8sa1-binutils-gdb/gdb/vax-tdep.c
Jason Thorpe f267bd6a08 * Makefile.in (vax-tdep.o): Add $(arch_utils_h), $(inferior_h),
and vax-tdep.h.
* vax-tdep.h: New file.
* vax-tdep.c: Include inferior.h, arch-utils.h, and vax-tdep.h.
Make several routines static.
(vax_get_saved_register): New function.
(vax_gdbarch_init): New function.
(_initialize_vax_tdep): Register vax_gdbarch_init.
* config/vax/tm-vax.h: Set GDB_MULTI_ARCH to GDB_MULTI_ARCH_PARTIAL.
Remove macros now under the control of gdbarch.
2002-04-23 00:53:31 +00:00

710 lines
20 KiB
C
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/* Print VAX instructions for GDB, the GNU debugger.
Copyright 1986, 1989, 1991, 1992, 1995, 1996, 1998, 1999, 2000, 2002
Free Software Foundation, Inc.
This file is part of GDB.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA. */
#include "defs.h"
#include "symtab.h"
#include "opcode/vax.h"
#include "gdbcore.h"
#include "inferior.h"
#include "regcache.h"
#include "frame.h"
#include "value.h"
#include "arch-utils.h"
#include "vax-tdep.h"
static gdbarch_register_name_ftype vax_register_name;
static gdbarch_register_byte_ftype vax_register_byte;
static gdbarch_register_raw_size_ftype vax_register_raw_size;
static gdbarch_register_virtual_size_ftype vax_register_virtual_size;
static gdbarch_register_virtual_type_ftype vax_register_virtual_type;
static gdbarch_skip_prologue_ftype vax_skip_prologue;
static gdbarch_saved_pc_after_call_ftype vax_saved_pc_after_call;
static gdbarch_frame_num_args_ftype vax_frame_num_args;
static gdbarch_frame_chain_ftype vax_frame_chain;
static gdbarch_frame_saved_pc_ftype vax_frame_saved_pc;
static gdbarch_frame_args_address_ftype vax_frame_args_address;
static gdbarch_frame_locals_address_ftype vax_frame_locals_address;
static gdbarch_frame_init_saved_regs_ftype vax_frame_init_saved_regs;
static gdbarch_get_saved_register_ftype vax_get_saved_register;
static gdbarch_store_struct_return_ftype vax_store_struct_return;
static gdbarch_extract_return_value_ftype vax_extract_return_value;
static gdbarch_store_return_value_ftype vax_store_return_value;
static gdbarch_extract_struct_value_address_ftype
vax_extract_struct_value_address;
static gdbarch_push_dummy_frame_ftype vax_push_dummy_frame;
static gdbarch_pop_frame_ftype vax_pop_frame;
static gdbarch_fix_call_dummy_ftype vax_fix_call_dummy;
/* Return 1 if P points to an invalid floating point value.
