This commit adds multi-target support to GDB. What this means is that with this commit, GDB can now be connected to different targets at the same time. E.g., you can debug a live native process and a core dump at the same time, connect to multiple gdbservers, etc. Actually, the word "target" is overloaded in gdb. We already have a target stack, with pushes several target_ops instances on top of one another. We also have "info target" already, which means something completely different to what this patch does. So from here on, I'll be using the "target connections" term, to mean an open process_stratum target, pushed on a target stack. This patch makes gdb have multiple target stacks, and multiple process_stratum targets open simultaneously. The user-visible changes / commands will also use this terminology, but of course it's all open to debate. User-interface-wise, not that much changes. The main difference is that each inferior may have its own target connection. A target connection (e.g., a target extended-remote connection) may support debugging multiple processes, just as before. Say you're debugging against gdbserver in extended-remote mode, and you do "add-inferior" to prepare to spawn a new process, like: (gdb) target extended-remote :9999 ... (gdb) start ... (gdb) add-inferior Added inferior 2 (gdb) inferior 2 [Switching to inferior 2 [<null>] (<noexec>)] (gdb) file a.out ... (gdb) start ... At this point, you have two inferiors connected to the same gdbserver. With this commit, GDB will maintain a target stack per inferior, instead of a global target stack. To preserve the behavior above, by default, "add-inferior" makes the new inferior inherit a copy of the target stack of the current inferior. Same across a fork - the child inherits a copy of the target stack of the parent. While the target stacks are copied, the targets themselves are not. Instead, target_ops is made a refcounted_object, which means that target_ops instances are refcounted, which each inferior counting for a reference. What if you want to create an inferior and connect it to some _other_ target? For that, this commit introduces a new "add-inferior -no-connection" option that makes the new inferior not share the current inferior's target. So you could do: (gdb) target extended-remote :9999 Remote debugging using :9999 ... (gdb) add-inferior -no-connection [New inferior 2] Added inferior 2 (gdb) inferior 2 [Switching to inferior 2 [<null>] (<noexec>)] (gdb) info inferiors Num Description Executable 1 process 18401 target:/home/pedro/tmp/main * 2 <null> (gdb) tar extended-remote :10000 Remote debugging using :10000 ... (gdb) info inferiors Num Description Executable 1 process 18401 target:/home/pedro/tmp/main * 2 process 18450 target:/home/pedro/tmp/main (gdb) A following patch will extended "info inferiors" to include a column indicating which connection an inferior is bound to, along with a couple other UI tweaks. Other than that, debugging is the same as before. Users interact with inferiors and threads as before. The only difference is that inferiors may be bound to processes running in different machines. That's pretty much all there is to it in terms of noticeable UI changes. On to implementation. Since we can be connected to different systems at the same time, a ptid_t is no longer a unique identifier. Instead a thread can be identified by a pair of ptid_t and 'process_stratum_target *', the later being the instance of the process_stratum target that owns the process/thread. Note that process_stratum_target inherits from target_ops, and all process_stratum targets inherit from process_stratum_target. In earlier patches, many places in gdb were converted to refer to threads by thread_info pointer instead of ptid_t, but there are still places in gdb where we start with a pid/tid and need to find the corresponding inferior or thread_info objects. So you'll see in the patch many places adding a process_stratum_target parameter to functions that used to take only a ptid_t. Since each inferior has its own target stack now, we can always find the process_stratum target for an inferior. That is done via a inf->process_target() convenience method. Since each inferior has its own target stack, we need to handle the "beneath" calls when servicing target calls. The solution I settled with is just to make sure to switch the current inferior to the inferior you want before making a target call. Not relying on global context is just not feasible in current GDB. Fortunately, there aren't that many places that need to do that, because generally most code that calls target methods already has the current context pointing to the right inferior/thread. Note, to emphasize -- there's no method to "switch to this target stack". Instead, you switch the current inferior, and that implicitly switches the target stack. In some spots, we need to iterate over all inferiors so that we reach all target stacks. Native targets are still singletons. There's always only a single instance of such targets. Remote targets however, we'll have one instance per remote connection. The exec target is still a singleton. There's only one instance. I did not see the point of instanciating more than one exec_target object. After vfork, we need to make sure to push the exec target on the new inferior. See exec_on_vfork. For type safety, functions that need a {target, ptid} pair to identify a thread, take a process_stratum_target pointer for target parameter instead of target_ops *. Some shared code in gdb/nat/ also need to gain a target pointer parameter. This poses an issue, since gdbserver doesn't have process_stratum_target, only target_ops. To fix this, this commit renames gdbserver's target_ops to process_stratum_target. I think this makes sense. There's no concept of target stack in gdbserver, and gdbserver's target_ops really implements a process_stratum-like target. The thread and inferior iterator functions also gain process_stratum_target parameters. These are used to be able to iterate over threads and inferiors of a given target. Following usual conventions, if the target pointer is null, then we iterate over threads and inferiors of all targets. I tried converting "add-inferior" to the gdb::option framework, as a preparatory patch, but that stumbled on the fact that gdb::option does not support file options yet, for "add-inferior -exec". I have a WIP patchset that adds that, but it's not a trivial patch, mainly due to need to integrate readline's filename completion, so I deferred that to some other time. In infrun.c/infcmd.c, the main change is that we need to poll events out of all targets. See do_target_wait. Right after collecting an event, we switch the current inferior to an inferior bound to the target that reported the event, so that target methods can be used while handling the event. This makes most of the code transparent to multi-targets. See fetch_inferior_event. infrun.c:stop_all_threads is interesting -- in this function we need to stop all threads of all targets. What the function does is send an asynchronous stop request to all threads, and then synchronously waits for events, with target_wait, rinse repeat, until all it finds are stopped threads. Now that we have multiple targets, it's not efficient to synchronously block in target_wait waiting for events out of one target. Instead, we implement a mini event loop, with interruptible_select, select'ing on one file descriptor per target. For this to work, we need to be able to ask the target for a waitable file descriptor. Such file descriptors already exist, they are the descriptors registered in the main event loop with add_file_handler, inside the target_async implementations. This commit adds a new target_async_wait_fd target method that just returns the file descriptor in question. See wait_one / stop_all_threads in infrun.c. The 'threads_executing' global is made a per-target variable. Since it is only relevant to process_stratum_target targets, this is where it is put, instead of in target_ops. You'll notice that remote.c includes some FIXME notes. These refer to the fact that the global arrays that hold data for the remote packets supported are still globals. For example, if we connect to two different servers/stubs, then each might support different remote protocol features. They might even be different architectures, like e.g., one ARM baremetal stub, and a x86 gdbserver, to debug a host/controller scenario as a single program. That isn't going to work correctly today, because of said globals. I'm leaving fixing that for another pass, since it does not appear to be trivial, and I'd rather land the base work first. It's already useful to be able to debug multiple instances of the same server (e.g., a distributed cluster, where you have full control over the servers installed), so I think as is it's already reasonable incremental progress. Current limitations: - You can only resume more that one target at the same time if all targets support asynchronous debugging, and support non-stop mode. It should be possible to support mixed all-stop + non-stop backends, but that is left for another time. This means that currently in order to do multi-target with gdbserver you need to issue "maint set target-non-stop on". I would like to make that mode be the default, but we're not there yet. Note that I'm talking about how the target backend works, only. User-visible all-stop mode works just fine. - As explained above, connecting to different remote servers at the same time is likely to produce bad results if they don't support the exact set of RSP features. FreeBSD updates courtesy of John Baldwin. gdb/ChangeLog: 2020-01-10 Pedro Alves <palves@redhat.com> John Baldwin <jhb@FreeBSD.org> * aarch64-linux-nat.c (aarch64_linux_nat_target::thread_architecture): Adjust. * ada-tasks.c (print_ada_task_info): Adjust find_thread_ptid call. (task_command_1): Likewise. * aix-thread.c (sync_threadlists, aix_thread_target::resume) (aix_thread_target::wait, aix_thread_target::fetch_registers) (aix_thread_target::store_registers) (aix_thread_target::thread_alive): Adjust. * amd64-fbsd-tdep.c: Include "inferior.h". (amd64fbsd_get_thread_local_address): Pass down target. * amd64-linux-nat.c (ps_get_thread_area): Use ps_prochandle thread's gdbarch instead of target_gdbarch. * break-catch-sig.c (signal_catchpoint_print_it): Adjust call to get_last_target_status. * break-catch-syscall.c (print_it_catch_syscall): Likewise. * breakpoint.c (breakpoints_should_be_inserted_now): Consider all inferiors. (update_inserted_breakpoint_locations): Skip if inferiors with no execution. (update_global_location_list): When handling moribund locations, find representative inferior for location's pspace, and use thread count of its process_stratum target. * bsd-kvm.c (bsd_kvm_target_open): Pass target down. * bsd-uthread.c (bsd_uthread_target::wait): Use as_process_stratum_target and adjust thread_change_ptid and add_thread calls. (bsd_uthread_target::update_thread_list): Use as_process_stratum_target and adjust find_thread_ptid, thread_change_ptid and add_thread calls. * btrace.c (maint_btrace_packet_history_cmd): Adjust find_thread_ptid call. * corelow.c (add_to_thread_list): Adjust add_thread call. (core_target_open): Adjust add_thread_silent and thread_count calls. (core_target::pid_to_str): Adjust find_inferior_ptid call. * ctf.c (ctf_target_open): Adjust add_thread_silent call. * event-top.c (async_disconnect): Pop targets from all inferiors. * exec.c (add_target_sections): Push exec target on all inferiors sharing the program space. (remove_target_sections): Remove the exec target from all inferiors sharing the program space. (exec_on_vfork): New. * exec.h (exec_on_vfork): Declare. * fbsd-nat.c (fbsd_add_threads): Add fbsd_nat_target parameter. Pass it down. (fbsd_nat_target::update_thread_list): Adjust. (fbsd_nat_target::resume): Adjust. (fbsd_handle_debug_trap): Add fbsd_nat_target parameter. Pass it down. (fbsd_nat_target::wait, fbsd_nat_target::post_attach): Adjust. * fbsd-tdep.c (fbsd_corefile_thread): Adjust get_thread_arch_regcache call. * fork-child.c (gdb_startup_inferior): Pass target down to startup_inferior and set_executing. * gdbthread.h (struct process_stratum_target): Forward declare. (add_thread, add_thread_silent, add_thread_with_info) (in_thread_list): Add process_stratum_target parameter. (find_thread_ptid(inferior*, ptid_t)): New overload. (find_thread_ptid, thread_change_ptid): Add process_stratum_target parameter. (all_threads()): Delete overload. (all_threads, all_non_exited_threads): Add process_stratum_target parameter. (all_threads_safe): Use brace initialization. (thread_count): Add process_stratum_target parameter. (set_resumed, set_running, set_stop_requested, set_executing) (threads_are_executing, finish_thread_state): Add process_stratum_target parameter. (switch_to_thread): Use is_current_thread. * i386-fbsd-tdep.c: Include "inferior.h". (i386fbsd_get_thread_local_address): Pass down target. * i386-linux-nat.c (i386_linux_nat_target::low_resume): Adjust. * inf-child.c (inf_child_target::maybe_unpush_target): Remove have_inferiors check. * inf-ptrace.c (inf_ptrace_target::create_inferior) (inf_ptrace_target::attach): Adjust. * infcall.c (run_inferior_call): Adjust. * infcmd.c (run_command_1): Pass target to scoped_finish_thread_state. (proceed_thread_callback): Skip inferiors with no execution. (continue_command): Rename 'all_threads' local to avoid hiding 'all_threads' function. Adjust get_last_target_status call. (prepare_one_step): Adjust set_running call. (signal_command): Use user_visible_resume_target. Compare thread pointers instead of inferior_ptid. (info_program_command): Adjust to pass down target. (attach_command): Mark target's 'thread_executing' flag. (stop_current_target_threads_ns): New, factored out from ... (interrupt_target_1): ... this. Switch inferior before making target calls. * inferior-iter.h (struct all_inferiors_iterator, struct all_inferiors_range) (struct all_inferiors_safe_range) (struct all_non_exited_inferiors_range): Filter on process_stratum_target too. Remove explicit. * inferior.c (inferior::inferior): Push dummy target on target stack. (find_inferior_pid, find_inferior_ptid, number_of_live_inferiors): Add process_stratum_target parameter, and pass it down. (have_live_inferiors): Adjust. (switch_to_inferior_and_push_target): New. (add_inferior_command, clone_inferior_command): Handle "-no-connection" parameter. Use switch_to_inferior_and_push_target. (_initialize_inferior): Mention "-no-connection" option in the help of "add-inferior" and "clone-inferior" commands. * inferior.h: Include "process-stratum-target.h". (interrupt_target_1): Use bool. (struct inferior) <push_target, unpush_target, target_is_pushed, find_target_beneath, top_target, process_target, target_at, m_stack>: New. (discard_all_inferiors): Delete. (find_inferior_pid, find_inferior_ptid, number_of_live_inferiors) (all_inferiors, all_non_exited_inferiors): Add process_stratum_target parameter. * infrun.c: Include "gdb_select.h" and <unordered_map>. (target_last_proc_target): New global. (follow_fork_inferior): Push target on new inferior. Pass target to add_thread_silent. Call exec_on_vfork. Handle target's reference count. (follow_fork): Adjust get_last_target_status call. Also consider target. (follow_exec): Push target on new inferior. (struct execution_control_state) <target>: New field. (user_visible_resume_target): New. (do_target_resume): Call target_async. (resume_1): Set target's threads_executing flag. Consider resume target. (commit_resume_all_targets): New. (proceed): Also consider resume target. Skip threads of inferiors with no execution. Commit resumtion in all targets. (start_remote): Pass current inferior to wait_for_inferior. (infrun_thread_stop_requested): Consider target as well. Pass thread_info pointer to clear_inline_frame_state instead of ptid. (infrun_thread_thread_exit): Consider target as well. (random_pending_event_thread): New inferior parameter. Use it. (do_target_wait): Rename to ... (do_target_wait_1): ... this. Add inferior parameter, and pass it down. (threads_are_resumed_pending_p, do_target_wait): New. (prepare_for_detach): Adjust calls. (wait_for_inferior): New inferior parameter. Handle it. Use do_target_wait_1 instead of do_target_wait. (fetch_inferior_event): Adjust. Switch to representative inferior. Pass target down. (set_last_target_status): Add process_stratum_target parameter. Save target in global. (get_last_target_status): Add process_stratum_target parameter and handle it. (nullify_last_target_wait_ptid): Clear 'target_last_proc_target'. (context_switch): Check inferior_ptid == null_ptid before calling inferior_thread(). (get_inferior_stop_soon): Pass down target. (wait_one): Rename to ... (poll_one_curr_target): ... this. (struct wait_one_event): New. (wait_one): New. (stop_all_threads): Adjust. (handle_no_resumed, handle_inferior_event): Adjust to consider the event's target. (switch_back_to_stepped_thread): Also consider target. (print_stop_event): Update. (normal_stop): Update. Also consider the resume target. * infrun.h (wait_for_inferior): Remove declaration. (user_visible_resume_target): New declaration. (get_last_target_status, set_last_target_status): New process_stratum_target parameter. * inline-frame.c (clear_inline_frame_state(ptid_t)): Add process_stratum_target parameter, and use it. (clear_inline_frame_state (thread_info*)): New. * inline-frame.c (clear_inline_frame_state(ptid_t)): Add process_stratum_target parameter. (clear_inline_frame_state (thread_info*)): Declare. * linux-fork.c (delete_checkpoint_command): Pass target down to find_thread_ptid. (checkpoint_command): Adjust. * linux-nat.c (linux_nat_target::follow_fork): Switch to thread instead of just tweaking inferior_ptid. (linux_nat_switch_fork): Pass target down to thread_change_ptid. (exit_lwp): Pass target down to find_thread_ptid. (attach_proc_task_lwp_callback): Pass target down to add_thread/set_running/set_executing. (linux_nat_target::attach): Pass target down to thread_change_ptid. (get_detach_signal): Pass target down to find_thread_ptid. Consider last target status's target. (linux_resume_one_lwp_throw, resume_lwp) (linux_handle_syscall_trap, linux_handle_extended_wait, wait_lwp) (stop_wait_callback, save_stop_reason, linux_nat_filter_event) (linux_nat_wait_1, resume_stopped_resumed_lwps): Pass target down. (linux_nat_target::async_wait_fd): New. (linux_nat_stop_lwp, linux_nat_target::thread_address_space): Pass target down. * linux-nat.h (linux_nat_target::async_wait_fd): Declare. * linux-tdep.c (get_thread_arch_regcache): Pass target down. * linux-thread-db.c (struct thread_db_info::process_target): New field. (add_thread_db_info): Save target. (get_thread_db_info): New process_stratum_target parameter. Also match target. (delete_thread_db_info): New process_stratum_target parameter. Also match target. (thread_from_lwp): Adjust to pass down target. (thread_db_notice_clone): Pass down target. (check_thread_db_callback): Pass down target. (try_thread_db_load_1): Always push the thread_db target. (try_thread_db_load, record_thread): Pass target down. (thread_db_target::detach): Pass target down. Always unpush the thread_db target. (thread_db_target::wait, thread_db_target::mourn_inferior): Pass target down. Always unpush the thread_db target. (find_new_threads_callback, thread_db_find_new_threads_2) (thread_db_target::update_thread_list): Pass target down. (thread_db_target::pid_to_str): Pass current inferior down. (thread_db_target::get_thread_local_address): Pass target down. (thread_db_target::resume, maintenance_check_libthread_db): Pass target down. * nto-procfs.c (nto_procfs_target::update_thread_list): Adjust. * procfs.c (procfs_target::procfs_init_inferior): Declare. (proc_set_current_signal, do_attach, procfs_target::wait): Adjust. (procfs_init_inferior): Rename to ... (procfs_target::procfs_init_inferior): ... this and adjust. (procfs_target::create_inferior, procfs_notice_thread) (procfs_do_thread_registers): Adjust. * ppc-fbsd-tdep.c: Include "inferior.h". (ppcfbsd_get_thread_local_address): Pass down target. * proc-service.c (ps_xfer_memory): Switch current inferior and program space as well. (get_ps_regcache): Pass target down. * process-stratum-target.c (process_stratum_target::thread_address_space) (process_stratum_target::thread_architecture): Pass target down. * process-stratum-target.h (process_stratum_target::threads_executing): New field. (as_process_stratum_target): New. * ravenscar-thread.c (ravenscar_thread_target::update_inferior_ptid): Pass target down. (ravenscar_thread_target::wait, ravenscar_add_thread): Pass target down. * record-btrace.c (record_btrace_target::info_record): Adjust. (record_btrace_target::record_method) (record_btrace_target::record_is_replaying) (record_btrace_target::fetch_registers) (get_thread_current_frame_id, record_btrace_target::resume) (record_btrace_target::wait, record_btrace_target::stop): Pass target down. * record-full.c (record_full_wait_1): Switch to event thread. Pass target down. * regcache.c (regcache::regcache) (get_thread_arch_aspace_regcache, get_thread_arch_regcache): Add process_stratum_target parameter and handle it. (current_thread_target): New global. (get_thread_regcache): Add process_stratum_target parameter and handle it. Switch inferior before calling target method. (get_thread_regcache): Pass target down. (get_thread_regcache_for_ptid): Pass target down. (registers_changed_ptid): Add process_stratum_target parameter and handle it. (registers_changed_thread, registers_changed): Pass target down. (test_get_thread_arch_aspace_regcache): New. (current_regcache_test): Define a couple local test_target_ops instances and use them for testing. (readwrite_regcache): Pass process_stratum_target parameter. (cooked_read_test, cooked_write_test): Pass mock_target down. * regcache.h (get_thread_regcache, get_thread_arch_regcache) (get_thread_arch_aspace_regcache): Add process_stratum_target parameter. (regcache::target): New method. (regcache::regcache, regcache::get_thread_arch_aspace_regcache) (regcache::registers_changed_ptid): Add process_stratum_target parameter. (regcache::m_target): New field. (registers_changed_ptid): Add process_stratum_target parameter. * remote.c (remote_state::supports_vCont_probed): New field. (remote_target::async_wait_fd): New method. (remote_unpush_and_throw): Add remote_target parameter. (get_current_remote_target): Adjust. (remote_target::remote_add_inferior): Push target. (remote_target::remote_add_thread) (remote_target::remote_notice_new_inferior) (get_remote_thread_info): Pass target down. (remote_target::update_thread_list): Skip threads of inferiors bound to other targets. (remote_target::close): Don't discard inferiors. (remote_target::add_current_inferior_and_thread) (remote_target::process_initial_stop_replies) (remote_target::start_remote) (remote_target::remote_serial_quit_handler): Pass down target. (remote_target::remote_unpush_target): New remote_target parameter. Unpush the target from all inferiors. (remote_target::remote_unpush_and_throw): New remote_target parameter. Pass it down. (remote_target::open_1): Check whether the current inferior has execution instead of checking whether any inferior is live. Pass target down. (remote_target::remote_detach_1): Pass down target. Use remote_unpush_target. (extended_remote_target::attach): Pass down target. (remote_target::remote_vcont_probe): Set supports_vCont_probed. (remote_target::append_resumption): Pass down target. (remote_target::append_pending_thread_resumptions) (remote_target::remote_resume_with_hc, remote_target::resume) (remote_target::commit_resume): Pass down target. (remote_target::remote_stop_ns): Check supports_vCont_probed. (remote_target::interrupt_query) (remote_target::remove_new_fork_children) (remote_target::check_pending_events_prevent_wildcard_vcont) (remote_target::remote_parse_stop_reply) (remote_target::process_stop_reply): Pass down target. (first_remote_resumed_thread): New remote_target parameter. Pass it down. (remote_target::wait_as): Pass down target. (unpush_and_perror): New remote_target parameter. Pass it down. (remote_target::readchar, remote_target::remote_serial_write) (remote_target::getpkt_or_notif_sane_1) (remote_target::kill_new_fork_children, remote_target::kill): Pass down target. (remote_target::mourn_inferior): Pass down target. Use remote_unpush_target. (remote_target::core_of_thread) (remote_target::remote_btrace_maybe_reopen): Pass down target. (remote_target::pid_to_exec_file) (remote_target::thread_handle_to_thread_info): Pass down target. (remote_target::async_wait_fd): New. * riscv-fbsd-tdep.c: Include "inferior.h". (riscv_fbsd_get_thread_local_address): Pass down target. * sol2-tdep.c (sol2_core_pid_to_str): Pass down target. * sol-thread.c (sol_thread_target::wait, ps_lgetregs, ps_lsetregs) (ps_lgetfpregs, ps_lsetfpregs, sol_update_thread_list_callback): Adjust. * solib-spu.c (spu_skip_standalone_loader): Pass down target. * solib-svr4.c (enable_break): Pass down target. * spu-multiarch.c (parse_spufs_run): Pass down target. * spu-tdep.c (spu2ppu_sniffer): Pass down target. * target-delegates.c: Regenerate. * target.c (g_target_stack): Delete. (current_top_target): Return the current inferior's top target. (target_has_execution_1): Refer to the passed-in inferior's top target. (target_supports_terminal_ours): Check whether the initial inferior was already created. (decref_target): New. (target_stack::push): Incref/decref the target. (push_target, push_target, unpush_target): Adjust. (target_stack::unpush): Defref target. (target_is_pushed): Return bool. Adjust to refer to the current inferior's target stack. (dispose_inferior): Delete, and inline parts ... (target_preopen): ... here. Only dispose of the current inferior. (target_detach): Hold strong target reference while detaching. Pass target down. (target_thread_name): Add assertion. (target_resume): Pass down target. (target_ops::beneath, find_target_at): Adjust to refer to the current inferior's target stack. (get_dummy_target): New. (target_pass_ctrlc): Pass the Ctrl-C to the first inferior that has a thread running. (initialize_targets): Rename to ... (_initialize_target): ... this. * target.h: Include "gdbsupport/refcounted-object.h". (struct target_ops): Inherit refcounted_object. (target_ops::shortname, target_ops::longname): Make const. (target_ops::async_wait_fd): New method. (decref_target): Declare. (struct target_ops_ref_policy): New. (target_ops_ref): New typedef. (get_dummy_target): Declare function. (target_is_pushed): Return bool. * thread-iter.c (all_matching_threads_iterator::m_inf_matches) (all_matching_threads_iterator::all_matching_threads_iterator): Handle filter target. * thread-iter.h (struct all_matching_threads_iterator, struct all_matching_threads_range, class all_non_exited_threads_range): Filter by target too. Remove explicit. * thread.c (threads_executing): Delete. (inferior_thread): Pass down current inferior. (clear_thread_inferior_resources): Pass down thread pointer instead of ptid_t. (add_thread_silent, add_thread_with_info, add_thread): Add process_stratum_target parameter. Use it for thread and inferior searches. (is_current_thread): New. (thread_info::deletable): Use it. (find_thread_ptid, thread_count, in_thread_list) (thread_change_ptid, set_resumed, set_running): New process_stratum_target parameter. Pass it down. (set_executing): New process_stratum_target parameter. Pass it down. Adjust reference to 'threads_executing'. (threads_are_executing): New process_stratum_target parameter. Adjust reference to 'threads_executing'. (set_stop_requested, finish_thread_state): New process_stratum_target parameter. Pass it down. (switch_to_thread): Also match inferior. (switch_to_thread): New process_stratum_target parameter. Pass it down. (update_threads_executing): Reimplement. * top.c (quit_force): Pop targets from all inferior. (gdb_init): Don't call initialize_targets. * windows-nat.c (windows_nat_target) <get_windows_debug_event>: Declare. (windows_add_thread, windows_delete_thread): Adjust. (get_windows_debug_event): Rename to ... (windows_nat_target::get_windows_debug_event): ... this. Adjust. * tracefile-tfile.c (tfile_target_open): Pass down target. * gdbsupport/common-gdbthread.h (struct process_stratum_target): Forward declare. (switch_to_thread): Add process_stratum_target parameter. * mi/mi-interp.c (mi_on_resume_1): Add process_stratum_target parameter. Use it. (mi_on_resume): Pass target down. * nat/fork-inferior.c (startup_inferior): Add process_stratum_target parameter. Pass it down. * nat/fork-inferior.h (startup_inferior): Add process_stratum_target parameter. * python/py-threadevent.c (py_get_event_thread): Pass target down. gdb/gdbserver/ChangeLog: 2020-01-10 Pedro Alves <palves@redhat.com> * fork-child.c (post_fork_inferior): Pass target down to startup_inferior. * inferiors.c (switch_to_thread): Add process_stratum_target parameter. * lynx-low.c (lynx_target_ops): Now a process_stratum_target. * nto-low.c (nto_target_ops): Now a process_stratum_target. * linux-low.c (linux_target_ops): Now a process_stratum_target. * remote-utils.c (prepare_resume_reply): Pass the target to switch_to_thread. * target.c (the_target): Now a process_stratum_target. (done_accessing_memory): Pass the target to switch_to_thread. (set_target_ops): Ajust to use process_stratum_target. * target.h (struct target_ops): Rename to ... (struct process_stratum_target): ... this. (the_target, set_target_ops): Adjust. (prepare_to_access_memory): Adjust comment. * win32-low.c (child_xfer_memory): Adjust to use process_stratum_target. (win32_target_ops): Now a process_stratum_target.
