8sa1-binutils-gdb/sim/mn10300/interp.c
1999-07-19 23:30:11 +00:00

1423 lines
31 KiB
C

#include <signal.h>
#if WITH_COMMON
#include "sim-main.h"
#include "sim-options.h"
#include "sim-hw.h"
#else
#include "mn10300_sim.h"
#endif
#include "sysdep.h"
#include "bfd.h"
#include "sim-assert.h"
#ifdef HAVE_STDLIB_H
#include <stdlib.h>
#endif
#ifdef HAVE_STRING_H
#include <string.h>
#else
#ifdef HAVE_STRINGS_H
#include <strings.h>
#endif
#endif
#include "bfd.h"
#ifndef INLINE
#ifdef __GNUC__
#define INLINE inline
#else
#define INLINE
#endif
#endif
host_callback *mn10300_callback;
int mn10300_debug;
struct _state State;
/* simulation target board. NULL=default configuration */
static char* board = NULL;
static DECLARE_OPTION_HANDLER (mn10300_option_handler);
enum {
OPTION_BOARD = OPTION_START,
};
static SIM_RC
mn10300_option_handler (sd, cpu, opt, arg, is_command)
SIM_DESC sd;
sim_cpu *cpu;
int opt;
char *arg;
int is_command;
{
int cpu_nr;
switch (opt)
{
case OPTION_BOARD:
{
if (arg)
{
board = zalloc(strlen(arg) + 1);
strcpy(board, arg);
}
return SIM_RC_OK;
}
}
return SIM_RC_OK;
}
static const OPTION mn10300_options[] =
{
#define BOARD_AM32 "stdeval1"
{ {"board", required_argument, NULL, OPTION_BOARD},
'\0', "none" /* rely on compile-time string concatenation for other options */
"|" BOARD_AM32
, "Customize simulation for a particular board.", mn10300_option_handler },
{ {NULL, no_argument, NULL, 0}, '\0', NULL, NULL, NULL }
};
#if WITH_COMMON
#else
static void dispatch PARAMS ((uint32, uint32, int));
static long hash PARAMS ((long));
static void init_system PARAMS ((void));
static SIM_OPEN_KIND sim_kind;
static char *myname;
#define MAX_HASH 127
struct hash_entry
{
struct hash_entry *next;
long opcode;
long mask;
struct simops *ops;
#ifdef HASH_STAT
unsigned long count;
#endif
};
static int max_mem = 0;
struct hash_entry hash_table[MAX_HASH+1];
/* This probably doesn't do a very good job at bucket filling, but
it's simple... */
static INLINE long
hash(insn)
long insn;
{
/* These are one byte insns, we special case these since, in theory,
they should be the most heavily used. */
if ((insn & 0xffffff00) == 0)
{
switch (insn & 0xf0)
{
case 0x00:
return 0x70;
case 0x40:
return 0x71;
case 0x10:
return 0x72;
case 0x30:
return 0x73;
case 0x50:
return 0x74;
case 0x60:
return 0x75;
case 0x70:
return 0x76;
case 0x80:
return 0x77;
case 0x90:
return 0x78;
case 0xa0:
return 0x79;
case 0xb0:
return 0x7a;
case 0xe0:
return 0x7b;
default:
return 0x7c;
}
}
/* These are two byte insns */
if ((insn & 0xffff0000) == 0)
{
if ((insn & 0xf000) == 0x2000
|| (insn & 0xf000) == 0x5000)
return ((insn & 0xfc00) >> 8) & 0x7f;
if ((insn & 0xf000) == 0x4000)
return ((insn & 0xf300) >> 8) & 0x7f;
if ((insn & 0xf000) == 0x8000
|| (insn & 0xf000) == 0x9000
|| (insn & 0xf000) == 0xa000
|| (insn & 0xf000) == 0xb000)
return ((insn & 0xf000) >> 8) & 0x7f;
if ((insn & 0xff00) == 0xf000
|| (insn & 0xff00) == 0xf100
|| (insn & 0xff00) == 0xf200
|| (insn & 0xff00) == 0xf500
|| (insn & 0xff00) == 0xf600)
return ((insn & 0xfff0) >> 4) & 0x7f;
if ((insn & 0xf000) == 0xc000)
return ((insn & 0xff00) >> 8) & 0x7f;
return ((insn & 0xffc0) >> 6) & 0x7f;
}
/* These are three byte insns. */
if ((insn & 0xff000000) == 0)
{
if ((insn & 0xf00000) == 0x000000)
return ((insn & 0xf30000) >> 16) & 0x7f;
if ((insn & 0xf00000) == 0x200000