LEN is the length in bytes -- not relevant on the Vax. */
/* FIXME: cagney/2002-01-19: The macro below was originally defined in
tm-vax.h and used in values.c. Two problems. Firstly this is a
very non-portable and secondly it is wrong. The VAX should be
using floatformat and associated methods to identify and handle
invalid floating-point values. Adding to the poor target's woes
there is no floatformat_vax_{f,d} and no TARGET_FLOAT_FORMAT
et.al.. */
/* FIXME: cagney/2002-01-19: It turns out that the only thing that
uses this macro is the vax disassembler code (so how old is this
target?). This target should instead be using the opcodes
disassembler. That allowing the macro to be eliminated. */
#define INVALID_FLOAT(p, len) ((*(short *) p & 0xff80) == 0x8000)
/* Vax instructions are never longer than this. */
#define MAXLEN 62
/* Number of elements in the opcode table. */
#define NOPCODES (sizeof votstrs / sizeof votstrs[0])
static unsigned char *print_insn_arg ();
static char *
vax_register_name (int regno)
{
static char *register_names[] =
{
"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
"r8", "r9", "r10", "r11", "ap", "fp", "sp", "pc",
"ps",
};
if (regno < 0)
return (NULL);
if (regno >= (sizeof(register_names) / sizeof(*register_names)))
return (NULL);
return (register_names[regno]);
}
static int
vax_register_byte (int regno)
{
return (regno * 4);
}
static int
vax_register_raw_size (int regno)
{
return (4);
}
static int
vax_register_virtual_size (int regno)
{
return (4);
}
static struct type *
vax_register_virtual_type (int regno)
{
return (builtin_type_int);
}
static void
vax_get_saved_register (char *raw_buffer, int *optimized, CORE_ADDR *addrp,
struct frame_info *frame, int regnum,
enum lval_type *lval)
{
CORE_ADDR addr;
if (!target_has_registers)
error ("No registers.");
/* Normal systems don't optimize out things with register numbers. */
if (optimized != NULL)
*optimized = 0;
addr = find_saved_register (frame, regnum);
if (addr != 0)
{
if (lval != NULL)
*lval = lval_memory;
if (regnum == SP_REGNUM)
{
if (raw_buffer != NULL)
{
/* Put it back in target format. */
store_address (raw_buffer, REGISTER_RAW_SIZE (regnum),
(LONGEST) addr);
}
if (addrp != NULL)
*addrp = 0;
return;
}
if (raw_buffer != NULL)
target_read_memory (addr, raw_buffer, REGISTER_RAW_SIZE (regnum));
}
else
{
if (lval != NULL)
*lval = lval_register;
addr = REGISTER_BYTE (regnum);
if (raw_buffer != NULL)
read_register_gen (regnum, raw_buffer);
}
if (addrp != NULL)
*addrp = addr;
}
static void
vax_frame_init_saved_regs (struct frame_info *frame)
{
int regnum, regmask;
CORE_ADDR next_addr;
if (frame->saved_regs)
return;
frame_saved_regs_zalloc (frame);
regmask = read_memory_integer (frame->frame + 4, 4) >> 16;
next_addr = frame->frame + 16;
/* regmask's low bit is for register 0, which is the first one
what would be pushed. */
for (regnum = 0; regnum < AP_REGNUM; regnum++)
{
if (regmask & (1 << regnum))
frame->saved_regs[regnum] = next_addr += 4;
}
frame->saved_regs[SP_REGNUM] = next_addr + 4;
if (regmask & (1 << FP_REGNUM))
frame->saved_regs[SP_REGNUM] +=
4 + (4 * read_memory_integer (next_addr + 4, 4));
frame->saved_regs[PC_REGNUM] = frame->frame + 16;
frame->saved_regs[FP_REGNUM] = frame->frame + 12;
frame->saved_regs[AP_REGNUM] = frame->frame + 8;
frame->saved_regs[PS_REGNUM] = frame->frame + 4;
}
static CORE_ADDR
vax_frame_saved_pc (struct frame_info *frame)
{
if (frame->signal_handler_caller)
return (sigtramp_saved_pc (frame)); /* XXXJRT */
return (read_memory_integer (frame->frame + 16, 4));
}
CORE_ADDR
vax_frame_args_address_correct (struct frame_info *frame)
{
/* Cannot find the AP register value directly from the FP value. Must
find it saved in the frame called by this one, or in the AP register
for the innermost frame. However, there is no way to tell the
difference between the innermost frame and a frame for which we
just don't know the frame that it called (e.g. "info frame 0x7ffec789").