4146 lines
106 KiB
C
4146 lines
106 KiB
C
/* Select target systems and architectures at runtime for GDB.
|
||
|
||
Copyright (C) 1990-2020 Free Software Foundation, Inc.
|
||
|
||
Contributed by Cygnus Support.
|
||
|
||
This file is part of GDB.
|
||
|
||
This program is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 3 of the License, or
|
||
(at your option) any later version.
|
||
|
||
This program is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with this program. If not, see <http://www.gnu.org/licenses/>. */
|
||
|
||
#include "defs.h"
|
||
#include "target.h"
|
||
#include "target-dcache.h"
|
||
#include "gdbcmd.h"
|
||
#include "symtab.h"
|
||
#include "inferior.h"
|
||
#include "infrun.h"
|
||
#include "bfd.h"
|
||
#include "symfile.h"
|
||
#include "objfiles.h"
|
||
#include "dcache.h"
|
||
#include <signal.h>
|
||
#include "regcache.h"
|
||
#include "gdbcore.h"
|
||
#include "target-descriptions.h"
|
||
#include "gdbthread.h"
|
||
#include "solib.h"
|
||
#include "exec.h"
|
||
#include "inline-frame.h"
|
||
#include "tracepoint.h"
|
||
#include "gdb/fileio.h"
|
||
#include "gdbsupport/agent.h"
|
||
#include "auxv.h"
|
||
#include "target-debug.h"
|
||
#include "top.h"
|
||
#include "event-top.h"
|
||
#include <algorithm>
|
||
#include "gdbsupport/byte-vector.h"
|
||
#include "terminal.h"
|
||
#include <unordered_map>
|
||
|
||
static void generic_tls_error (void) ATTRIBUTE_NORETURN;
|
||
|
||
static void default_terminal_info (struct target_ops *, const char *, int);
|
||
|
||
static int default_watchpoint_addr_within_range (struct target_ops *,
|
||
CORE_ADDR, CORE_ADDR, int);
|
||
|
||
static int default_region_ok_for_hw_watchpoint (struct target_ops *,
|
||
CORE_ADDR, int);
|
||
|
||
static void default_rcmd (struct target_ops *, const char *, struct ui_file *);
|
||
|
||
static ptid_t default_get_ada_task_ptid (struct target_ops *self,
|
||
long lwp, long tid);
|
||
|
||
static int default_follow_fork (struct target_ops *self, int follow_child,
|
||
int detach_fork);
|
||
|
||
static void default_mourn_inferior (struct target_ops *self);
|
||
|
||
static int default_search_memory (struct target_ops *ops,
|
||
CORE_ADDR start_addr,
|
||
ULONGEST search_space_len,
|
||
const gdb_byte *pattern,
|
||
ULONGEST pattern_len,
|
||
CORE_ADDR *found_addrp);
|
||
|
||
static int default_verify_memory (struct target_ops *self,
|
||
const gdb_byte *data,
|
||
CORE_ADDR memaddr, ULONGEST size);
|
||
|
||
static void tcomplain (void) ATTRIBUTE_NORETURN;
|
||
|
||
static struct target_ops *find_default_run_target (const char *);
|
||
|
||
static int dummy_find_memory_regions (struct target_ops *self,
|
||
find_memory_region_ftype ignore1,
|
||
void *ignore2);
|
||
|
||
static char *dummy_make_corefile_notes (struct target_ops *self,
|
||
bfd *ignore1, int *ignore2);
|
||
|
||
static std::string default_pid_to_str (struct target_ops *ops, ptid_t ptid);
|
||
|
||
static enum exec_direction_kind default_execution_direction
|
||
(struct target_ops *self);
|
||
|
||
/* Mapping between target_info objects (which have address identity)
|
||
and corresponding open/factory function/callback. Each add_target
|
||
call adds one entry to this map, and registers a "target
|
||
TARGET_NAME" command that when invoked calls the factory registered
|
||
here. The target_info object is associated with the command via
|
||
the command's context. */
|
||
static std::unordered_map<const target_info *, target_open_ftype *>
|
||
target_factories;
|
||
|
||
/* The singleton debug target. */
|
||
|
||
static struct target_ops *the_debug_target;
|
||
|
||
/* Top of target stack. */
|
||
/* The target structure we are currently using to talk to a process
|
||
or file or whatever "inferior" we have. */
|
||
|
||
target_ops *
|
||
current_top_target ()
|
||
{
|
||
return current_inferior ()->top_target ();
|
||
}
|
||
|
||
/* Command list for target. */
|
||
|
||
static struct cmd_list_element *targetlist = NULL;
|
||
|
||
/* True if we should trust readonly sections from the
|
||
executable when reading memory. */
|
||
|
||
static bool trust_readonly = false;
|
||
|
||
/* Nonzero if we should show true memory content including
|
||
memory breakpoint inserted by gdb. */
|
||
|
||
static int show_memory_breakpoints = 0;
|
||
|
||
/* These globals control whether GDB attempts to perform these
|
||
operations; they are useful for targets that need to prevent
|
||
inadvertent disruption, such as in non-stop mode. */
|
||
|
||
bool may_write_registers = true;
|
||
|
||
bool may_write_memory = true;
|
||
|
||
bool may_insert_breakpoints = true;
|
||
|
||
bool may_insert_tracepoints = true;
|
||
|
||
bool may_insert_fast_tracepoints = true;
|
||
|
||
bool may_stop = true;
|
||
|
||
/* Non-zero if we want to see trace of target level stuff. */
|
||
|
||
static unsigned int targetdebug = 0;
|
||
|
||
static void
|
||
set_targetdebug (const char *args, int from_tty, struct cmd_list_element *c)
|
||
{
|
||
if (targetdebug)
|
||
push_target (the_debug_target);
|
||
else
|
||
unpush_target (the_debug_target);
|
||
}
|
||
|
||
static void
|
||
show_targetdebug (struct ui_file *file, int from_tty,
|
||
struct cmd_list_element *c, const char *value)
|
||
{
|
||
fprintf_filtered (file, _("Target debugging is %s.\n"), value);
|
||
}
|
||
|
||
/* The user just typed 'target' without the name of a target. */
|
||
|
||
static void
|
||
target_command (const char *arg, int from_tty)
|
||
{
|
||
fputs_filtered ("Argument required (target name). Try `help target'\n",
|
||
gdb_stdout);
|
||
}
|
||
|
||
int
|
||
target_has_all_memory_1 (void)
|
||
{
|
||
for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
|
||
if (t->has_all_memory ())
|
||
return 1;
|
||
|
||
return 0;
|
||
}
|
||
|
||
int
|
||
target_has_memory_1 (void)
|
||
{
|
||
for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
|
||
if (t->has_memory ())
|
||
return 1;
|
||
|
||
return 0;
|
||
}
|
||
|
||
int
|
||
target_has_stack_1 (void)
|
||
{
|
||
for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
|
||
if (t->has_stack ())
|
||
return 1;
|
||
|
||
return 0;
|
||
}
|
||
|
||
int
|
||
target_has_registers_1 (void)
|
||
{
|
||
for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
|
||
if (t->has_registers ())
|
||
return 1;
|
||
|
||
return 0;
|
||
}
|
||
|
||
bool
|
||
target_has_execution_1 (inferior *inf)
|
||
{
|
||
for (target_ops *t = inf->top_target ();
|
||
t != nullptr;
|
||
t = inf->find_target_beneath (t))
|
||
if (t->has_execution (inf))
|
||
return true;
|
||
|
||
return false;
|
||
}
|
||
|
||
int
|
||
target_has_execution_current (void)
|
||
{
|
||
return target_has_execution_1 (current_inferior ());
|
||
}
|
||
|
||
/* This is used to implement the various target commands. */
|
||
|
||
static void
|
||
open_target (const char *args, int from_tty, struct cmd_list_element *command)
|
||
{
|
||
auto *ti = static_cast<target_info *> (get_cmd_context (command));
|
||
target_open_ftype *func = target_factories[ti];
|
||
|
||
if (targetdebug)
|
||
fprintf_unfiltered (gdb_stdlog, "-> %s->open (...)\n",
|
||
ti->shortname);
|
||
|
||
func (args, from_tty);
|
||
|
||
if (targetdebug)
|
||
fprintf_unfiltered (gdb_stdlog, "<- %s->open (%s, %d)\n",
|
||
ti->shortname, args, from_tty);
|
||
}
|
||
|
||
/* See target.h. */
|
||
|
||
void
|
||
add_target (const target_info &t, target_open_ftype *func,
|
||
completer_ftype *completer)
|
||
{
|
||
struct cmd_list_element *c;
|
||
|
||
auto &func_slot = target_factories[&t];
|
||
if (func_slot != nullptr)
|
||
internal_error (__FILE__, __LINE__,
|
||
_("target already added (\"%s\")."), t.shortname);
|
||
func_slot = func;
|
||
|
||
if (targetlist == NULL)
|
||
add_prefix_cmd ("target", class_run, target_command, _("\
|
||
Connect to a target machine or process.\n\
|
||
The first argument is the type or protocol of the target machine.\n\
|
||
Remaining arguments are interpreted by the target protocol. For more\n\
|
||
information on the arguments for a particular protocol, type\n\
|
||
`help target ' followed by the protocol name."),
|
||
&targetlist, "target ", 0, &cmdlist);
|
||
c = add_cmd (t.shortname, no_class, t.doc, &targetlist);
|
||
set_cmd_context (c, (void *) &t);
|
||
set_cmd_sfunc (c, open_target);
|
||
if (completer != NULL)
|
||
set_cmd_completer (c, completer);
|
||
}
|
||
|
||
/* See target.h. */
|
||
|
||
void
|
||
add_deprecated_target_alias (const target_info &tinfo, const char *alias)
|
||
{
|
||
struct cmd_list_element *c;
|
||
char *alt;
|
||
|
||
/* If we use add_alias_cmd, here, we do not get the deprecated warning,
|
||
see PR cli/15104. */
|
||
c = add_cmd (alias, no_class, tinfo.doc, &targetlist);
|
||
set_cmd_sfunc (c, open_target);
|
||
set_cmd_context (c, (void *) &tinfo);
|
||
alt = xstrprintf ("target %s", tinfo.shortname);
|
||
deprecate_cmd (c, alt);
|
||
}
|
||
|
||
/* Stub functions */
|
||
|
||
void
|
||
target_kill (void)
|
||
{
|
||
current_top_target ()->kill ();
|
||
}
|
||
|
||
void
|
||
target_load (const char *arg, int from_tty)
|
||
{
|
||
target_dcache_invalidate ();
|
||
current_top_target ()->load (arg, from_tty);
|
||
}
|
||
|
||
/* Define it. */
|
||
|
||
target_terminal_state target_terminal::m_terminal_state
|
||
= target_terminal_state::is_ours;
|
||
|
||
/* See target/target.h. */
|
||
|
||
void
|
||
target_terminal::init (void)
|
||
{
|
||
current_top_target ()->terminal_init ();
|
||
|
||
m_terminal_state = target_terminal_state::is_ours;
|
||
}
|
||
|
||
/* See target/target.h. */
|
||
|
||
void
|
||
target_terminal::inferior (void)
|
||
{
|
||
struct ui *ui = current_ui;
|
||
|
||
/* A background resume (``run&'') should leave GDB in control of the
|
||
terminal. */
|
||
if (ui->prompt_state != PROMPT_BLOCKED)
|
||
return;
|
||
|
||
/* Since we always run the inferior in the main console (unless "set
|
||
inferior-tty" is in effect), when some UI other than the main one
|
||
calls target_terminal::inferior, then we leave the main UI's
|
||
terminal settings as is. */
|
||
if (ui != main_ui)
|
||
return;
|
||
|
||
/* If GDB is resuming the inferior in the foreground, install
|
||
inferior's terminal modes. */
|
||
|
||
struct inferior *inf = current_inferior ();
|
||
|
||
if (inf->terminal_state != target_terminal_state::is_inferior)
|
||
{
|
||
current_top_target ()->terminal_inferior ();
|
||
inf->terminal_state = target_terminal_state::is_inferior;
|
||
}
|
||
|
||
m_terminal_state = target_terminal_state::is_inferior;
|
||
|
||
/* If the user hit C-c before, pretend that it was hit right
|
||
here. */
|
||
if (check_quit_flag ())
|
||
target_pass_ctrlc ();
|
||
}
|
||
|
||
/* See target/target.h. */
|
||
|
||
void
|
||
target_terminal::restore_inferior (void)
|
||
{
|
||
struct ui *ui = current_ui;
|
||
|
||
/* See target_terminal::inferior(). */
|
||
if (ui->prompt_state != PROMPT_BLOCKED || ui != main_ui)
|
||
return;
|
||
|
||
/* Restore the terminal settings of inferiors that were in the
|
||
foreground but are now ours_for_output due to a temporary
|
||
target_target::ours_for_output() call. */
|
||
|
||
{
|
||
scoped_restore_current_inferior restore_inferior;
|
||
|
||
for (::inferior *inf : all_inferiors ())
|
||
{
|
||
if (inf->terminal_state == target_terminal_state::is_ours_for_output)
|
||
{
|
||
set_current_inferior (inf);
|
||
current_top_target ()->terminal_inferior ();
|
||
inf->terminal_state = target_terminal_state::is_inferior;
|
||
}
|
||
}
|
||
}
|
||
|
||
