(file, ";\n");
if ((code & generate_with_semantic_icache)) {
print_semantic_body(file,
instruction,
expanded_bits,
opcodes);
print_jump(file, 1/*is-tail*/);
}
else {
lf_printf(file, "/* goto ");
print_function_name(file,
instruction->file_entry->fields[insn_name],
expanded_bits,
function_name_prefix_semantics);
lf_printf(file, "; */\n");
}
lf_indent(file, -2);
lf_putstr(file, "}\n");
lf_indent(file, -2);
lf_printf(file, "}\n");
}
/* print the semantics */
lf_printf(file, "\n");
lf_indent(file, -1);
print_function_name(file,
instruction->file_entry->fields[insn_name],
expanded_bits,
function_name_prefix_semantics);
lf_printf(file, ":\n");
lf_indent(file, +1);
lf_printf(file, "{\n");
lf_indent(file, +2);
lf_putstr(file, "const unsigned_word cia = nia;\n");
print_icache_body(file,
instruction,
expanded_bits,
cache_rules,
((code & generate_with_direct_access)
? define_variables
: declare_variables),
((code & generate_with_icache)
? get_values_from_icache
: do_not_use_icache));
print_semantic_body(file,
instruction,
expanded_bits,
opcodes);
if (code & generate_with_direct_access)
print_icache_body(file,
instruction,
expanded_bits,
cache_rules,
undef_variables,
((code & generate_with_icache)
? get_values_from_icache
: do_not_use_icache));
print_jump(file, 1/*is tail*/);
lf_indent(file, -2);
lf_printf(file, "}\n");
}
static void
print_jump_definition(insn_table *entry,
lf *file,
void *data,
insn *instruction,
int depth)
{
cache_table *cache_rules = (cache_table*)data;
if (generate_expanded_instructions) {
ASSERT(entry->nr_insn == 1
&& entry->opcode == NULL
&& entry->parent != NULL
&& entry->parent->opcode != NULL);
ASSERT(entry->nr_insn == 1
&& entry->opcode == NULL
&& entry->parent != NULL
&& entry->parent->opcode != NULL
&& entry->parent->opcode_rule != NULL);
print_jump_insn(file,
entry->insns,
entry->expanded_bits,
entry->opcode,
cache_rules);
}
else {
print_jump_insn(file,
instruction,
NULL,
NULL,
cache_rules);
}
}
static void
print_jump_internal_function(insn_table *table,
lf *file,
void *data,
table_entry *function)
{
if (it_is("internal", function->fields[insn_flags])) {
lf_printf(file, "\n");
table_entry_print_cpp_line_nr(file, function);
lf_indent(file, -1);
print_function_name(file,
function->fields[insn_name],
NULL,
((code & generate_with_icache)
? function_name_prefix_icache
: function_name_prefix_semantics));
lf_printf(file, ":\n");
lf_indent(file, +1);
lf_printf(file, "{\n");
lf_indent(file, +2);
lf_printf(file, "const unsigned_word cia = nia;\n");
lf_print__c_code(file, function->annex);
lf_print__internal_reference(file);
lf_printf(file, "error(\"Internal function must longjump\\n\");\n");
lf_indent(file, -2);
lf_printf(file, "}\n");
}
}
static void
print_jump_until_stop_body(lf *file,
insn_table *table,
cache_table *cache_rules,
int can_stop)
{
lf_printf(file, "{\n");
lf_indent(file, +2);
if (!can_stop)
lf_printf(file, "int *keep_running = NULL;\n");
lf_putstr(file, "jmp_buf halt;\n");
lf_putstr(file, "jmp_buf restart;\n");
lf_putstr(file, "cpu *processor = NULL;\n");
lf_putstr(file, "unsigned_word nia = -1;\n");
lf_putstr(file, "instruction_word instruction = 0;\n");
if ((code & generate_with_icache)) {
lf_putstr(file, "idecode_cache *cache_entry = NULL;\n");
}
if (generate_smp) {
lf_putstr(file, "int current_cpu = -1;\n");
}
/* all the switches and tables - they know about jumping */
print_idecode_lookups(file, table, cache_rules);
/* start the simulation up */
if ((code & generate_with_icache)) {
lf_putstr(file, "\n");
lf_putstr(file, "{\n");
lf_putstr(file, " int cpu_nr;\n");
lf_putstr(file, " for (cpu_nr = 0; cpu_nr < nr_cpus; cpu_nr++)\n");
lf_putstr(file, " cpu_flush_icache(processors[cpu_nr]);\n");
lf_putstr(file, "}\n");
}
lf_putstr(file, "\n");
lf_putstr(file, "psim_set_halt_and_restart(system, &halt, &restart);\n");
lf_putstr(file, "\n");
lf_putstr(file, "if (setjmp(halt))\n");
lf_putstr(file, " return;\n");
lf_putstr(file, "\n");
lf_putstr(file, "setjmp(restart);\n");