For the sake of argument, suppose that the stack is somewhat trashed
(which is one reason that "info frame" exists). So, return 0 (indicating
we don't know the address of the arglist) if we don't know what frame
this frame calls. */
if (frame->next)
return (read_memory_integer (frame->next->frame + 8, 4));
return (0);
}
static CORE_ADDR
vax_frame_args_address (struct frame_info *frame)
{
/* In most of GDB, getting the args address is too important to
just say "I don't know". This is sometimes wrong for functions
that aren't on top of the stack, but c'est la vie. */
if (frame->next)
return (read_memory_integer (frame->next->frame + 8, 4));
return (read_register (AP_REGNUM));
}
static CORE_ADDR
vax_frame_locals_address (struct frame_info *frame)
{
return (frame->frame);
}
static int
vax_frame_num_args (struct frame_info *fi)
{
return (0xff & read_memory_integer (FRAME_ARGS_ADDRESS (fi), 1));
}
static CORE_ADDR
vax_frame_chain (struct frame_info *frame)
{
/* In the case of the VAX, the frame's nominal address is the FP value,
and 12 bytes later comes the saved previous FP value as a 4-byte word. */
if (inside_entry_file (frame->pc))
return (0);
return (read_memory_integer (frame->frame + 12, 4));
}
static void
vax_push_dummy_frame (void)
{
CORE_ADDR sp = read_register (SP_REGNUM);
int regnum;
sp = push_word (sp, 0); /* arglist */
for (regnum = 11; regnum >= 0; regnum--)
sp = push_word (sp, read_register (regnum));
sp = push_word (sp, read_register (PC_REGNUM));
sp = push_word (sp, read_register (FP_REGNUM));
sp = push_word (sp, read_register (AP_REGNUM));
sp = push_word (sp, (read_register (PS_REGNUM) & 0xffef) + 0x2fff0000);
sp = push_word (sp, 0);
write_register (SP_REGNUM, sp);
write_register (FP_REGNUM, sp);
write_register (AP_REGNUM, sp + (17 * 4));
}
static void
vax_pop_frame (void)
{
CORE_ADDR fp = read_register (FP_REGNUM);
int regnum;
int regmask = read_memory_integer (fp + 4, 4);
write_register (PS_REGNUM,
(regmask & 0xffff)
| (read_register (PS_REGNUM) & 0xffff0000));
write_register (PC_REGNUM, read_memory_integer (fp + 16, 4));
write_register (FP_REGNUM, read_memory_integer (fp + 12, 4));
write_register (AP_REGNUM, read_memory_integer (fp + 8, 4));
fp += 16;
for (regnum = 0; regnum < 12; regnum++)
if (regmask & (0x10000 << regnum))
write_register (regnum, read_memory_integer (fp += 4, 4));
fp = fp + 4 + ((regmask >> 30) & 3);
if (regmask & 0x20000000)
{
regnum = read_memory_integer (fp, 4);
fp += (regnum + 1) * 4;
}
write_register (SP_REGNUM, fp);
flush_cached_frames ();
}
/* The VAX call dummy sequence:
calls #69, @#32323232
bpt
It is 8 bytes long. The address and argc are patched by
vax_fix_call_dummy(). */
static LONGEST vax_call_dummy_words[] = { 0x329f69fb, 0x03323232 };
static int sizeof_vax_call_dummy_words = sizeof(vax_call_dummy_words);
static void
vax_fix_call_dummy (char *dummy, CORE_ADDR pc, CORE_ADDR fun, int nargs,
struct value **args, struct type *type, int gcc_p)
{
dummy[1] = nargs;
store_unsigned_integer (dummy + 3, 4, fun);
}
static void
vax_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
{
write_register (1, addr);
}
static void
vax_extract_return_value (struct type *valtype, char *regbuf, char *valbuf)