m_terminal_state = target_terminal_state::is_inferior;
|
||
|
||
/* If the user hit C-c before, pretend that it was hit right
|
||
here. */
|
||
if (check_quit_flag ())
|
||
target_pass_ctrlc ();
|
||
}
|
||
|
||
/* Switch terminal state to DESIRED_STATE, either is_ours, or
|
||
is_ours_for_output. */
|
||
|
||
static void
|
||
target_terminal_is_ours_kind (target_terminal_state desired_state)
|
||
{
|
||
scoped_restore_current_inferior restore_inferior;
|
||
|
||
/* Must do this in two passes. First, have all inferiors save the
|
||
current terminal settings. Then, after all inferiors have add a
|
||
chance to safely save the terminal settings, restore GDB's
|
||
terminal settings. */
|
||
|
||
for (inferior *inf : all_inferiors ())
|
||
{
|
||
if (inf->terminal_state == target_terminal_state::is_inferior)
|
||
{
|
||
set_current_inferior (inf);
|
||
current_top_target ()->terminal_save_inferior ();
|
||
}
|
||
}
|
||
|
||
for (inferior *inf : all_inferiors ())
|
||
{
|
||
/* Note we don't check is_inferior here like above because we
|
||
need to handle 'is_ours_for_output -> is_ours' too. Careful
|
||
to never transition from 'is_ours' to 'is_ours_for_output',
|
||
though. */
|
||
if (inf->terminal_state != target_terminal_state::is_ours
|
||
&& inf->terminal_state != desired_state)
|
||
{
|
||
set_current_inferior (inf);
|
||
if (desired_state == target_terminal_state::is_ours)
|
||
current_top_target ()->terminal_ours ();
|
||
else if (desired_state == target_terminal_state::is_ours_for_output)
|
||
current_top_target ()->terminal_ours_for_output ();
|
||
else
|
||
gdb_assert_not_reached ("unhandled desired state");
|
||
inf->terminal_state = desired_state;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* See target/target.h. */
|
||
|
||
void
|
||
target_terminal::ours ()
|
||
{
|
||
struct ui *ui = current_ui;
|
||
|
||
/* See target_terminal::inferior. */
|
||
if (ui != main_ui)
|
||
return;
|
||
|
||
if (m_terminal_state == target_terminal_state::is_ours)
|
||
return;
|
||
|
||
target_terminal_is_ours_kind (target_terminal_state::is_ours);
|
||
m_terminal_state = target_terminal_state::is_ours;
|
||
}
|
||
|
||
/* See target/target.h. */
|
||
|
||
void
|
||
target_terminal::ours_for_output ()
|
||
{
|
||
struct ui *ui = current_ui;
|
||
|
||
/* See target_terminal::inferior. */
|
||
if (ui != main_ui)
|
||
return;
|
||
|
||
if (!target_terminal::is_inferior ())
|
||
return;
|
||
|
||
target_terminal_is_ours_kind (target_terminal_state::is_ours_for_output);
|
||
target_terminal::m_terminal_state = target_terminal_state::is_ours_for_output;
|
||
}
|
||
|
||
/* See target/target.h. */
|
||
|
||
void
|
||
target_terminal::info (const char *arg, int from_tty)
|
||
{
|
||
current_top_target ()->terminal_info (arg, from_tty);
|
||
}
|
||
|
||
/* See target.h. */
|
||
|
||
bool
|
||
target_supports_terminal_ours (void)
|
||
{
|
||
/* The current top target is the target at the top of the target
|
||
stack of the current inferior. While normally there's always an
|
||
inferior, we must check for nullptr here because we can get here
|
||
very early during startup, before the initial inferior is first
|
||
created. */
|
||
inferior *inf = current_inferior ();
|
||
|
||
if (inf == nullptr)
|
||
return false;
|
||
return inf->top_target ()->supports_terminal_ours ();
|
||
}
|
||
|
||
static void
|
||
tcomplain (void)
|
||
{
|
||
error (_("You can't do that when your target is `%s'"),
|
||
current_top_target ()->shortname ());
|
||
}
|
||
|
||
void
|
||
noprocess (void)
|
||
{
|
||
error (_("You can't do that without a process to debug."));
|
||
}
|
||
|
||
static void
|
||
default_terminal_info (struct target_ops *self, const char *args, int from_tty)
|
||
{
|
||
printf_unfiltered (_("No saved terminal information.\n"));
|
||
}
|
||
|
||
/* A default implementation for the to_get_ada_task_ptid target method.
|
||
|
||
This function builds the PTID by using both LWP and TID as part of
|
||
the PTID lwp and tid elements. The pid used is the pid of the
|
||
inferior_ptid. */
|
||
|
||
static ptid_t
|
||
default_get_ada_task_ptid (struct target_ops *self, long lwp, long tid)
|
||
{
|
||
return ptid_t (inferior_ptid.pid (), lwp, tid);
|
||
}
|
||
|
||
static enum exec_direction_kind
|
||
default_execution_direction (struct target_ops *self)
|
||
{
|
||
if (!target_can_execute_reverse)
|
||
return EXEC_FORWARD;
|
||
else if (!target_can_async_p ())
|
||
return EXEC_FORWARD;
|
||
else
|
||
gdb_assert_not_reached ("\
|
||
to_execution_direction must be implemented for reverse async");
|
||
}
|
||
|
||
/* See target.h. */
|
||
|
||
void
|
||
decref_target (target_ops *t)
|
||
{
|
||
t->decref ();
|
||
if (t->refcount () == 0)
|
||
target_close (t);
|
||
}
|
||
|
||
/* See target.h. */
|
||
|
||
void
|
||
target_stack::push (target_ops *t)
|
||
{
|
||
t->incref ();
|
||
|
||
strata stratum = t->stratum ();
|
||
|
||
/* If there's already a target at this stratum, remove it. */
|
||
|
||
if (m_stack[stratum] != NULL)
|
||
unpush (m_stack[stratum]);
|
||
|
||
/* Now add the new one. */
|
||
m_stack[stratum] = t;
|
||
|
||
if (m_top < stratum)
|
||
m_top = stratum;
|
||
}
|
||
|
||
/* See target.h. */
|
||
|
||
void
|
||
push_target (struct target_ops *t)
|
||
{
|
||
current_inferior ()->push_target (t);
|
||
}
|
||
|
||
/* See target.h. */
|
||
|
||
void
|
||
push_target (target_ops_up &&t)
|
||
{
|
||
current_inferior ()->push_target (t.get ());
|
||
t.release ();
|
||
}
|
||
|
||
/* See target.h. */
|
||
|
||
int
|
||
unpush_target (struct target_ops *t)
|
||
{
|
||
return current_inferior ()->unpush_target (t);
|
||
}
|
||
|
||
/* See target.h. */
|
||
|
||
bool
|
||
target_stack::unpush (target_ops *t)
|
||
{
|
||
gdb_assert (t != NULL);
|
||
|
||
strata stratum = t->stratum ();
|
||
|
||
if (stratum == dummy_stratum)
|
||
internal_error (__FILE__, __LINE__,
|
||
_("Attempt to unpush the dummy target"));
|
||
|
||
/* Look for the specified target. Note that a target can only occur
|
||
once in the target stack. */
|
||
|
||
if (m_stack[stratum] != t)
|
||
{
|
||
/* If T wasn't pushed, quit. Only open targets should be
|
||
closed. */
|
||
return false;
|
||
}
|
||
|
||
/* Unchain the target. */
|
||
m_stack[stratum] = NULL;
|
||
|
||
if (m_top == stratum)
|
||
m_top = t->beneath ()->stratum ();
|
||
|
||
/* Finally close the target, if there are no inferiors
|
||
referencing this target still. Note we do this after unchaining,
|
||
so any target method calls from within the target_close
|
||
implementation don't end up in T anymore. Do leave the target
|
||
open if we have are other inferiors referencing this target
|
||
still. */
|
||
decref_target (t);
|
||
|
||
return true;
|
||
}
|
||
|
||
/* Unpush TARGET and assert that it worked. */
|
||
|
||
static void
|
||
unpush_target_and_assert (struct target_ops *target)
|
||
{
|
||
if (!unpush_target (target))
|
||
{
|
||
fprintf_unfiltered (gdb_stderr,
|
||
"pop_all_targets couldn't find target %s\n",
|
||
target->shortname ());
|
||
internal_error (__FILE__, __LINE__,
|
||
_("failed internal consistency check"));
|
||
}
|
||
}
|
||
|
||
void
|
||
pop_all_targets_above (enum strata above_stratum)
|
||
{
|
||
while ((int) (current_top_target ()->stratum ()) > (int) above_stratum)
|
||
unpush_target_and_assert (current_top_target ());
|
||
}
|
||
|
||
/* See target.h. */
|
||
|
||
void
|
||
pop_all_targets_at_and_above (enum strata stratum)
|
||
{
|
||
while ((int) (current_top_target ()->stratum ()) >= (int) stratum)
|
||
unpush_target_and_assert (current_top_target ());
|
||
}
|
||
|
||
void
|
||
pop_all_targets (void)
|
||
{
|
||
pop_all_targets_above (dummy_stratum);
|
||
}
|
||
|
||
/* Return true if T is now pushed in the current inferior's target
|
||
stack. Return false otherwise. */
|
||
|
||
bool
|
||
target_is_pushed (target_ops *t)
|
||
{
|
||
return current_inferior ()->target_is_pushed (t);
|
||
}
|
||
|
||
/* Default implementation of to_get_thread_local_address. */
|
||
|
||
static void
|
||
generic_tls_error (void)
|
||
{
|
||
throw_error (TLS_GENERIC_ERROR,
|
||
_("Cannot find thread-local variables on this target"));
|
||
}
|
||
|
||
/* Using the objfile specified in OBJFILE, find the address for the
|
||
current thread's thread-local storage with offset OFFSET. */
|
||
CORE_ADDR
|
||
target_translate_tls_address (struct objfile *objfile, CORE_ADDR offset)
|
||
{
|
||
volatile CORE_ADDR addr = 0;
|
||
struct target_ops *target = current_top_target ();
|
||
struct gdbarch *gdbarch = target_gdbarch ();
|
||
|
||
if (gdbarch_fetch_tls_load_module_address_p (gdbarch))
|
||
{
|
||
ptid_t ptid = inferior_ptid;
|
||
|
||
try
|
||
{
|
||
CORE_ADDR lm_addr;
|
||
|
||
/* Fetch the load module address for this objfile. */
|
||
lm_addr = gdbarch_fetch_tls_load_module_address (gdbarch,
|
||
objfile);
|
||
|
||
if (gdbarch_get_thread_local_address_p (gdbarch))
|
||
addr = gdbarch_get_thread_local_address (gdbarch, ptid, lm_addr,
|
||
offset);
|
||
else
|
||
addr = target->get_thread_local_address (ptid, lm_addr, offset);
|
||
}
|
||
/* If an error occurred, print TLS related messages here. Otherwise,
|
||
throw the error to some higher catcher. */
|
||
catch (const gdb_exception &ex)
|
||
{
|
||
int objfile_is_library = (objfile->flags & OBJF_SHARED);
|
||
|
||
switch (ex.error)
|
||
{
|
||
case TLS_NO_LIBRARY_SUPPORT_ERROR:
|
||
error (_("Cannot find thread-local variables "
|
||
"in this thread library."));
|
||
break;
|
||
case TLS_LOAD_MODULE_NOT_FOUND_ERROR:
|
||
if (objfile_is_library)
|
||
error (_("Cannot find shared library `%s' in dynamic"
|
||
" linker's load module list"), objfile_name (objfile));
|
||
else
|
||
error (_("Cannot find executable file `%s' in dynamic"
|
||
" linker's load module list"), objfile_name (objfile));
|
||
break;
|
||
case TLS_NOT_ALLOCATED_YET_ERROR:
|
||
if (objfile_is_library)
|
||
error (_("The inferior has not yet allocated storage for"
|
||
" thread-local variables in\n"
|
||
"the shared library `%s'\n"
|
||
"for %s"),
|
||
objfile_name (objfile),
|
||
target_pid_to_str (ptid).c_str ());
|
||
else
|
||
error (_("The inferior has not yet allocated storage for"
|
||
" thread-local variables in\n"
|
||
"the executable `%s'\n"
|
||
"for %s"),
|
||
objfile_name (objfile),
|
||
target_pid_to_str (ptid).c_str ());
|
||
break;
|
||
case TLS_GENERIC_ERROR:
|
||
if (objfile_is_library)
|
||
error (_("Cannot find thread-local storage for %s, "
|
||
"shared library %s:\n%s"),
|
||
target_pid_to_str (ptid).c_str (),
|
||
objfile_name (objfile), ex.what ());
|
||
else
|
||
error (_("Cannot find thread-local storage for %s, "
|
||
"executable file %s:\n%s"),
|
||
target_pid_to_str (ptid).c_str (),
|
||
objfile_name (objfile), ex.what ());
|
||
break;
|
||
default:
|
||
throw;
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
else
|
||
error (_("Cannot find thread-local variables on this target"));
|
||
|
||
return addr;
|
||
}
|
||
|
||
const char *
|
||
target_xfer_status_to_string (enum target_xfer_status status)
|
||
{
|
||
#define CASE(X) case X: return #X
|
||
switch (status)
|
||
{
|
||
CASE(TARGET_XFER_E_IO);
|
||
CASE(TARGET_XFER_UNAVAILABLE);
|
||
default:
|
||
return "<unknown>";
|
||
}
|
||
#undef CASE
|
||
};
|
||
|
||
|
||
#undef MIN
|
||
#define MIN(A, B) (((A) <= (B)) ? (A) : (B))
|
||
|
||
/* target_read_string -- read a null terminated string, up to LEN bytes,
|
||
from MEMADDR in target. Set *ERRNOP to the errno code, or 0 if successful.