|| (insn & 0xf00000) == 0x300000)
return ((insn & 0xfc0000) >> 16) & 0x7f;
if ((insn & 0xff0000) == 0xf80000)
return ((insn & 0xfff000) >> 12) & 0x7f;
if ((insn & 0xff0000) == 0xf90000)
return ((insn & 0xfffc00) >> 10) & 0x7f;
return ((insn & 0xff0000) >> 16) & 0x7f;
}
/* These are four byte or larger insns. */
if ((insn & 0xf0000000) == 0xf0000000)
return ((insn & 0xfff00000) >> 20) & 0x7f;
return ((insn & 0xff000000) >> 24) & 0x7f;
}
static INLINE void
dispatch (insn, extension, length)
uint32 insn;
uint32 extension;
int length;
{
struct hash_entry *h;
h = &hash_table[hash(insn)];
while ((insn & h->mask) != h->opcode
|| (length != h->ops->length))
{
if (!h->next)
{
(*mn10300_callback->printf_filtered) (mn10300_callback,
"ERROR looking up hash for 0x%x, PC=0x%x\n", insn, PC);
exit(1);
}
h = h->next;
}
#ifdef HASH_STAT
h->count++;
#endif
/* Now call the right function. */
(h->ops->func)(insn, extension);
PC += length;
}
void
sim_size (power)
int power;
{
if (State.mem)
free (State.mem);
max_mem = 1 << power;
State.mem = (uint8 *) calloc (1, 1 << power);
if (!State.mem)
{
(*mn10300_callback->printf_filtered) (mn10300_callback, "Allocation of main memory failed.\n");
exit (1);
}
}
static void
init_system ()
{
if (!State.mem)
sim_size(19);
}
int
sim_write (sd, addr, buffer, size)
SIM_DESC sd;
SIM_ADDR addr;
unsigned char *buffer;
int size;
{
int i;
init_system ();
for (i = 0; i < size; i++)
store_byte (addr + i, buffer[i]);
return size;
}
/* Compare two opcode table entries for qsort. */
static int
compare_simops (arg1, arg2)
const PTR arg1;
const PTR arg2;
{
unsigned long code1 = ((struct simops *)arg1)->opcode;
unsigned long code2 = ((struct simops *)arg2)->opcode;
if (code1 < code2)
return -1;
if (code2 < code1)
return 1;
return 0;
}
SIM_DESC
sim_open (kind, cb, abfd, argv)
SIM_OPEN_KIND kind;
host_callback *cb;
struct _bfd *abfd;
char **argv;
{
struct simops *s;
struct hash_entry *h;
char **p;
int i;
mn10300_callback = cb;
/* Sort the opcode array from smallest opcode to largest.
This will generally improve simulator performance as the smaller
opcodes are generally preferred to the larger opcodes. */
for (i = 0, s = Simops; s->func; s++, i++)
;
qsort (Simops, i, sizeof (Simops[0]), compare_simops);
sim_kind = kind;
myname = argv[0];
for (p = argv + 1; *p; ++p)
{
if (strcmp (*p, "-E") == 0)
++p; /* ignore endian spec */
else
#ifdef DEBUG
if (strcmp (*p, "-t") == 0)
mn10300_debug = DEBUG;
else
#endif
(*mn10300_callback->printf_filtered) (mn10300_callback, "ERROR: unsupported option(s): %s\n",*p);
}
/* put all the opcodes in the hash table */
for (s = Simops; s->func; s++)
{
h = &hash_table[hash(s->opcode)];
/* go to the last entry in the chain */
while (h->next)
{
/* Don't insert the same opcode more than once. */
if (h->opcode == s->opcode
&& h->mask == s->mask
&& h->ops == s)
break;
else
h = h->next;
}
/* Don't insert the same opcode more than once. */
if (h->opcode == s->opcode
&& h->mask == s->mask
&& h->ops == s)
continue;
if (h->ops)
{
h->next = calloc(1,sizeof(struct hash_entry));
h = h->next;
}
h->ops = s;
h->mask = s->mask;
h->opcode = s->opcode;
#if HASH_STAT
h->count = 0;
#endif
}
/* fudge our descriptor for now */
return (SIM_DESC) 1;
}
void
sim_close (sd, quitting)
SIM_DESC sd;
int quitting;
{
/* nothing to do */
}
void