{
memcpy (valbuf, regbuf + REGISTER_BYTE (0), TYPE_LENGTH (valtype));
}
static void
vax_store_return_value (struct type *valtype, char *valbuf)
{
write_register_bytes (0, valbuf, TYPE_LENGTH (valtype));
}
static CORE_ADDR
vax_extract_struct_value_address (char *regbuf)
{
return (extract_address (regbuf + REGISTER_BYTE (0), REGISTER_RAW_SIZE (0)));
}
/* Advance PC across any function entry prologue instructions
to reach some "real" code. */
static CORE_ADDR
vax_skip_prologue (CORE_ADDR pc)
{
register int op = (unsigned char) read_memory_integer (pc, 1);
if (op == 0x11)
pc += 2; /* skip brb */
if (op == 0x31)
pc += 3; /* skip brw */
if (op == 0xC2
&& ((unsigned char) read_memory_integer (pc + 2, 1)) == 0x5E)
pc += 3; /* skip subl2 */
if (op == 0x9E
&& ((unsigned char) read_memory_integer (pc + 1, 1)) == 0xAE
&& ((unsigned char) read_memory_integer (pc + 3, 1)) == 0x5E)
pc += 4; /* skip movab */
if (op == 0x9E
&& ((unsigned char) read_memory_integer (pc + 1, 1)) == 0xCE
&& ((unsigned char) read_memory_integer (pc + 4, 1)) == 0x5E)
pc += 5; /* skip movab */
if (op == 0x9E
&& ((unsigned char) read_memory_integer (pc + 1, 1)) == 0xEE
&& ((unsigned char) read_memory_integer (pc + 6, 1)) == 0x5E)
pc += 7; /* skip movab */
return pc;
}
static CORE_ADDR
vax_saved_pc_after_call (struct frame_info *frame)
{
return (FRAME_SAVED_PC(frame));
}
/* Print the vax instruction at address MEMADDR in debugged memory,
from disassembler info INFO.
Returns length of the instruction, in bytes. */
static int
vax_print_insn (CORE_ADDR memaddr, disassemble_info *info)
{
unsigned char buffer[MAXLEN];
register int i;
register unsigned char *p;
const char *d;
int status = (*info->read_memory_func) (memaddr, buffer, MAXLEN, info);
if (status != 0)
{
(*info->memory_error_func) (status, memaddr, info);
return -1;
}
for (i = 0; i < NOPCODES; i++)
if (votstrs[i].detail.code == buffer[0]
|| votstrs[i].detail.code == *(unsigned short *) buffer)
break;
/* Handle undefined instructions. */
if (i == NOPCODES)
{
(*info->fprintf_func) (info->stream, "0%o", buffer[0]);
return 1;
}
(*info->fprintf_func) (info->stream, "%s", votstrs[i].name);
/* Point at first byte of argument data,
and at descriptor for first argument. */
p = buffer + 1 + (votstrs[i].detail.code >= 0x100);
d = votstrs[i].detail.args;
if (*d)
(*info->fprintf_func) (info->stream, " ");
while (*d)
{
p = print_insn_arg (d, p, memaddr + (p - buffer), info);
d += 2;
if (*d)
(*info->fprintf_func) (info->stream, ",");
}
return p - buffer;
}
static unsigned char *
print_insn_arg (char *d, register char *p, CORE_ADDR addr,
disassemble_info *info)
{
register int regnum = *p & 0xf;
float floatlitbuf;
if (*d == 'b')
{
if (d[1] == 'b')
(*info->fprintf_func) (info->stream, "0x%x", addr + *p++ + 1);
else
{
(*info->fprintf_func) (info->stream, "0x%x", addr + *(short *) p + 2);
p += 2;
}
}
else
switch ((*p++ >> 4) & 0xf)
{
case 0:
case 1:
case 2:
case 3: /* Literal mode */
if (d[1] == 'd' || d[1] == 'f' || d[1] == 'g' || d[1] == 'h')
{
*(int *) &floatlitbuf = 0x4000 + ((p[-1] & 0x3f) << 4);
(*info->fprintf_func) (info->stream, "$%f", floatlitbuf);
}
else
(*info->fprintf_func) (info->stream, "$%d", p[-1] & 0x3f);