|
||
Set *STRING to a pointer to malloc'd memory containing the data; the caller
|
||
is responsible for freeing it. Return the number of bytes successfully
|
||
read. */
|
||
|
||
int
|
||
target_read_string (CORE_ADDR memaddr, gdb::unique_xmalloc_ptr<char> *string,
|
||
int len, int *errnop)
|
||
{
|
||
int tlen, offset, i;
|
||
gdb_byte buf[4];
|
||
int errcode = 0;
|
||
char *buffer;
|
||
int buffer_allocated;
|
||
char *bufptr;
|
||
unsigned int nbytes_read = 0;
|
||
|
||
gdb_assert (string);
|
||
|
||
/* Small for testing. */
|
||
buffer_allocated = 4;
|
||
buffer = (char *) xmalloc (buffer_allocated);
|
||
bufptr = buffer;
|
||
|
||
while (len > 0)
|
||
{
|
||
tlen = MIN (len, 4 - (memaddr & 3));
|
||
offset = memaddr & 3;
|
||
|
||
errcode = target_read_memory (memaddr & ~3, buf, sizeof buf);
|
||
if (errcode != 0)
|
||
{
|
||
/* The transfer request might have crossed the boundary to an
|
||
unallocated region of memory. Retry the transfer, requesting
|
||
a single byte. */
|
||
tlen = 1;
|
||
offset = 0;
|
||
errcode = target_read_memory (memaddr, buf, 1);
|
||
if (errcode != 0)
|
||
goto done;
|
||
}
|
||
|
||
if (bufptr - buffer + tlen > buffer_allocated)
|
||
{
|
||
unsigned int bytes;
|
||
|
||
bytes = bufptr - buffer;
|
||
buffer_allocated *= 2;
|
||
buffer = (char *) xrealloc (buffer, buffer_allocated);
|
||
bufptr = buffer + bytes;
|
||
}
|
||
|
||
for (i = 0; i < tlen; i++)
|
||
{
|
||
*bufptr++ = buf[i + offset];
|
||
if (buf[i + offset] == '\000')
|
||
{
|
||
nbytes_read += i + 1;
|
||
goto done;
|
||
}
|
||
}
|
||
|
||
memaddr += tlen;
|
||
len -= tlen;
|
||
nbytes_read += tlen;
|
||
}
|
||
done:
|
||
string->reset (buffer);
|
||
if (errnop != NULL)
|
||
*errnop = errcode;
|
||
return nbytes_read;
|
||
}
|
||
|
||
struct target_section_table *
|
||
target_get_section_table (struct target_ops *target)
|
||
{
|
||
return target->get_section_table ();
|
||
}
|
||
|
||
/* Find a section containing ADDR. */
|
||
|
||
struct target_section *
|
||
target_section_by_addr (struct target_ops *target, CORE_ADDR addr)
|
||
{
|
||
struct target_section_table *table = target_get_section_table (target);
|
||
struct target_section *secp;
|
||
|
||
if (table == NULL)
|
||
return NULL;
|
||
|
||
for (secp = table->sections; secp < table->sections_end; secp++)
|
||
{
|
||
if (addr >= secp->addr && addr < secp->endaddr)
|
||
return secp;
|
||
}
|
||
return NULL;
|
||
}
|
||
|
||
|
||
/* Helper for the memory xfer routines. Checks the attributes of the
|
||
memory region of MEMADDR against the read or write being attempted.
|
||
If the access is permitted returns true, otherwise returns false.
|
||
REGION_P is an optional output parameter. If not-NULL, it is
|
||
filled with a pointer to the memory region of MEMADDR. REG_LEN
|
||
returns LEN trimmed to the end of the region. This is how much the
|
||
caller can continue requesting, if the access is permitted. A
|
||
single xfer request must not straddle memory region boundaries. */
|
||
|
||
static int
|
||
memory_xfer_check_region (gdb_byte *readbuf, const gdb_byte *writebuf,
|
||
ULONGEST memaddr, ULONGEST len, ULONGEST *reg_len,
|
||
struct mem_region **region_p)
|
||
{
|
||
struct mem_region *region;
|
||
|
||
region = lookup_mem_region (memaddr);
|
||
|
||
if (region_p != NULL)
|
||
*region_p = region;
|
||
|
||
switch (region->attrib.mode)
|
||
{
|
||
case MEM_RO:
|
||
if (writebuf != NULL)
|
||
return 0;
|
||
break;
|
||
|
||
case MEM_WO:
|
||
if (readbuf != NULL)
|
||
return 0;
|
||
break;
|
||
|
||
case MEM_FLASH:
|
||
/* We only support writing to flash during "load" for now. */
|
||
if (writebuf != NULL)
|
||
error (_("Writing to flash memory forbidden in this context"));
|
||
break;
|
||
|
||
case MEM_NONE:
|
||
return 0;
|
||
}
|
||
|
||
/* region->hi == 0 means there's no upper bound. */
|
||
if (memaddr + len < region->hi || region->hi == 0)
|
||
*reg_len = len;
|
||
else
|
||
*reg_len = region->hi - memaddr;
|
||
|
||
return 1;
|
||
}
|
||
|
||
/* Read memory from more than one valid target. A core file, for
|
||
instance, could have some of memory but delegate other bits to
|
||
the target below it. So, we must manually try all targets. */
|
||
|
||
enum target_xfer_status
|
||
raw_memory_xfer_partial (struct target_ops *ops, gdb_byte *readbuf,
|
||
const gdb_byte *writebuf, ULONGEST memaddr, LONGEST len,
|
||
ULONGEST *xfered_len)
|
||
{
|
||
enum target_xfer_status res;
|
||
|
||
do
|
||
{
|
||
res = ops->xfer_partial (TARGET_OBJECT_MEMORY, NULL,
|
||
readbuf, writebuf, memaddr, len,
|
||
xfered_len);
|
||
if (res == TARGET_XFER_OK)
|
||
break;
|
||
|
||
/* Stop if the target reports that the memory is not available. */
|
||
if (res == TARGET_XFER_UNAVAILABLE)
|
||
break;
|
||
|
||
/* We want to continue past core files to executables, but not
|
||
past a running target's memory. */
|
||
if (ops->has_all_memory ())
|
||
break;
|
||
|
||
ops = ops->beneath ();
|
||
}
|
||
while (ops != NULL);
|
||
|
||
/* The cache works at the raw memory level. Make sure the cache
|
||
gets updated with raw contents no matter what kind of memory
|
||
object was originally being written. Note we do write-through
|
||
first, so that if it fails, we don't write to the cache contents
|
||
that never made it to the target. */
|
||
if (writebuf != NULL
|
||
&& inferior_ptid != null_ptid
|
||
&& target_dcache_init_p ()
|
||
&& (stack_cache_enabled_p () || code_cache_enabled_p ()))
|
||
{
|
||
DCACHE *dcache = target_dcache_get ();
|
||
|
||
/* Note that writing to an area of memory which wasn't present
|
||
in the cache doesn't cause it to be loaded in. */
|
||
dcache_update (dcache, res, memaddr, writebuf, *xfered_len);
|
||
}
|
||
|
||
return res;
|
||
}
|
||
|
||
/* Perform a partial memory transfer.
|
||
For docs see target.h, to_xfer_partial. */
|
||
|
||
static enum target_xfer_status
|
||
memory_xfer_partial_1 (struct target_ops *ops, enum target_object object,
|
||
gdb_byte *readbuf, const gdb_byte *writebuf, ULONGEST memaddr,
|
||
ULONGEST len, ULONGEST *xfered_len)
|
||
{
|
||
enum target_xfer_status res;
|
||
ULONGEST reg_len;
|
||
struct mem_region *region;
|
||
struct inferior *inf;
|
||
|
||
/* For accesses to unmapped overlay sections, read directly from
|
||
files. Must do this first, as MEMADDR may need adjustment. */
|
||
if (readbuf != NULL && overlay_debugging)
|
||
{
|
||
struct obj_section *section = find_pc_overlay (memaddr);
|
||
|
||
if (pc_in_unmapped_range (memaddr, section))
|
||
{
|
||
struct target_section_table *table
|
||
= target_get_section_table (ops);
|
||
const char *section_name = section->the_bfd_section->name;
|
||
|
||
memaddr = overlay_mapped_address (memaddr, section);
|
||
return section_table_xfer_memory_partial (readbuf, writebuf,
|
||
memaddr, len, xfered_len,
|
||
table->sections,
|
||
table->sections_end,
|
||
section_name);
|
||
}
|
||
}
|
||
|
||
/* Try the executable files, if "trust-readonly-sections" is set. */
|
||
if (readbuf != NULL && trust_readonly)
|
||
{
|
||
struct target_section *secp;
|
||
struct target_section_table *table;
|
||
|
||
secp = target_section_by_addr (ops, memaddr);
|
||
if (secp != NULL
|
||
&& (bfd_section_flags (secp->the_bfd_section) & SEC_READONLY))
|
||
{
|
||
table = target_get_section_table (ops);
|
||
return section_table_xfer_memory_partial (readbuf, writebuf,
|
||
memaddr, len, xfered_len,
|
||
table->sections,
|
||
table->sections_end,
|
||
NULL);
|
||
}
|
||
}
|
||
|
||
/* Try GDB's internal data cache. */
|
||
|
||
if (!memory_xfer_check_region (readbuf, writebuf, memaddr, len, ®_len,
|
||
®ion))
|
||
return TARGET_XFER_E_IO;
|
||
|
||
if (inferior_ptid != null_ptid)
|
||
inf = current_inferior ();
|
||
else
|
||
inf = NULL;
|
||
|
||
if (inf != NULL
|
||
&& readbuf != NULL
|
||
/* The dcache reads whole cache lines; that doesn't play well
|
||
with reading from a trace buffer, because reading outside of
|
||
the collected memory range fails. */
|
||
&& get_traceframe_number () == -1
|
||
&& (region->attrib.cache
|
||
|| (stack_cache_enabled_p () && object == TARGET_OBJECT_STACK_MEMORY)
|
||
|| (code_cache_enabled_p () && object == TARGET_OBJECT_CODE_MEMORY)))
|
||
{
|
||
DCACHE *dcache = target_dcache_get_or_init ();
|
||
|
||
return dcache_read_memory_partial (ops, dcache, memaddr, readbuf,
|
||
reg_len, xfered_len);
|
||
}
|
||
|
||
/* If none of those methods found the memory we wanted, fall back
|
||
to a target partial transfer. Normally a single call to
|
||
to_xfer_partial is enough; if it doesn't recognize an object
|
||
it will call the to_xfer_partial of the next target down.
|
||
But for memory this won't do. Memory is the only target
|
||
object which can be read from more than one valid target.