sim_set_profile (n)
int n;
{
(*mn10300_callback->printf_filtered) (mn10300_callback, "sim_set_profile %d\n", n);
}
void
sim_set_profile_size (n)
int n;
{
(*mn10300_callback->printf_filtered) (mn10300_callback, "sim_set_profile_size %d\n", n);
}
int
sim_stop (sd)
SIM_DESC sd;
{
return 0;
}
void
sim_resume (sd, step, siggnal)
SIM_DESC sd;
int step, siggnal;
{
uint32 inst;
reg_t oldpc;
struct hash_entry *h;
if (step)
State.exception = SIGTRAP;
else
State.exception = 0;
State.exited = 0;
do
{
unsigned long insn, extension;
/* Fetch the current instruction. */
inst = load_mem_big (PC, 2);
oldpc = PC;
/* Using a giant case statement may seem like a waste because of the
code/rodata size the table itself will consume. However, using
a giant case statement speeds up the simulator by 10-15% by avoiding
cascading if/else statements or cascading case statements. */
switch ((inst >> 8) & 0xff)
{
/* All the single byte insns except 0x80, 0x90, 0xa0, 0xb0
which must be handled specially. */
case 0x00:
case 0x04:
case 0x08:
case 0x0c:
case 0x10:
case 0x11:
case 0x12:
case 0x13:
case 0x14:
case 0x15:
case 0x16:
case 0x17:
case 0x18:
case 0x19:
case 0x1a:
case 0x1b:
case 0x1c:
case 0x1d:
case 0x1e:
case 0x1f:
case 0x3c:
case 0x3d:
case 0x3e:
case 0x3f:
case 0x40:
case 0x41:
case 0x44:
case 0x45:
case 0x48:
case 0x49:
case 0x4c:
case 0x4d:
case 0x50:
case 0x51:
case 0x52:
case 0x53:
case 0x54:
case 0x55:
case 0x56:
case 0x57:
case 0x60:
case 0x61:
case 0x62:
case 0x63:
case 0x64:
case 0x65:
case 0x66:
case 0x67:
case 0x68:
case 0x69:
case 0x6a:
case 0x6b:
case 0x6c:
case 0x6d:
case 0x6e:
case 0x6f:
case 0x70:
case 0x71:
case 0x72:
case 0x73:
case 0x74:
case 0x75:
case 0x76:
case 0x77:
case 0x78:
case 0x79:
case 0x7a:
case 0x7b:
case 0x7c:
case 0x7d:
case 0x7e:
case 0x7f:
case 0xcb:
case 0xd0:
case 0xd1:
case 0xd2:
case 0xd3:
case 0xd4:
case 0xd5:
case 0xd6:
case 0xd7:
case 0xd8:
case 0xd9:
case 0xda:
case 0xdb:
case 0xe0:
case 0xe1:
case 0xe2:
case 0xe3:
case 0xe4:
case 0xe5:
case 0xe6:
case 0xe7:
case 0xe8:
case 0xe9:
case 0xea:
case 0xeb:
case 0xec:
case 0xed:
case 0xee:
case 0xef:
case 0xff:
insn = (inst >> 8) & 0xff;
extension = 0;
dispatch (insn, extension, 1);
break;
/* Special cases where dm == dn is used to encode a different
instruction. */
case 0x80:
case 0x85:
case 0x8a:
case 0x8f:
case 0x90:
case 0x95:
case 0x9a:
case 0x9f:
case 0xa0:
case 0xa5:
case 0xaa:
case 0xaf:
case 0xb0:
case 0xb5:
case 0xba:
case 0xbf:
insn = inst;
extension = 0;
dispatch (insn, extension, 2);
break;
case 0x81:
case 0x82:
case 0x83:
case 0x84:
case 0x86:
case 0x87:
case 0x88:
case 0x89:
case 0x8b:
case 0x8c:
case 0x8d:
case 0x8e:
case 0x91:
case 0x92:
case 0x93:
case 0x94:
case 0x96:
case 0x97:
case 0x98:
case 0x99:
case 0x9b:
case 0x9c:
case 0x9d:
case 0x9e:
case 0xa1:
case 0xa2:
case 0xa3:
case 0xa4:
case 0xa6:
case 0xa7:
case 0xa8:
case 0xa9:
case 0xab:
case 0xac:
case 0xad:
case 0xae:
case 0xb1:
case 0xb2:
case 0xb3:
case 0xb4:
case 0xb6:
case 0xb7:
case 0xb8:
case 0xb9:
case 0xbb:
case 0xbc:
case 0xbd:
case 0xbe:
insn = (inst >> 8) & 0xff;
extension = 0;
dispatch (insn, extension, 1);
break;
/* The two byte instructions. */
case 0x20:
case 0x21:
case 0x22:
case 0x23:
case 0x28:
case 0x29:
case 0x2a:
case 0x2b:
case 0x42:
case 0x43:
case 0x46:
case 0x47:
case 0x4a:
case 0x4b:
case 0x4e:
case 0x4f:
case 0x58:
case 0x59:
case 0x5a:
case 0x5b:
case 0x5c:
case 0x5d:
case 0x5e:
case 0x5f:
case 0xc0:
case 0xc1:
case 0xc2:
case 0xc3:
case 0xc4:
case 0xc5:
case 0xc6:
case 0xc7:
case 0xc8:
case 0xc9:
case 0xca:
case 0xce:
case 0xcf:
case 0xf0:
case 0xf1:
case 0xf2:
case 0xf3:
case 0xf4:
case 0xf5:
case 0xf6:
insn = inst;
extension = 0;
dispatch (insn, extension, 2);
break;
/* The three byte insns with a 16bit operand in little endian
format. */
case 0x01:
case 0x02:
case 0x03:
case 0x05:
case 0x06:
case 0x07:
case 0x09:
case 0x0a:
case 0x0b:
case 0x0d:
case 0x0e:
case 0x0f:
case 0x24:
case 0x25:
case 0x26:
case 0x27:
case 0x2c:
case 0x2d:
case 0x2e:
case 0x2f:
case 0x30:
case 0x31:
case 0x32:
case 0x33:
case 0x34:
case 0x35:
case 0x36:
case 0x37:
case 0x38:
case 0x39:
case 0x3a:
case 0x3b:
case 0xcc:
insn = load_byte (PC);
insn <<= 16;
insn |= load_half (PC + 1);
extension = 0;
dispatch (insn, extension, 3);
break;
/* The three byte insns without 16bit operand. */
case 0xde:
case 0xdf:
case 0xf8:
case 0xf9:
insn = load_mem_big (PC, 3);
extension = 0;
dispatch (insn, extension, 3);
break;
/* Four byte insns. */
case 0xfa:
case 0xfb:
if ((inst & 0xfffc) == 0xfaf0
|| (inst & 0xfffc) == 0xfaf4
|| (inst & 0xfffc) == 0xfaf8)
insn = load_mem_big (PC, 4);
else
{
insn = inst;
insn <<= 16;
insn |= load_half (PC + 2);
extension = 0;
}
dispatch (insn, extension, 4);
break;
/* Five byte insns. */
case 0xcd:
insn = load_byte (PC);
insn <<= 24;
insn |= (load_half (PC + 1) << 8);
insn |= load_byte (PC + 3);
extension = load_byte (PC + 4);
dispatch (insn, extension, 5);
break;
case 0xdc:
insn = load_byte (PC);
insn <<= 24;
extension = load_word (PC + 1);
insn |= (extension & 0xffffff00) >> 8;
extension &= 0xff;
dispatch (insn, extension, 5);
break;
/* Six byte insns. */
case 0xfc:
case 0xfd:
insn = (inst << 16);
extension = load_word (PC + 2);
insn |= ((extension & 0xffff0000) >> 16);
extension &= 0xffff;
dispatch (insn, extension, 6);
break;
case 0xdd:
insn = load_byte (PC) << 24;
extension = load_word (PC + 1);
insn |= ((extension >> 8) & 0xffffff);
extension = (extension & 0xff) << 16;
extension |= load_byte (PC + 5) << 8;
extension |= load_byte (PC + 6);
dispatch (insn, extension, 7);
break;
case 0xfe:
insn = inst << 16;
extension = load_word (PC + 2);
insn |= ((extension >> 16) & 0xffff);
extension <<= 8;
extension &= 0xffff00;
extension |= load_byte (PC + 6);
dispatch (insn, extension, 7);
break;
default:
abort ();
}
}
while (!State.exception);
#ifdef HASH_STAT
{
int i;
for (i = 0; i < MAX_HASH; i++)
{
struct hash_entry *h;
h = &hash_table[i];
printf("hash 0x%x:\n", i);
while (h)
{
printf("h->opcode = 0x%x, count = 0x%x\n", h->opcode, h->count);
h = h->next;
}
printf("\n\n");
}
fflush (stdout);
}
#endif
}
int
sim_trace (sd)
SIM_DESC sd;
{
#ifdef DEBUG
mn10300_debug = DEBUG;
#endif
sim_resume (sd, 0, 0);
return 1;
}
void
sim_info (sd, verbose)
SIM_DESC sd;
int verbose;
{
(*mn10300_callback->printf_filtered) (mn10300_callback, "sim_info\n");
}
SIM_RC
sim_create_inferior (sd, abfd, argv, env)
SIM_DESC sd;
struct _bfd *abfd;
char **argv;
char **env;
{
if (abfd != NULL)
PC = bfd_get_start_address (abfd);
else
PC = 0;
return SIM_RC_OK;
}
void
sim_set_callbacks (p)
host_callback *p;
{
mn10300_callback = p;
}
/* All the code for exiting, signals, etc needs to be revamped.