break;
case 4: /* Indexed */
p = (char *) print_insn_arg (d, p, addr + 1, info);
(*info->fprintf_func) (info->stream, "[%s]", REGISTER_NAME (regnum));
break;
case 5: /* Register */
(*info->fprintf_func) (info->stream, REGISTER_NAME (regnum));
break;
case 7: /* Autodecrement */
(*info->fprintf_func) (info->stream, "-");
case 6: /* Register deferred */
(*info->fprintf_func) (info->stream, "(%s)", REGISTER_NAME (regnum));
break;
case 9: /* Autoincrement deferred */
(*info->fprintf_func) (info->stream, "@");
if (regnum == PC_REGNUM)
{
(*info->fprintf_func) (info->stream, "#");
info->target = *(long *) p;
(*info->print_address_func) (info->target, info);
p += 4;
break;
}
case 8: /* Autoincrement */
if (regnum == PC_REGNUM)
{
(*info->fprintf_func) (info->stream, "#");
switch (d[1])
{
case 'b':
(*info->fprintf_func) (info->stream, "%d", *p++);
break;
case 'w':
(*info->fprintf_func) (info->stream, "%d", *(short *) p);
p += 2;
break;
case 'l':
(*info->fprintf_func) (info->stream, "%d", *(long *) p);
p += 4;
break;
case 'q':
(*info->fprintf_func) (info->stream, "0x%x%08x",
((long *) p)[1], ((long *) p)[0]);
p += 8;
break;
case 'o':
(*info->fprintf_func) (info->stream, "0x%x%08x%08x%08x",
((long *) p)[3], ((long *) p)[2],
((long *) p)[1], ((long *) p)[0]);
p += 16;
break;
case 'f':
if (INVALID_FLOAT (p, 4))
(*info->fprintf_func) (info->stream,
"<<invalid float 0x%x>>",
*(int *) p);
else
(*info->fprintf_func) (info->stream, "%f", *(float *) p);
p += 4;
break;
case 'd':
if (INVALID_FLOAT (p, 8))
(*info->fprintf_func) (info->stream,
"<<invalid float 0x%x%08x>>",
((long *) p)[1], ((long *) p)[0]);
else
(*info->fprintf_func) (info->stream, "%f", *(double *) p);
p += 8;
break;
case 'g':
(*info->fprintf_func) (info->stream, "g-float");
p += 8;
break;
case 'h':
(*info->fprintf_func) (info->stream, "h-float");
p += 16;
break;
}
}
else
(*info->fprintf_func) (info->stream, "(%s)+", REGISTER_NAME (regnum));
break;
case 11: /* Byte displacement deferred */
(*info->fprintf_func) (info->stream, "@");
case 10: /* Byte displacement */
if (regnum == PC_REGNUM)
{
info->target = addr + *p + 2;
(*info->print_address_func) (info->target, info);
}
else
(*info->fprintf_func) (info->stream, "%d(%s)", *p, REGISTER_NAME (regnum));
p += 1;
break;
case 13: /* Word displacement deferred */
(*info->fprintf_func) (info->stream, "@");
case 12: /* Word displacement */
if (regnum == PC_REGNUM)
{
info->target = addr + *(short *) p + 3;
(*info->print_address_func) (info->target, info);
}
else
(*info->fprintf_func) (info->stream, "%d(%s)",
*(short *) p, REGISTER_NAME (regnum));
p += 2;
break;
case 15: /* Long displacement deferred */
(*info->fprintf_func) (info->stream, "@");
case 14: /* Long displacement */
if (regnum == PC_REGNUM)
{
info->target = addr + *(short *) p + 5;
(*info->print_address_func) (info->target, info);
}
else
(*info->fprintf_func) (info->stream, "%d(%s)",
*(long *) p, REGISTER_NAME (regnum));
p += 4;
}
return (unsigned char *) p;
}
/* Initialize the current architecture based on INFO. If possible, re-use an
architecture from ARCHES, which is a list of architectures already created
during this debugging session.