|
||
A core file, for instance, could have some of memory but
|
||
delegate other bits to the target below it. So, we must
|
||
manually try all targets. */
|
||
|
||
res = raw_memory_xfer_partial (ops, readbuf, writebuf, memaddr, reg_len,
|
||
xfered_len);
|
||
|
||
/* If we still haven't got anything, return the last error. We
|
||
give up. */
|
||
return res;
|
||
}
|
||
|
||
/* Perform a partial memory transfer. For docs see target.h,
|
||
to_xfer_partial. */
|
||
|
||
static enum target_xfer_status
|
||
memory_xfer_partial (struct target_ops *ops, enum target_object object,
|
||
gdb_byte *readbuf, const gdb_byte *writebuf,
|
||
ULONGEST memaddr, ULONGEST len, ULONGEST *xfered_len)
|
||
{
|
||
enum target_xfer_status res;
|
||
|
||
/* Zero length requests are ok and require no work. */
|
||
if (len == 0)
|
||
return TARGET_XFER_EOF;
|
||
|
||
memaddr = address_significant (target_gdbarch (), memaddr);
|
||
|
||
/* Fill in READBUF with breakpoint shadows, or WRITEBUF with
|
||
breakpoint insns, thus hiding out from higher layers whether
|
||
there are software breakpoints inserted in the code stream. */
|
||
if (readbuf != NULL)
|
||
{
|
||
res = memory_xfer_partial_1 (ops, object, readbuf, NULL, memaddr, len,
|
||
xfered_len);
|
||
|
||
if (res == TARGET_XFER_OK && !show_memory_breakpoints)
|
||
breakpoint_xfer_memory (readbuf, NULL, NULL, memaddr, *xfered_len);
|
||
}
|
||
else
|
||
{
|
||
/* A large write request is likely to be partially satisfied
|
||
by memory_xfer_partial_1. We will continually malloc
|
||
and free a copy of the entire write request for breakpoint
|
||
shadow handling even though we only end up writing a small
|
||
subset of it. Cap writes to a limit specified by the target
|
||
to mitigate this. */
|
||
len = std::min (ops->get_memory_xfer_limit (), len);
|
||
|
||
gdb::byte_vector buf (writebuf, writebuf + len);
|
||
breakpoint_xfer_memory (NULL, buf.data (), writebuf, memaddr, len);
|
||
res = memory_xfer_partial_1 (ops, object, NULL, buf.data (), memaddr, len,
|
||
xfered_len);
|
||
}
|
||
|
||
return res;
|
||
}
|
||
|
||
scoped_restore_tmpl<int>
|
||
make_scoped_restore_show_memory_breakpoints (int show)
|
||
{
|
||
return make_scoped_restore (&show_memory_breakpoints, show);
|
||
}
|
||
|
||
/* For docs see target.h, to_xfer_partial. */
|
||
|
||
enum target_xfer_status
|
||
target_xfer_partial (struct target_ops *ops,
|
||
enum target_object object, const char *annex,
|
||
gdb_byte *readbuf, const gdb_byte *writebuf,
|
||
ULONGEST offset, ULONGEST len,
|
||
ULONGEST *xfered_len)
|
||
{
|
||
enum target_xfer_status retval;
|
||
|
||
/* Transfer is done when LEN is zero. */
|
||
if (len == 0)
|
||
return TARGET_XFER_EOF;
|
||
|
||
if (writebuf && !may_write_memory)
|
||
error (_("Writing to memory is not allowed (addr %s, len %s)"),
|
||
core_addr_to_string_nz (offset), plongest (len));
|
||
|
||
*xfered_len = 0;
|
||
|
||
/* If this is a memory transfer, let the memory-specific code
|
||
have a look at it instead. Memory transfers are more
|
||
complicated. */
|
||
if (object == TARGET_OBJECT_MEMORY || object == TARGET_OBJECT_STACK_MEMORY
|
||
|| object == TARGET_OBJECT_CODE_MEMORY)
|
||
retval = memory_xfer_partial (ops, object, readbuf,
|
||
writebuf, offset, len, xfered_len);
|
||
else if (object == TARGET_OBJECT_RAW_MEMORY)
|
||
{
|
||
/* Skip/avoid accessing the target if the memory region
|
||
attributes block the access. Check this here instead of in
|
||
raw_memory_xfer_partial as otherwise we'd end up checking
|
||
this twice in the case of the memory_xfer_partial path is
|
||
taken; once before checking the dcache, and another in the
|
||
tail call to raw_memory_xfer_partial. */
|
||
if (!memory_xfer_check_region (readbuf, writebuf, offset, len, &len,
|
||
NULL))
|
||
return TARGET_XFER_E_IO;
|
||
|
||
/* Request the normal memory object from other layers. */
|
||
retval = raw_memory_xfer_partial (ops, readbuf, writebuf, offset, len,
|
||
xfered_len);
|
||
}
|
||
else
|
||
retval = ops->xfer_partial (object, annex, readbuf,
|
||
writebuf, offset, len, xfered_len);
|
||
|
||
if (targetdebug)
|
||
{
|
||
const unsigned char *myaddr = NULL;
|
||
|
||
fprintf_unfiltered (gdb_stdlog,
|
||
"%s:target_xfer_partial "
|
||
"(%d, %s, %s, %s, %s, %s) = %d, %s",
|
||
ops->shortname (),
|
||
(int) object,
|
||
(annex ? annex : "(null)"),
|
||
host_address_to_string (readbuf),
|
||
host_address_to_string (writebuf),
|
||
core_addr_to_string_nz (offset),
|
||
pulongest (len), retval,
|
||
pulongest (*xfered_len));
|
||
|
||
if (readbuf)
|
||
myaddr = readbuf;
|
||
if (writebuf)
|
||
myaddr = writebuf;
|
||
if (retval == TARGET_XFER_OK && myaddr != NULL)
|
||
{
|
||
int i;
|
||
|
||
fputs_unfiltered (", bytes =", gdb_stdlog);
|
||
for (i = 0; i < *xfered_len; i++)
|
||
{
|
||
if ((((intptr_t) &(myaddr[i])) & 0xf) == 0)
|
||
{
|
||
if (targetdebug < 2 && i > 0)
|
||
{
|
||
fprintf_unfiltered (gdb_stdlog, " ...");
|
||
break;
|
||
}
|
||
fprintf_unfiltered (gdb_stdlog, "\n");
|
||
}
|
||
|
||
fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
|
||
}
|
||
}
|
||
|
||
fputc_unfiltered ('\n', gdb_stdlog);
|
||
}
|
||
|
||
/* Check implementations of to_xfer_partial update *XFERED_LEN
|
||
properly. Do assertion after printing debug messages, so that we
|
||
can find more clues on assertion failure from debugging messages. */
|
||
if (retval == TARGET_XFER_OK || retval == TARGET_XFER_UNAVAILABLE)
|
||
gdb_assert (*xfered_len > 0);
|
||
|
||
return retval;
|
||
}
|
||
|
||
/* Read LEN bytes of target memory at address MEMADDR, placing the
|
||
results in GDB's memory at MYADDR. Returns either 0 for success or
|
||
-1 if any error occurs.
|
||
|
||
If an error occurs, no guarantee is made about the contents of the data at
|
||
MYADDR. In particular, the caller should not depend upon partial reads
|
||
filling the buffer with good data. There is no way for the caller to know
|
||
how much good data might have been transfered anyway. Callers that can
|
||
deal with partial reads should call target_read (which will retry until
|
||
it makes no progress, and then return how much was transferred). */
|
||
|
||
int
|
||
target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
|
||
{
|
||
if (target_read (current_top_target (), TARGET_OBJECT_MEMORY, NULL,
|
||
myaddr, memaddr, len) == len)
|
||
return 0;
|
||
else
|
||
return -1;
|
||
}
|
||
|
||
/* See target/target.h. */
|
||
|
||
int
|
||
target_read_uint32 (CORE_ADDR memaddr, uint32_t *result)
|
||
{
|
||
gdb_byte buf[4];
|
||
int r;
|
||
|
||
r = target_read_memory (memaddr, buf, sizeof buf);
|
||
if (r != 0)
|
||
return r;
|
||
*result = extract_unsigned_integer (buf, sizeof buf,
|
||
gdbarch_byte_order (target_gdbarch ()));
|
||
return 0;
|
||
}
|
||
|
||
/* Like target_read_memory, but specify explicitly that this is a read
|
||
from the target's raw memory. That is, this read bypasses the
|
||
dcache, breakpoint shadowing, etc. */
|
||
|
||
int
|
||
target_read_raw_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
|
||
{
|
||
if (target_read (current_top_target (), TARGET_OBJECT_RAW_MEMORY, NULL,
|
||
myaddr, memaddr, len) == len)
|
||
return 0;
|
||
else
|
||
return -1;
|
||
}
|
||
|
||
/* Like target_read_memory, but specify explicitly that this is a read from
|
||
the target's stack. This may trigger different cache behavior. */
|
||
|
||
int
|
||
target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
|
||
{
|
||
if (target_read (current_top_target (), TARGET_OBJECT_STACK_MEMORY, NULL,
|
||
myaddr, memaddr, len) == len)
|
||
return 0;
|
||
else
|
||
return -1;
|
||
}
|
||
|
||
/* Like target_read_memory, but specify explicitly that this is a read from
|
||
the target's code. This may trigger different cache behavior. */
|
||
|
||
int
|
||
target_read_code (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
|
||
{
|
||
if (target_read (current_top_target (), TARGET_OBJECT_CODE_MEMORY, NULL,
|
||
myaddr, memaddr, len) == len)
|
||
return 0;
|
||
else
|
||
return -1;
|
||
}
|
||
|
||
/* Write LEN bytes from MYADDR to target memory at address MEMADDR.
|
||
Returns either 0 for success or -1 if any error occurs. If an
|
||
error occurs, no guarantee is made about how much data got written.
|
||
Callers that can deal with partial writes should call
|
||
target_write. */
|
||
|
||
int
|
||
target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
|
||
{
|
||
if (target_write (current_top_target (), TARGET_OBJECT_MEMORY, NULL,
|
||
myaddr, memaddr, len) == len)
|
||
return 0;
|
||
else
|
||
return -1;
|
||
}
|
||
|
||
/* Write LEN bytes from MYADDR to target raw memory at address
|
||
MEMADDR. Returns either 0 for success or -1 if any error occurs.
|
||
If an error occurs, no guarantee is made about how much data got
|
||
written. Callers that can deal with partial writes should call
|
||
target_write. */
|
||
|
||
int
|
||
target_write_raw_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
|
||
{
|
||
if (target_write (current_top_target (), TARGET_OBJECT_RAW_MEMORY, NULL,
|
||
myaddr, memaddr, len) == len)
|
||
return 0;
|
||
else
|
||
return -1;
|
||
}
|
||
|
||
/* Fetch the target's memory map. */
|
||
|
||
std::vector<mem_region>
|
||
target_memory_map (void)
|
||
{
|
||
std::vector<mem_region> result = current_top_target ()->memory_map ();
|
||
if (result.empty ())
|
||
return result;
|
||
|
||
std::sort (result.begin (), result.end ());
|
||
|
||
/* Check that regions do not overlap. Simultaneously assign
|
||
a numbering for the "mem" commands to use to refer to
|
||
each region. */
|
||
mem_region *last_one = NULL;
|
||
for (size_t ix = 0; ix < result.size (); ix++)
|
||
{
|
||
mem_region *this_one = &result[ix];
|
||
this_one->number = ix;
|
||
|
||
if (last_one != NULL && last_one->hi > this_one->lo)
|
||
{
|
||
warning (_("Overlapping regions in memory map: ignoring"));
|
||
return std::vector<mem_region> ();
|
||
}
|
||
|
||
last_one = this_one;
|
||
}
|
||
|
||
return result;
|
||
}
|
||
|
||
void
|
||
target_flash_erase (ULONGEST address, LONGEST length)
|
||
{
|
||
current_top_target ()->flash_erase (address, length);
|
||
}
|
||
|
||
void
|
||
target_flash_done (void)
|
||
{
|
||
current_top_target ()->flash_done ();
|
||
}
|
||
|
||
static void
|
||
show_trust_readonly (struct ui_file *file, int from_tty,
|
||
struct cmd_list_element *c, const char *value)
|
||
{
|
||
fprintf_filtered (file,
|
||
_("Mode for reading from readonly sections is %s.\n"),
|
||
value);
|
||
}
|
||
|
||
/* Target vector read/write partial wrapper functions. */
|
||
|
||
static enum target_xfer_status
|
||
target_read_partial (struct target_ops *ops,
|
||
enum target_object object,
|
||
const char *annex, gdb_byte *buf,
|
||
ULONGEST offset, ULONGEST len,
|
||
ULONGEST *xfered_len)
|
||
{
|
||
return target_xfer_partial (ops, object, annex, buf, NULL, offset, len,
|
||
xfered_len);
|
||
}
|
||
|
||
static enum target_xfer_status
|
||
target_write_partial (struct target_ops *ops,
|
||
enum target_object object,
|
||
const char *annex, const gdb_byte *buf,
|
||
ULONGEST offset, LONGEST len, ULONGEST *xfered_len)
|
||
{
|
||
return target_xfer_partial (ops, object, annex, NULL, buf, offset, len,
|
||
xfered_len);
|
||
}
|
||
|
||
/* Wrappers to perform the full transfer. */
|
||
|
||
/* For docs on target_read see target.h. */
|
||
|
||
LONGEST
|
||
target_read (struct target_ops *ops,
|
||
enum target_object object,
|
||
const char *annex, gdb_byte *buf,
|
||
ULONGEST offset, LONGEST len)
|
||
{
|
||
LONGEST xfered_total = 0;
|
||
int unit_size = 1;
|
||
|
||
/* If we are reading from a memory object, find the length of an addressable
|
||
unit for that architecture. */
|
||
if (object == TARGET_OBJECT_MEMORY
|
||
|| object == TARGET_OBJECT_STACK_MEMORY
|
||
|| object == TARGET_OBJECT_CODE_MEMORY
|
||
|| object == TARGET_OBJECT_RAW_MEMORY)
|
||
unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
|
||
|
||
while (xfered_total < len)
|
||
{
|
||
ULONGEST xfered_partial;
|
||
enum target_xfer_status status;
|
||
|
||
status = target_read_partial (ops, object, annex,
|
||
buf + xfered_total * unit_size,
|
||
offset + xfered_total, len - xfered_total,
|
||
&xfered_partial);
|
||
|
||
/* Call an observer, notifying them of the xfer progress? */
|
||
if (status == TARGET_XFER_EOF)
|
||
return xfered_total;
|
||
else if (status == TARGET_XFER_OK)
|
||
{
|
||
xfered_total += xfered_partial;
|
||
QUIT;
|
||
}
|
||
else
|
||
return TARGET_XFER_E_IO;
|
||
|
||
}
|
||
return len;
|
||
}
|
||
|
||
/* Assuming that the entire [begin, end) range of memory cannot be
|
||
read, try to read whatever subrange is possible to read.
|
||
|
||
The function returns, in RESULT, either zero or one memory block.