This is enough to get c-torture limping though. */
void
sim_stop_reason (sd, reason, sigrc)
SIM_DESC sd;
enum sim_stop *reason;
int *sigrc;
{
if (State.exited)
*reason = sim_exited;
else
*reason = sim_stopped;
if (State.exception == SIGQUIT)
*sigrc = 0;
else
*sigrc = State.exception;
}
int
sim_read (sd, addr, buffer, size)
SIM_DESC sd;
SIM_ADDR addr;
unsigned char *buffer;
int size;
{
int i;
for (i = 0; i < size; i++)
buffer[i] = load_byte (addr + i);
return size;
}
void
sim_do_command (sd, cmd)
SIM_DESC sd;
char *cmd;
{
(*mn10300_callback->printf_filtered) (mn10300_callback, "\"%s\" is not a valid mn10300 simulator command.\n", cmd);
}
SIM_RC
sim_load (sd, prog, abfd, from_tty)
SIM_DESC sd;
char *prog;
bfd *abfd;
int from_tty;
{
extern bfd *sim_load_file (); /* ??? Don't know where this should live. */
bfd *prog_bfd;
prog_bfd = sim_load_file (sd, myname, mn10300_callback, prog, abfd,
sim_kind == SIM_OPEN_DEBUG,
0, sim_write);
if (prog_bfd == NULL)
return SIM_RC_FAIL;
if (abfd == NULL)
bfd_close (prog_bfd);
return SIM_RC_OK;
}
#endif /* not WITH_COMMON */
#if WITH_COMMON
/* For compatibility */
SIM_DESC simulator;
/* These default values correspond to expected usage for the chip. */
SIM_DESC
sim_open (kind, cb, abfd, argv)
SIM_OPEN_KIND kind;
host_callback *cb;
struct _bfd *abfd;
char **argv;
{
SIM_DESC sd = sim_state_alloc (kind, cb);
mn10300_callback = cb;
SIM_ASSERT (STATE_MAGIC (sd) == SIM_MAGIC_NUMBER);
/* for compatibility */
simulator = sd;
/* FIXME: should be better way of setting up interrupts. For
moment, only support watchpoints causing a breakpoint (gdb
halt). */
STATE_WATCHPOINTS (sd)->pc = &(PC);
STATE_WATCHPOINTS (sd)->sizeof_pc = sizeof (PC);
STATE_WATCHPOINTS (sd)->interrupt_handler = NULL;
STATE_WATCHPOINTS (sd)->interrupt_names = NULL;
if (sim_pre_argv_init (sd, argv[0]) != SIM_RC_OK)
return 0;
sim_add_option_table (sd, NULL, mn10300_options);
/* Allocate core managed memory */
sim_do_command (sd, "memory region 0,0x100000");
sim_do_command (sd, "memory region 0x40000000,0x200000");
/* getopt will print the error message so we just have to exit if this fails.
FIXME: Hmmm... in the case of gdb we need getopt to call
print_filtered. */
if (sim_parse_args (sd, argv) != SIM_RC_OK)
{
/* Uninstall the modules to avoid memory leaks,
file descriptor leaks, etc. */
sim_module_uninstall (sd);
return 0;
}
if ( NULL != board
&& (strcmp(board, BOARD_AM32) == 0 ) )
{
/* environment */
STATE_ENVIRONMENT (sd) = OPERATING_ENVIRONMENT;
sim_do_command (sd, "memory region 0x44000000,0x40000");
sim_do_command (sd, "memory region 0x48000000,0x400000");
/* device support for mn1030002 */
/* interrupt controller */
sim_hw_parse (sd, "/mn103int@0x34000100/reg 0x34000100 0x7C 0x34000200 0x8 0x34000280 0x8");
/* DEBUG: NMI input's */
sim_hw_parse (sd, "/glue@0x30000000/reg 0x30000000 12");
sim_hw_parse (sd, "/glue@0x30000000 > int0 nmirq /mn103int");
sim_hw_parse (sd, "/glue@0x30000000 > int1 watchdog /mn103int");
sim_hw_parse (sd, "/glue@0x30000000 > int2 syserr /mn103int");
/* DEBUG: ACK input */
sim_hw_parse (sd, "/glue@0x30002000/reg 0x30002000 4");
sim_hw_parse (sd, "/glue@0x30002000 > int ack /mn103int");
/* DEBUG: LEVEL output */
sim_hw_parse (sd, "/glue@0x30004000/reg 0x30004000 8");
sim_hw_parse (sd, "/mn103int > nmi int0 /glue@0x30004000");
sim_hw_parse (sd, "/mn103int > level int1 /glue@0x30004000");
/* DEBUG: A bunch of interrupt inputs */
sim_hw_parse (sd, "/glue@0x30006000/reg 0x30006000 32");
sim_hw_parse (sd, "/glue@0x30006000 > int0 irq-0 /mn103int");