lf_putstr(file, "\n");
if (!generate_smp) {
lf_putstr(file, "processor = processors[0];\n");
lf_putstr(file, "nia = cpu_get_program_counter(processor);\n");
}
else {
lf_putstr(file, "current_cpu = psim_last_cpu(system);\n");
}
if (!(code & generate_with_icache)) {
lf_printf(file, "\n");
lf_indent(file, -1);
lf_printf(file, "idecode:\n");
lf_indent(file, +1);
}
print_jump(file, 0/*is_tail*/);
if ((code & generate_with_icache)) {
lf_indent(file, -1);
lf_printf(file, "cache_miss:\n");
lf_indent(file, +1);
}
lf_putstr(file, "instruction\n");
lf_putstr(file, " = vm_instruction_map_read(cpu_instruction_map(processor),\n");
lf_putstr(file, " processor, nia);\n");
print_idecode_body(file, table, "/*IGORE*/");
/* print out a table of all the internals functions */
insn_table_traverse_function(table,
file, NULL,
print_jump_internal_function);
/* print out a table of all the instructions */
if (generate_expanded_instructions)
insn_table_traverse_tree(table,
file, cache_rules,
1,
NULL, /* start */
print_jump_definition, /* leaf */
NULL, /* end */
NULL); /* padding */
else
insn_table_traverse_insn(table,
file, cache_rules,
print_jump_definition);
lf_indent(file, -2);
lf_printf(file, "}\n");
}
/****************************************************************/
static void
print_idecode_floating_point_unavailable(lf *file)
{
if ((code & generate_jumps))
lf_printf(file, "goto %s_floating_point_unavailable;\n", (code & generate_with_icache) ? "icache" : "semantic");
else if ((code & generate_with_icache))
lf_printf(file, "return icache_floating_point_unavailable(%s);\n",
ICACHE_FUNCTION_ACTUAL);
else
lf_printf(file, "return semantic_floating_point_unavailable(%s);\n",
SEMANTIC_FUNCTION_ACTUAL);
}
/* Output code to do any final checks on the decoded instruction.
This includes things like verifying any on decoded fields have the
correct value and checking that (for floating point) floating point
hardware isn't disabled */
void
print_idecode_validate(lf *file,
insn *instruction,
opcode_field *opcodes)
{
/* Validate: unchecked instruction fields
If any constant fields in the instruction were not checked by the
idecode tables, output code to check that they have the correct
value here */
{
unsigned check_mask = 0;
unsigned check_val = 0;
insn_field *field;
opcode_field *opcode;
/* form check_mask/check_val containing what needs to be checked
in the instruction */
for (field = instruction->fields->first;
field->first < insn_bit_size;
field = field->next) {
check_mask <<= field->width;
check_val <<= field->width;
/* is it a constant that could need validating? */
if (!field->is_int && !field->is_slash)
continue;
/* has it been checked by a table? */
for (opcode = opcodes; opcode != NULL; opcode = opcode->parent) {
if (field->first >= opcode->first
&& field->last <= opcode->last)
break;
}
if (opcode != NULL)
continue;
check_mask |= (1 << field->width)-1;
check_val |= field->val_int;
}
/* if any bits not checked by opcode tables, output code to check them */
if (check_mask) {
lf_printf(file, "\n");
lf_printf(file, "/* validate: %s */\n",
instruction->file_entry->fields[insn_format]);
lf_printf(file, "if (WITH_RESERVED_BITS && (instruction & 0x%x) != 0x%x)\n",
check_mask, check_val);
lf_indent(file, +2);
print_idecode_illegal(file, "return");
lf_indent(file, -2);
}
}
/* Validate floating point hardware
If the simulator is being built with out floating point hardware
(different to it being disabled in the MSR) then floating point
instructions are invalid */
{
if (it_is("f", instruction->file_entry->fields[insn_flags])) {
lf_printf(file, "\n");
lf_printf(file, "/* Validate: FP hardware exists */\n");
lf_printf(file, "if (CURRENT_FLOATING_POINT != HARD_FLOATING_POINT)\n");
lf_indent(file, +2);
print_idecode_illegal(file, "return");
lf_indent(file, -2);
}
}
/* Validate: Floating Point available
If floating point is not available, we enter a floating point
unavailable interrupt into the cache instead of the instruction
proper.