|
||
If there's a readable subrange at the beginning, it is completely
|
||
read and returned. Any further readable subrange will not be read.
|
||
Otherwise, if there's a readable subrange at the end, it will be
|
||
completely read and returned. Any readable subranges before it
|
||
(obviously, not starting at the beginning), will be ignored. In
|
||
other cases -- either no readable subrange, or readable subrange(s)
|
||
that is neither at the beginning, or end, nothing is returned.
|
||
|
||
The purpose of this function is to handle a read across a boundary
|
||
of accessible memory in a case when memory map is not available.
|
||
The above restrictions are fine for this case, but will give
|
||
incorrect results if the memory is 'patchy'. However, supporting
|
||
'patchy' memory would require trying to read every single byte,
|
||
and it seems unacceptable solution. Explicit memory map is
|
||
recommended for this case -- and target_read_memory_robust will
|
||
take care of reading multiple ranges then. */
|
||
|
||
static void
|
||
read_whatever_is_readable (struct target_ops *ops,
|
||
const ULONGEST begin, const ULONGEST end,
|
||
int unit_size,
|
||
std::vector<memory_read_result> *result)
|
||
{
|
||
ULONGEST current_begin = begin;
|
||
ULONGEST current_end = end;
|
||
int forward;
|
||
ULONGEST xfered_len;
|
||
|
||
/* If we previously failed to read 1 byte, nothing can be done here. */
|
||
if (end - begin <= 1)
|
||
return;
|
||
|
||
gdb::unique_xmalloc_ptr<gdb_byte> buf ((gdb_byte *) xmalloc (end - begin));
|
||
|
||
/* Check that either first or the last byte is readable, and give up
|
||
if not. This heuristic is meant to permit reading accessible memory
|
||
at the boundary of accessible region. */
|
||
if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
|
||
buf.get (), begin, 1, &xfered_len) == TARGET_XFER_OK)
|
||
{
|
||
forward = 1;
|
||
++current_begin;
|
||
}
|
||
else if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
|
||
buf.get () + (end - begin) - 1, end - 1, 1,
|
||
&xfered_len) == TARGET_XFER_OK)
|
||
{
|
||
forward = 0;
|
||
--current_end;
|
||
}
|
||
else
|
||
return;
|
||
|
||
/* Loop invariant is that the [current_begin, current_end) was previously
|
||
found to be not readable as a whole.
|
||
|
||
Note loop condition -- if the range has 1 byte, we can't divide the range
|
||
so there's no point trying further. */
|
||
while (current_end - current_begin > 1)
|
||
{
|
||
ULONGEST first_half_begin, first_half_end;
|
||
ULONGEST second_half_begin, second_half_end;
|
||
LONGEST xfer;
|
||
ULONGEST middle = current_begin + (current_end - current_begin) / 2;
|
||
|
||
if (forward)
|
||
{
|
||
first_half_begin = current_begin;
|
||
first_half_end = middle;
|
||
second_half_begin = middle;
|
||
second_half_end = current_end;
|
||
}
|
||
else
|
||
{
|
||
first_half_begin = middle;
|
||
first_half_end = current_end;
|
||
second_half_begin = current_begin;
|
||
second_half_end = middle;
|
||
}
|
||
|
||
xfer = target_read (ops, TARGET_OBJECT_MEMORY, NULL,
|
||
buf.get () + (first_half_begin - begin) * unit_size,
|
||
first_half_begin,
|
||
first_half_end - first_half_begin);
|
||
|
||
if (xfer == first_half_end - first_half_begin)
|
||
{
|
||
/* This half reads up fine. So, the error must be in the
|
||
other half. */
|
||
current_begin = second_half_begin;
|
||
current_end = second_half_end;
|
||
}
|
||
else
|
||
{
|
||
/* This half is not readable. Because we've tried one byte, we
|
||
know some part of this half if actually readable. Go to the next
|
||
iteration to divide again and try to read.
|
||
|
||
We don't handle the other half, because this function only tries
|
||
to read a single readable subrange. */
|
||
current_begin = first_half_begin;
|
||
current_end = first_half_end;
|
||
}
|
||
}
|
||
|
||
if (forward)
|
||
{
|
||
/* The [begin, current_begin) range has been read. */
|
||
result->emplace_back (begin, current_end, std::move (buf));
|
||
}
|
||
else
|
||
{
|
||
/* The [current_end, end) range has been read. */
|
||
LONGEST region_len = end - current_end;
|
||
|
||
gdb::unique_xmalloc_ptr<gdb_byte> data
|
||
((gdb_byte *) xmalloc (region_len * unit_size));
|
||
memcpy (data.get (), buf.get () + (current_end - begin) * unit_size,
|
||
region_len * unit_size);
|
||
result->emplace_back (current_end, end, std::move (data));
|
||
}
|
||
}
|
||
|
||
std::vector<memory_read_result>
|
||
read_memory_robust (struct target_ops *ops,
|
||
const ULONGEST offset, const LONGEST len)
|
||
{
|
||
std::vector<memory_read_result> result;
|
||
int unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
|
||
|
||
LONGEST xfered_total = 0;
|
||
while (xfered_total < len)
|
||
{
|
||
struct mem_region *region = lookup_mem_region (offset + xfered_total);
|
||
LONGEST region_len;
|
||
|
||
/* If there is no explicit region, a fake one should be created. */
|
||
gdb_assert (region);
|
||
|
||
if (region->hi == 0)
|
||
region_len = len - xfered_total;
|
||
else
|
||
region_len = region->hi - offset;
|
||
|
||
if (region->attrib.mode == MEM_NONE || region->attrib.mode == MEM_WO)
|
||
{
|
||
/* Cannot read this region. Note that we can end up here only
|
||
if the region is explicitly marked inaccessible, or
|
||
'inaccessible-by-default' is in effect. */
|
||
xfered_total += region_len;
|
||
}
|
||
else
|
||
{
|
||
LONGEST to_read = std::min (len - xfered_total, region_len);
|
||
gdb::unique_xmalloc_ptr<gdb_byte> buffer
|
||
((gdb_byte *) xmalloc (to_read * unit_size));
|
||
|
||
LONGEST xfered_partial =
|
||
target_read (ops, TARGET_OBJECT_MEMORY, NULL, buffer.get (),
|
||
offset + xfered_total, to_read);
|
||
/* Call an observer, notifying them of the xfer progress? */
|
||
if (xfered_partial <= 0)
|
||
{
|
||
/* Got an error reading full chunk. See if maybe we can read
|
||
some subrange. */
|
||
read_whatever_is_readable (ops, offset + xfered_total,
|
||
offset + xfered_total + to_read,
|
||
unit_size, &result);
|
||
xfered_total += to_read;
|
||
}
|
||
else
|
||
{
|
||
result.emplace_back (offset + xfered_total,
|
||
offset + xfered_total + xfered_partial,
|
||
std::move (buffer));
|
||
xfered_total += xfered_partial;
|
||
}
|
||
QUIT;
|
||
}
|
||
}
|
||
|
||
return result;
|
||
}
|
||
|
||
|
||
/* An alternative to target_write with progress callbacks. */
|
||
|
||
LONGEST
|
||
target_write_with_progress (struct target_ops *ops,
|
||
enum target_object object,
|
||
const char *annex, const gdb_byte *buf,
|
||
ULONGEST offset, LONGEST len,
|
||
void (*progress) (ULONGEST, void *), void *baton)
|
||
{
|
||
LONGEST xfered_total = 0;
|
||
int unit_size = 1;
|
||
|
||
/* If we are writing to a memory object, find the length of an addressable
|
||
unit for that architecture. */
|
||
if (object == TARGET_OBJECT_MEMORY
|
||
|| object == TARGET_OBJECT_STACK_MEMORY
|
||
|| object == TARGET_OBJECT_CODE_MEMORY
|
||
|| object == TARGET_OBJECT_RAW_MEMORY)
|
||
unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
|
||
|
||
/* Give the progress callback a chance to set up. */
|
||
if (progress)
|
||
(*progress) (0, baton);
|
||
|
||
while (xfered_total < len)
|
||
{
|
||
ULONGEST xfered_partial;
|
||
enum target_xfer_status status;
|
||
|
||
status = target_write_partial (ops, object, annex,
|
||
buf + xfered_total * unit_size,
|
||
offset + xfered_total, len - xfered_total,
|
||
&xfered_partial);
|
||
|
||
if (status != TARGET_XFER_OK)
|
||
return status == TARGET_XFER_EOF ? xfered_total : TARGET_XFER_E_IO;
|
||
|
||
if (progress)
|
||
(*progress) (xfered_partial, baton);
|
||
|
||
xfered_total += xfered_partial;
|
||
QUIT;
|
||
}
|
||
return len;
|
||
}
|
||
|
||
/* For docs on target_write see target.h. */
|
||
|
||
LONGEST
|
||
target_write (struct target_ops *ops,
|
||
enum target_object object,
|
||
const char *annex, const gdb_byte *buf,
|
||
ULONGEST offset, LONGEST len)
|
||
{
|
||
return target_write_with_progress (ops, object, annex, buf, offset, len,
|
||
NULL, NULL);
|
||
}
|
||
|
||
/* Help for target_read_alloc and target_read_stralloc. See their comments
|
||
for details. */
|
||
|
||
template <typename T>
|
||
gdb::optional<gdb::def_vector<T>>
|
||
target_read_alloc_1 (struct target_ops *ops, enum target_object object,
|
||
const char *annex)
|
||
{
|
||
gdb::def_vector<T> buf;
|
||
size_t buf_pos = 0;
|
||
const int chunk = 4096;
|
||
|
||
/* This function does not have a length parameter; it reads the
|
||
entire OBJECT). Also, it doesn't support objects fetched partly
|
||
from one target and partly from another (in a different stratum,
|
||
e.g. a core file and an executable). Both reasons make it
|
||
unsuitable for reading memory. */
|
||
gdb_assert (object != TARGET_OBJECT_MEMORY);
|
||
|
||
/* Start by reading up to 4K at a time. The target will throttle
|
||
this number down if necessary. */
|
||
while (1)
|
||
{
|
||
ULONGEST xfered_len;
|
||
enum target_xfer_status status;
|
||
|
||
buf.resize (buf_pos + chunk);
|
||
|
||
status = target_read_partial (ops, object, annex,
|
||
(gdb_byte *) &buf[buf_pos],
|
||
buf_pos, chunk,
|
||
&xfered_len);
|
||
|
||
if (status == TARGET_XFER_EOF)
|
||
{
|
||
/* Read all there was. */
|
||
buf.resize (buf_pos);
|
||
return buf;
|
||
}
|
||
else if (status != TARGET_XFER_OK)
|
||
{
|
||
/* An error occurred. */
|
||
return {};
|
||
}
|
||
|
||
buf_pos += xfered_len;
|
||
|
||
QUIT;
|
||
}
|
||
}
|
||
|
||
/* See target.h */
|
||
|
||
gdb::optional<gdb::byte_vector>
|
||
target_read_alloc (struct target_ops *ops, enum target_object object,
|
||
const char *annex)
|
||
{
|
||
return target_read_alloc_1<gdb_byte> (ops, object, annex);
|
||
}
|
||
|
||
/* See target.h. */
|
||
|
||
gdb::optional<gdb::char_vector>
|
||
target_read_stralloc (struct target_ops *ops, enum target_object object,
|
||
const char *annex)
|
||
{
|
||
gdb::optional<gdb::char_vector> buf
|
||
= target_read_alloc_1<char> (ops, object, annex);
|
||
|
||
if (!buf)
|
||
return {};
|
||
|
||
if (buf->empty () || buf->back () != '\0')
|
||
buf->push_back ('\0');
|
||
|
||
/* Check for embedded NUL bytes; but allow trailing NULs. */
|
||
for (auto it = std::find (buf->begin (), buf->end (), '\0');
|
||
it != buf->end (); it++)
|
||
if (*it != '\0')
|
||
{
|
||
warning (_("target object %d, annex %s, "
|
||
"contained unexpected null characters"),
|
||
(int) object, annex ? annex : "(none)");
|
||
break;
|
||
}
|
||
|
||
return buf;
|
||
}
|
||
|
||
/* Memory transfer methods. */
|
||
|
||
void
|
||
get_target_memory (struct target_ops *ops, CORE_ADDR addr, gdb_byte *buf,
|
||
LONGEST len)
|
||
{
|
||
/* This method is used to read from an alternate, non-current
|
||
target. This read must bypass the overlay support (as symbols
|
||
don't match this target), and GDB's internal cache (wrong cache
|
||
for this target). */
|
||
if (target_read (ops, TARGET_OBJECT_RAW_MEMORY, NULL, buf, addr, len)
|
||
!= len)
|
||
memory_error (TARGET_XFER_E_IO, addr);
|
||
}
|
||
|
||
ULONGEST
|
||
get_target_memory_unsigned (struct target_ops *ops, CORE_ADDR addr,
|
||
int len, enum bfd_endian byte_order)
|
||
{
|
||
gdb_byte buf[sizeof (ULONGEST)];
|
||
|
||
gdb_assert (len <= sizeof (buf));
|
||
get_target_memory (ops, addr, buf, len);
|
||
return extract_unsigned_integer (buf, len, byte_order);
|
||
}
|
||
|
||
/* See target.h. */
|
||
|
||
int
|
||
target_insert_breakpoint (struct gdbarch *gdbarch,
|
||
struct bp_target_info *bp_tgt)
|
||
{
|
||
if (!may_insert_breakpoints)
|
||
{
|
||
warning (_("May not insert breakpoints"));
|
||
return 1;
|
||
}
|
||
|
||
return current_top_target ()->insert_breakpoint (gdbarch, bp_tgt);
|
||
}
|
||
|
||
/* See target.h. */
|
||
|
||
int
|
||
target_remove_breakpoint (struct gdbarch *gdbarch,
|
||
struct bp_target_info *bp_tgt,
|
||
enum remove_bp_reason reason)
|
||
{
|
||
/* This is kind of a weird case to handle, but the permission might
|
||
have been changed after breakpoints were inserted - in which case
|
||
we should just take the user literally and assume that any
|
||
breakpoints should be left in place. */
|
||
if (!may_insert_breakpoints)
|
||
{
|
||
warning (_("May not remove breakpoints"));
|
||
return 1;
|
||
}
|
||
|
||
return current_top_target ()->remove_breakpoint (gdbarch, bp_tgt, reason);
|
||
}
|
||
|
||
static void
|
||
info_target_command (const char *args, int from_tty)
|
||
{
|
||
int has_all_mem = 0;
|
||
|
||
if (symfile_objfile != NULL)
|
||
printf_unfiltered (_("Symbols from \"%s\".\n"),
|
||
objfile_name (symfile_objfile));
|
||
|
||
for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
|
||
{
|
||
if (!t->has_memory ())
|
||
continue;
|
||
|
||
if ((int) (t->stratum ()) <= (int) dummy_stratum)
|
||
continue;
|
||
if (has_all_mem)
|
||
printf_unfiltered (_("\tWhile running this, "
|
||
"GDB does not access memory from...\n"));
|
||
printf_unfiltered ("%s:\n", t->longname ());
|
||
t->files_info ();
|
||
has_all_mem = t->has_all_memory ();
|
||
}
|
||
}
|
||
|
||
/* This function is called before any new inferior is created, e.g.