sim_hw_parse (sd, "/glue@0x30006000 > int1 irq-1 /mn103int");
sim_hw_parse (sd, "/glue@0x30006000 > int2 irq-2 /mn103int");
sim_hw_parse (sd, "/glue@0x30006000 > int3 irq-3 /mn103int");
sim_hw_parse (sd, "/glue@0x30006000 > int4 irq-4 /mn103int");
sim_hw_parse (sd, "/glue@0x30006000 > int5 irq-5 /mn103int");
sim_hw_parse (sd, "/glue@0x30006000 > int6 irq-6 /mn103int");
sim_hw_parse (sd, "/glue@0x30006000 > int7 irq-7 /mn103int");
/* processor interrupt device */
/* the device */
sim_hw_parse (sd, "/mn103cpu@0x20000000");
sim_hw_parse (sd, "/mn103cpu@0x20000000/reg 0x20000000 0x42");
/* DEBUG: ACK output wired upto a glue device */
sim_hw_parse (sd, "/glue@0x20002000");
sim_hw_parse (sd, "/glue@0x20002000/reg 0x20002000 4");
sim_hw_parse (sd, "/mn103cpu > ack int0 /glue@0x20002000");
/* DEBUG: RESET/NMI/LEVEL wired up to a glue device */
sim_hw_parse (sd, "/glue@0x20004000");
sim_hw_parse (sd, "/glue@0x20004000/reg 0x20004000 12");
sim_hw_parse (sd, "/glue@0x20004000 > int0 reset /mn103cpu");
sim_hw_parse (sd, "/glue@0x20004000 > int1 nmi /mn103cpu");
sim_hw_parse (sd, "/glue@0x20004000 > int2 level /mn103cpu");
/* REAL: The processor wired up to the real interrupt controller */
sim_hw_parse (sd, "/mn103cpu > ack ack /mn103int");
sim_hw_parse (sd, "/mn103int > level level /mn103cpu");
sim_hw_parse (sd, "/mn103int > nmi nmi /mn103cpu");
/* PAL */
/* the device */
sim_hw_parse (sd, "/pal@0x31000000");
sim_hw_parse (sd, "/pal@0x31000000/reg 0x31000000 64");
sim_hw_parse (sd, "/pal@0x31000000/poll? true");
/* DEBUG: PAL wired up to a glue device */
sim_hw_parse (sd, "/glue@0x31002000");
sim_hw_parse (sd, "/glue@0x31002000/reg 0x31002000 16");
sim_hw_parse (sd, "/pal@0x31000000 > countdown int0 /glue@0x31002000");
sim_hw_parse (sd, "/pal@0x31000000 > timer int1 /glue@0x31002000");
sim_hw_parse (sd, "/pal@0x31000000 > int int2 /glue@0x31002000");
sim_hw_parse (sd, "/glue@0x31002000 > int0 int3 /glue@0x31002000");
sim_hw_parse (sd, "/glue@0x31002000 > int1 int3 /glue@0x31002000");
sim_hw_parse (sd, "/glue@0x31002000 > int2 int3 /glue@0x31002000");
/* REAL: The PAL wired up to the real interrupt controller */
sim_hw_parse (sd, "/pal@0x31000000 > countdown irq-0 /mn103int");
sim_hw_parse (sd, "/pal@0x31000000 > timer irq-1 /mn103int");
sim_hw_parse (sd, "/pal@0x31000000 > int irq-2 /mn103int");
/* 8 and 16 bit timers */
sim_hw_parse (sd, "/mn103tim@0x34001000/reg 0x34001000 36 0x34001080 100 0x34004000 16");
/* Hook timer interrupts up to interrupt controller */
sim_hw_parse (sd, "/mn103tim > timer-0-underflow timer-0-underflow /mn103int");
sim_hw_parse (sd, "/mn103tim > timer-1-underflow timer-1-underflow /mn103int");
sim_hw_parse (sd, "/mn103tim > timer-2-underflow timer-2-underflow /mn103int");
sim_hw_parse (sd, "/mn103tim > timer-3-underflow timer-3-underflow /mn103int");
sim_hw_parse (sd, "/mn103tim > timer-4-underflow timer-4-underflow /mn103int");
sim_hw_parse (sd, "/mn103tim > timer-5-underflow timer-5-underflow /mn103int");
sim_hw_parse (sd, "/mn103tim > timer-6-underflow timer-6-underflow /mn103int");
sim_hw_parse (sd, "/mn103tim > timer-6-compare-a timer-6-compare-a /mn103int");
sim_hw_parse (sd, "/mn103tim > timer-6-compare-b timer-6-compare-b /mn103int");
/* Serial devices 0,1,2 */
sim_hw_parse (sd, "/mn103ser@0x34000800/reg 0x34000800 48");
sim_hw_parse (sd, "/mn103ser@0x34000800/poll? true");
/* Hook serial interrupts up to interrupt controller */
sim_hw_parse (sd, "/mn103ser > serial-0-receive serial-0-receive /mn103int");
sim_hw_parse (sd, "/mn103ser > serial-0-transmit serial-0-transmit /mn103int");