Called e.g. at program startup, when reading a core file, and when reading
a binary file. */
static struct gdbarch *
vax_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
{
struct gdbarch *gdbarch;
/* Right now there is only one VAX architecture variant. */
if (arches != NULL)
return (arches->gdbarch);
gdbarch = gdbarch_alloc (&info, NULL);
/* Register info */
set_gdbarch_num_regs (gdbarch, VAX_NUM_REGS);
set_gdbarch_sp_regnum (gdbarch, VAX_SP_REGNUM);
set_gdbarch_fp_regnum (gdbarch, VAX_FP_REGNUM);
set_gdbarch_pc_regnum (gdbarch, VAX_PC_REGNUM);
set_gdbarch_ps_regnum (gdbarch, VAX_PS_REGNUM);
set_gdbarch_register_name (gdbarch, vax_register_name);
set_gdbarch_register_size (gdbarch, VAX_REGISTER_SIZE);
set_gdbarch_register_bytes (gdbarch, VAX_REGISTER_BYTES);
set_gdbarch_register_byte (gdbarch, vax_register_byte);
set_gdbarch_register_raw_size (gdbarch, vax_register_raw_size);
set_gdbarch_max_register_raw_size (gdbarch, VAX_MAX_REGISTER_RAW_SIZE);
set_gdbarch_register_virtual_size (gdbarch, vax_register_virtual_size);
set_gdbarch_max_register_virtual_size (gdbarch,
VAX_MAX_REGISTER_VIRTUAL_SIZE);
set_gdbarch_register_virtual_type (gdbarch, vax_register_virtual_type);
/* Frame and stack info */
set_gdbarch_skip_prologue (gdbarch, vax_skip_prologue);
set_gdbarch_saved_pc_after_call (gdbarch, vax_saved_pc_after_call);
set_gdbarch_frame_num_args (gdbarch, vax_frame_num_args);
set_gdbarch_frameless_function_invocation (gdbarch,
generic_frameless_function_invocation_not);
set_gdbarch_frame_chain (gdbarch, vax_frame_chain);
set_gdbarch_frame_chain_valid (gdbarch, func_frame_chain_valid);
set_gdbarch_frame_saved_pc (gdbarch, vax_frame_saved_pc);
set_gdbarch_frame_args_address (gdbarch, vax_frame_args_address);
set_gdbarch_frame_locals_address (gdbarch, vax_frame_locals_address);
set_gdbarch_frame_init_saved_regs (gdbarch, vax_frame_init_saved_regs);
set_gdbarch_frame_args_skip (gdbarch, 4);
set_gdbarch_get_saved_register (gdbarch, vax_get_saved_register);
set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
/* Return value info */
set_gdbarch_store_struct_return (gdbarch, vax_store_struct_return);
set_gdbarch_extract_return_value (gdbarch, vax_extract_return_value);
set_gdbarch_store_return_value (gdbarch, vax_store_return_value);
set_gdbarch_extract_struct_value_address (gdbarch,
vax_extract_struct_value_address);
/* Call dummy info */
set_gdbarch_push_dummy_frame (gdbarch, vax_push_dummy_frame);
set_gdbarch_pop_frame (gdbarch, vax_pop_frame);
set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
set_gdbarch_call_dummy_p (gdbarch, 1);
set_gdbarch_call_dummy_words (gdbarch, vax_call_dummy_words);
set_gdbarch_sizeof_call_dummy_words (gdbarch, sizeof_vax_call_dummy_words);
set_gdbarch_fix_call_dummy (gdbarch, vax_fix_call_dummy);
set_gdbarch_call_dummy_start_offset (gdbarch, 0);
set_gdbarch_call_dummy_breakpoint_offset_p (gdbarch, 1);
set_gdbarch_call_dummy_breakpoint_offset (gdbarch, 7);
set_gdbarch_use_generic_dummy_frames (gdbarch, 0);
set_gdbarch_pc_in_call_dummy (gdbarch, pc_in_call_dummy_on_stack);
set_gdbarch_call_dummy_stack_adjust_p (gdbarch, 0);
/* Breakpoint info */
set_gdbarch_decr_pc_after_break (gdbarch, 0);
/* Misc info */
set_gdbarch_function_start_offset (gdbarch, 2);
return (gdbarch);
}
void
_initialize_vax_tdep (void)
{
gdbarch_register (bfd_arch_vax, vax_gdbarch_init, NULL);
tm_print_insn = vax_print_insn;
}