The PowerPC spec requires a CSI after MSR[FP] is changed and when
ever a CSI occures we flush the instruction cache. */
{
if (it_is("f", instruction->file_entry->fields[insn_flags])) {
lf_printf(file, "\n");
lf_printf(file, "/* Validate: FP available according to MSR[FP] */\n");
lf_printf(file, "if (!IS_FP_AVAILABLE(processor))\n");
lf_indent(file, +2);
print_idecode_floating_point_unavailable(file);
lf_indent(file, -2);
}
}
}
/****************************************************************/
static void
print_idecode_run_function_header(lf *file,
int can_stop,
int is_definition)
{
int indent;
lf_printf(file, "\n");
lf_print_function_type(file, "void", "INLINE_IDECODE", (is_definition ? " " : "\n"));
indent = lf_putstr(file, (can_stop ? "idecode_run_until_stop" : "idecode_run"));
if (is_definition)
lf_putstr(file, "\n");
else
lf_indent(file, +indent);
lf_putstr(file, "(psim *system,\n");
if (can_stop)
lf_putstr(file, " volatile int *keep_running,\n");
lf_printf(file, " event_queue *events,\n");
lf_putstr(file, " cpu *const processors[],\n");
lf_putstr(file, " const int nr_cpus)");
if (is_definition)
lf_putstr(file, ";");
else
lf_indent(file, -indent);
lf_putstr(file, "\n");
}
void
gen_idecode_h(lf *file,
insn_table *table,
cache_table *cache_rules)
{
lf_printf(file, "/* The idecode_*.h functions shall move to support */\n");
lf_printf(file, "#include \"idecode_expression.h\"\n");
lf_printf(file, "#include \"idecode_fields.h\"\n");
lf_printf(file, "#include \"idecode_branch.h\"\n");
lf_printf(file, "\n");
print_icache_struct(table, cache_rules, file);
lf_printf(file, "\n");
lf_printf(file, "#define WITH_IDECODE_SMP %d\n", generate_smp);
lf_printf(file, "\n");
print_idecode_run_function_header(file, 0/*can stop*/, 1/*is definition*/);
print_idecode_run_function_header(file, 1/*can stop*/, 1/*is definition*/);
}
void
gen_idecode_c(lf *file,
insn_table *table,
cache_table *cache_rules)
{
/* the intro */
lf_printf(file, "#include \"inline.c\"\n");
lf_printf(file, "\n");
lf_printf(file, "#include \"cpu.h\"\n");
lf_printf(file, "#include \"idecode.h\"\n");
lf_printf(file, "#include \"semantics.h\"\n");
lf_printf(file, "#include \"icache.h\"\n");
lf_printf(file, "#include \"support.h\"\n");
lf_printf(file, "\n");
lf_printf(file, "#include <setjmp.h>\n");
lf_printf(file, "\n");
lf_printf(file, "enum {\n");
lf_printf(file, " /* greater or equal to zero => table */\n");
lf_printf(file, " function_entry = -1,\n");
lf_printf(file, " boolean_entry = -2,\n");
lf_printf(file, "};\n");
lf_printf(file, "\n");
lf_printf(file, "typedef struct _idecode_table_entry {\n");
lf_printf(file, " int shift;\n");
lf_printf(file, " instruction_word mask;\n");
lf_printf(file, " instruction_word value;");
lf_printf(file, " void *function_or_table;\n");
lf_printf(file, "} idecode_table_entry;\n");
lf_printf(file, "\n");
lf_printf(file, "\n");
if ((code & generate_calls)) {
print_idecode_lookups(file, table, cache_rules);
/* output the main idecode routine */
print_idecode_run_function_header(file, 0/*can stop*/, 0/*is definition*/);
print_run_until_stop_body(file, table, 0/* have stop argument */);
print_idecode_run_function_header(file, 1/*can stop*/, 0/*is definition*/);
print_run_until_stop_body(file, table, 1/* no stop argument */);
}
else if ((code & generate_jumps)) {
print_idecode_run_function_header(file, 0/*can stop*/, 0/*is definition*/);
print_jump_until_stop_body(file, table, cache_rules, 0 /* have stop argument */);
print_idecode_run_function_header(file, 1/*can stop*/, 0/*is definition*/);
print_jump_until_stop_body(file, table, cache_rules, 1/* have stop argument */);
}
else {
error("Something is wrong!\n");
}
}