sim_hw_parse (sd, "/mn103ser > serial-1-receive serial-1-receive /mn103int");
sim_hw_parse (sd, "/mn103ser > serial-1-transmit serial-1-transmit /mn103int");
sim_hw_parse (sd, "/mn103ser > serial-2-receive serial-2-receive /mn103int");
sim_hw_parse (sd, "/mn103ser > serial-2-transmit serial-2-transmit /mn103int");
sim_hw_parse (sd, "/mn103iop@0x36008000/reg 0x36008000 8 0x36008020 8 0x36008040 0xc 0x36008060 8 0x36008080 8");
/* Memory control registers */
sim_do_command (sd, "memory region 0x32000020,0x30");
/* Cache control register */
sim_do_command (sd, "memory region 0x20000070,0x4");
/* Cache purge regions */
sim_do_command (sd, "memory region 0x28400000,0x800");
sim_do_command (sd, "memory region 0x28401000,0x800");
/* DMA registers */
sim_do_command (sd, "memory region 0x32000100,0xF");
sim_do_command (sd, "memory region 0x32000200,0xF");
sim_do_command (sd, "memory region 0x32000400,0xF");
sim_do_command (sd, "memory region 0x32000800,0xF");
}
else
{
if (board != NULL)
{
sim_io_eprintf (sd, "Error: Board `%s' unknown.\n", board);
return 0;
}
}
/* check for/establish the a reference program image */
if (sim_analyze_program (sd,
(STATE_PROG_ARGV (sd) != NULL
? *STATE_PROG_ARGV (sd)
: NULL),
abfd) != SIM_RC_OK)
{
sim_module_uninstall (sd);
return 0;
}
/* establish any remaining configuration options */
if (sim_config (sd) != SIM_RC_OK)
{
sim_module_uninstall (sd);
return 0;
}
if (sim_post_argv_init (sd) != SIM_RC_OK)
{
/* Uninstall the modules to avoid memory leaks,
file descriptor leaks, etc. */
sim_module_uninstall (sd);
return 0;
}
/* set machine specific configuration */
/* STATE_CPU (sd, 0)->psw_mask = (PSW_NP | PSW_EP | PSW_ID | PSW_SAT */
/* | PSW_CY | PSW_OV | PSW_S | PSW_Z); */
return sd;
}
void
sim_close (sd, quitting)
SIM_DESC sd;
int quitting;
{
sim_module_uninstall (sd);
}
SIM_RC
sim_create_inferior (sd, prog_bfd, argv, env)
SIM_DESC sd;
struct _bfd *prog_bfd;
char **argv;
char **env;
{
memset (&State, 0, sizeof (State));
if (prog_bfd != NULL) {
PC = bfd_get_start_address (prog_bfd);
} else {
PC = 0;
}
CIA_SET (STATE_CPU (sd, 0), (unsigned64) PC);
return SIM_RC_OK;
}
void
sim_do_command (sd, cmd)
SIM_DESC sd;
char *cmd;
{
char *mm_cmd = "memory-map";
char *int_cmd = "interrupt";
if (sim_args_command (sd, cmd) != SIM_RC_OK)
{
if (strncmp (cmd, mm_cmd, strlen (mm_cmd) == 0))
sim_io_eprintf (sd, "`memory-map' command replaced by `sim memory'\n");
else if (strncmp (cmd, int_cmd, strlen (int_cmd)) == 0)
sim_io_eprintf (sd, "`interrupt' command replaced by `sim watch'\n");
else
sim_io_eprintf (sd, "Unknown command `%s'\n", cmd);
}
}
#endif /* WITH_COMMON */
/* FIXME These would more efficient to use than load_mem/store_mem,
but need to be changed to use the memory map. */
uint8
get_byte (x)
uint8 *x;
{
return *x;
}
uint16
get_half (x)
uint8 *x;
{
uint8 *a = x;
return (a[1] << 8) + (a[0]);
}
uint32
get_word (x)
uint8 *x;
{
uint8 *a = x;
return (a[3]<<24) + (a[2]<<16) + (a[1]<<8) + (a[0]);
}
void
put_byte (addr, data)
uint8 *addr;
uint8 data;
{
uint8 *a = addr;
a[0] = data;
}
void
put_half (addr, data)
uint8 *addr;
uint16 data;
{
uint8 *a = addr;
a[0] = data & 0xff;
a[1] = (data >> 8) & 0xff;
}
void
put_word (addr, data)
uint8 *addr;
uint32 data;
{
uint8 *a = addr;
a[0] = data & 0xff;
a[1] = (data >> 8) & 0xff;
a[2] = (data >> 16) & 0xff;
a[3] = (data >> 24) & 0xff;
}
int
sim_fetch_register (sd, rn, memory, length)
SIM_DESC sd;
int rn;
unsigned char *memory;
int length;
{
put_word (memory, State.regs[rn]);
return -1;
}
int
sim_store_register (sd, rn, memory, length)
SIM_DESC sd;
int rn;
unsigned char *memory;
int length;
{
State.regs[rn] = get_word (memory);
return -1;
}
void
mn10300_core_signal (SIM_DESC sd,
sim_cpu *cpu,
sim_cia cia,
unsigned map,
int nr_bytes,
address_word addr,
transfer_type transfer,
sim_core_signals sig)
{
const char *copy = (transfer == read_transfer ? "read" : "write");
address_word ip = CIA_ADDR (cia);
switch (sig)
{
case sim_core_unmapped_signal:
sim_io_eprintf (sd, "mn10300-core: %d byte %s to unmapped address 0x%lx at 0x%lx\n",
nr_bytes, copy,
(unsigned long) addr, (unsigned long) ip);
program_interrupt(sd, cpu, cia, SIM_SIGSEGV);
break;
case sim_core_unaligned_signal:
sim_io_eprintf (sd, "mn10300-core: %d byte %s to unaligned address 0x%lx at 0x%lx\n",
nr_bytes, copy,
(unsigned long) addr, (unsigned long) ip);
program_interrupt(sd, cpu, cia, SIM_SIGBUS);
break;
default:
sim_engine_abort (sd, cpu, cia,
"mn10300_core_signal - internal error - bad switch");
}
}
void
program_interrupt (SIM_DESC sd,
sim_cpu *cpu,
sim_cia cia,
SIM_SIGNAL sig)
{
int status;
struct hw *device;
static int in_interrupt = 0;
#ifdef SIM_CPU_EXCEPTION_TRIGGER
SIM_CPU_EXCEPTION_TRIGGER(sd,cpu,cia);
#endif
/* avoid infinite recursion */
if (in_interrupt)
{
(*mn10300_callback->printf_filtered) (mn10300_callback,
"ERROR: recursion in program_interrupt during software exception dispatch.");
}
else
{
in_interrupt = 1;
/* copy NMI handler code from dv-mn103cpu.c */
store_word (SP - 4, CIA_GET (cpu));
store_half (SP - 8, PSW);
/* Set the SYSEF flag in NMICR by backdoor method. See
dv-mn103int.c:write_icr(). This is necessary because
software exceptions are not modelled by actually talking to
the interrupt controller, so it cannot set its own SYSEF
flag. */
if ((NULL != board) && (strcmp(board, BOARD_AM32) == 0))
store_byte (0x34000103, 0x04);
}
PSW &= ~PSW_IE;
SP = SP - 8;
CIA_SET (cpu, 0x40000008);
in_interrupt = 0;
sim_engine_halt(sd, cpu, NULL, cia, sim_stopped, sig);
}
void
mn10300_cpu_exception_trigger(SIM_DESC sd, sim_cpu* cpu, address_word cia)
{
ASSERT(cpu != NULL);
if(State.exc_suspended > 0)
sim_io_eprintf(sd, "Warning, nested exception triggered (%d)\n", State.exc_suspended);
CIA_SET (cpu, cia);
memcpy(State.exc_trigger_regs, State.regs, sizeof(State.exc_trigger_regs));
State.exc_suspended = 0;
}
void
mn10300_cpu_exception_suspend(SIM_DESC sd, sim_cpu* cpu, int exception)
{
ASSERT(cpu != NULL);
if(State.exc_suspended > 0)
sim_io_eprintf(sd, "Warning, nested exception signal (%d then %d)\n",
State.exc_suspended, exception);
memcpy(State.exc_suspend_regs, State.regs, sizeof(State.exc_suspend_regs));
memcpy(State.regs, State.exc_trigger_regs, sizeof(State.regs));
CIA_SET (cpu, PC); /* copy PC back from new State.regs */
State.exc_suspended = exception;
}
void
mn10300_cpu_exception_resume(SIM_DESC sd, sim_cpu* cpu, int exception)
{
ASSERT(cpu != NULL);
if(exception == 0 && State.exc_suspended > 0)
{
if(State.exc_suspended != SIGTRAP) /* warn not for breakpoints */
sim_io_eprintf(sd, "Warning, resuming but ignoring pending exception signal (%d)\n",
State.exc_suspended);
}
else if(exception != 0 && State.exc_suspended > 0)
{
if(exception != State.exc_suspended)
sim_io_eprintf(sd, "Warning, resuming with mismatched exception signal (%d vs %d)\n",
State.exc_suspended, exception);
memcpy(State.regs, State.exc_suspend_regs, sizeof(State.regs));
CIA_SET (cpu, PC); /* copy PC back from new State.regs */
}
else if(exception != 0 && State.exc_suspended == 0)
{
sim_io_eprintf(sd, "Warning, ignoring spontanous exception signal (%d)\n", exception);
}
State.exc_suspended = 0;
}