|
||
by running a program, attaching, or connecting to a target.
|
||
It cleans up any state from previous invocations which might
|
||
change between runs. This is a subset of what target_preopen
|
||
resets (things which might change between targets). */
|
||
|
||
void
|
||
target_pre_inferior (int from_tty)
|
||
{
|
||
/* Clear out solib state. Otherwise the solib state of the previous
|
||
inferior might have survived and is entirely wrong for the new
|
||
target. This has been observed on GNU/Linux using glibc 2.3. How
|
||
to reproduce:
|
||
|
||
bash$ ./foo&
|
||
[1] 4711
|
||
bash$ ./foo&
|
||
[1] 4712
|
||
bash$ gdb ./foo
|
||
[...]
|
||
(gdb) attach 4711
|
||
(gdb) detach
|
||
(gdb) attach 4712
|
||
Cannot access memory at address 0xdeadbeef
|
||
*/
|
||
|
||
/* In some OSs, the shared library list is the same/global/shared
|
||
across inferiors. If code is shared between processes, so are
|
||
memory regions and features. */
|
||
if (!gdbarch_has_global_solist (target_gdbarch ()))
|
||
{
|
||
no_shared_libraries (NULL, from_tty);
|
||
|
||
invalidate_target_mem_regions ();
|
||
|
||
target_clear_description ();
|
||
}
|
||
|
||
/* attach_flag may be set if the previous process associated with
|
||
the inferior was attached to. */
|
||
current_inferior ()->attach_flag = 0;
|
||
|
||
current_inferior ()->highest_thread_num = 0;
|
||
|
||
agent_capability_invalidate ();
|
||
}
|
||
|
||
/* This is to be called by the open routine before it does
|
||
anything. */
|
||
|
||
void
|
||
target_preopen (int from_tty)
|
||
{
|
||
dont_repeat ();
|
||
|
||
if (current_inferior ()->pid != 0)
|
||
{
|
||
if (!from_tty
|
||
|| !target_has_execution
|
||
|| query (_("A program is being debugged already. Kill it? ")))
|
||
{
|
||
/* Core inferiors actually should be detached, not
|
||
killed. */
|
||
if (target_has_execution)
|
||
target_kill ();
|
||
else
|
||
target_detach (current_inferior (), 0);
|
||
}
|
||
else
|
||
error (_("Program not killed."));
|
||
}
|
||
|
||
/* Calling target_kill may remove the target from the stack. But if
|
||
it doesn't (which seems like a win for UDI), remove it now. */
|
||
/* Leave the exec target, though. The user may be switching from a
|
||
live process to a core of the same program. */
|
||
pop_all_targets_above (file_stratum);
|
||
|
||
target_pre_inferior (from_tty);
|
||
}
|
||
|
||
/* See target.h. */
|
||
|
||
void
|
||
target_detach (inferior *inf, int from_tty)
|
||
{
|
||
/* After we have detached, we will clear the register cache for this inferior
|
||
by calling registers_changed_ptid. We must save the pid_ptid before
|
||
detaching, as the target detach method will clear inf->pid. */
|
||
ptid_t save_pid_ptid = ptid_t (inf->pid);
|
||
|
||
/* As long as some to_detach implementations rely on the current_inferior
|
||
(either directly, or indirectly, like through target_gdbarch or by
|
||
reading memory), INF needs to be the current inferior. When that
|
||
requirement will become no longer true, then we can remove this
|
||
assertion. */
|
||
gdb_assert (inf == current_inferior ());
|
||
|
||
if (gdbarch_has_global_breakpoints (target_gdbarch ()))
|
||
/* Don't remove global breakpoints here. They're removed on
|
||
disconnection from the target. */
|
||
;
|
||
else
|
||
/* If we're in breakpoints-always-inserted mode, have to remove
|
||
breakpoints before detaching. */
|
||
remove_breakpoints_inf (current_inferior ());
|
||
|
||
prepare_for_detach ();
|
||
|
||
/* Hold a strong reference because detaching may unpush the
|
||
target. */
|
||
auto proc_target_ref = target_ops_ref::new_reference (inf->process_target ());
|
||
|
||
current_top_target ()->detach (inf, from_tty);
|
||
|
||
process_stratum_target *proc_target
|
||
= as_process_stratum_target (proc_target_ref.get ());
|
||
|
||
registers_changed_ptid (proc_target, save_pid_ptid);
|
||
|
||
/* We have to ensure we have no frame cache left. Normally,
|
||
registers_changed_ptid (save_pid_ptid) calls reinit_frame_cache when
|
||
inferior_ptid matches save_pid_ptid, but in our case, it does not
|
||
call it, as inferior_ptid has been reset. */
|
||
reinit_frame_cache ();
|
||
}
|
||
|
||
void
|
||
target_disconnect (const char *args, int from_tty)
|
||
{
|
||
/* If we're in breakpoints-always-inserted mode or if breakpoints
|
||
are global across processes, we have to remove them before
|
||
disconnecting. */
|
||
remove_breakpoints ();
|
||
|
||
current_top_target ()->disconnect (args, from_tty);
|
||
}
|
||
|
||
/* See target/target.h. */
|
||
|
||
ptid_t
|
||
target_wait (ptid_t ptid, struct target_waitstatus *status, int options)
|
||
{
|
||
return current_top_target ()->wait (ptid, status, options);
|
||
}
|
||
|
||
/* See target.h. */
|
||
|
||
ptid_t
|
||
default_target_wait (struct target_ops *ops,
|
||
ptid_t ptid, struct target_waitstatus *status,
|
||
int options)
|
||
{
|
||
status->kind = TARGET_WAITKIND_IGNORE;
|
||
return minus_one_ptid;
|
||
}
|
||
|
||
std::string
|
||
target_pid_to_str (ptid_t ptid)
|
||
{
|
||
return current_top_target ()->pid_to_str (ptid);
|
||
}
|
||
|
||
const char *
|
||
target_thread_name (struct thread_info *info)
|
||
{
|
||
gdb_assert (info->inf == current_inferior ());
|
||
|
||
return current_top_target ()->thread_name (info);
|
||
}
|
||
|
||
struct thread_info *
|
||
target_thread_handle_to_thread_info (const gdb_byte *thread_handle,
|
||
int handle_len,
|
||
struct inferior *inf)
|
||
{
|
||
return current_top_target ()->thread_handle_to_thread_info (thread_handle,
|
||
handle_len, inf);
|
||
}
|
||
|
||
/* See target.h. */
|
||
|
||
gdb::byte_vector
|
||
target_thread_info_to_thread_handle (struct thread_info *tip)
|
||
{
|
||
return current_top_target ()->thread_info_to_thread_handle (tip);
|
||
}
|
||
|
||
void
|
||
target_resume (ptid_t ptid, int step, enum gdb_signal signal)
|
||
{
|
||
process_stratum_target *curr_target = current_inferior ()->process_target ();
|
||
|
||
target_dcache_invalidate ();
|
||
|
||
current_top_target ()->resume (ptid, step, signal);
|
||
|
||
registers_changed_ptid (curr_target, ptid);
|
||
/* We only set the internal executing state here. The user/frontend
|
||
running state is set at a higher level. This also clears the
|
||
thread's stop_pc as side effect. */
|
||
set_executing (curr_target, ptid, 1);
|
||
clear_inline_frame_state (curr_target, ptid);
|
||
}
|
||
|
||
/* If true, target_commit_resume is a nop. */
|
||
static int defer_target_commit_resume;
|
||
|
||
/* See target.h. */
|
||
|
||
void
|
||
target_commit_resume (void)
|
||
{
|
||
if (defer_target_commit_resume)
|
||
return;
|
||
|
||
current_top_target ()->commit_resume ();
|
||
}
|
||
|
||
/* See target.h. */
|
||
|
||
scoped_restore_tmpl<int>
|
||
make_scoped_defer_target_commit_resume ()
|
||
{
|
||
return make_scoped_restore (&defer_target_commit_resume, 1);
|
||
}
|
||
|
||
void
|
||
target_pass_signals (gdb::array_view<const unsigned char> pass_signals)
|
||
{
|
||
current_top_target ()->pass_signals (pass_signals);
|
||
}
|
||
|
||
void
|
||
target_program_signals (gdb::array_view<const unsigned char> program_signals)
|
||
{
|
||
current_top_target ()->program_signals (program_signals);
|
||
}
|
||
|
||
static int
|
||
default_follow_fork (struct target_ops *self, int follow_child,
|
||
int detach_fork)
|
||
{
|
||
/* Some target returned a fork event, but did not know how to follow it. */
|
||
internal_error (__FILE__, __LINE__,
|
||
_("could not find a target to follow fork"));
|
||
}
|
||
|
||
/* Look through the list of possible targets for a target that can
|
||
follow forks. */
|
||
|
||
int
|
||
target_follow_fork (int follow_child, int detach_fork)
|
||
{
|
||
return current_top_target ()->follow_fork (follow_child, detach_fork);
|
||
}
|
||
|
||
/* Target wrapper for follow exec hook. */
|
||
|
||
void
|
||
target_follow_exec (struct inferior *inf, const char *execd_pathname)
|
||
{
|
||
current_top_target ()->follow_exec (inf, execd_pathname);
|
||
}
|
||
|
||
static void
|
||
default_mourn_inferior (struct target_ops *self)
|
||
{
|
||
internal_error (__FILE__, __LINE__,
|
||
_("could not find a target to follow mourn inferior"));
|
||
}
|
||
|
||
void
|
||
target_mourn_inferior (ptid_t ptid)
|
||
{
|
||
gdb_assert (ptid == inferior_ptid);
|
||
current_top_target ()->mourn_inferior ();
|
||
|
||
/* We no longer need to keep handles on any of the object files.
|
||
Make sure to release them to avoid unnecessarily locking any
|
||
of them while we're not actually debugging. */
|
||
bfd_cache_close_all ();
|
||
}
|
||
|
||
/* Look for a target which can describe architectural features, starting
|
||
from TARGET. If we find one, return its description. */
|
||
|
||
const struct target_desc *
|
||
target_read_description (struct target_ops *target)
|
||
{
|
||
return target->read_description ();
|
||
}
|
||
|
||
/* This implements a basic search of memory, reading target memory and
|
||
performing the search here (as opposed to performing the search in on the
|
||
target side with, for example, gdbserver). */
|
||
|
||
int
|
||
simple_search_memory (struct target_ops *ops,
|
||
CORE_ADDR start_addr, ULONGEST search_space_len,
|
||
const gdb_byte *pattern, ULONGEST pattern_len,
|
||
CORE_ADDR *found_addrp)
|
||
{
|
||
/* NOTE: also defined in find.c testcase. */
|
||
#define SEARCH_CHUNK_SIZE 16000
|
||
const unsigned chunk_size = SEARCH_CHUNK_SIZE;
|
||
/* Buffer to hold memory contents for searching. */
|
||
unsigned search_buf_size;
|
||
|
||
search_buf_size = chunk_size + pattern_len - 1;
|
||
|
||
/* No point in trying to allocate a buffer larger than the search space. */
|
||
if (search_space_len < search_buf_size)
|
||
search_buf_size = search_space_len;
|
||
|
||
gdb::byte_vector search_buf (search_buf_size);
|
||
|
||
/* Prime the search buffer. */
|
||
|
||
if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
|
||
search_buf.data (), start_addr, search_buf_size)
|
||
!= search_buf_size)
|
||
{
|
||
warning (_("Unable to access %s bytes of target "
|
||
"memory at %s, halting search."),
|
||
pulongest (search_buf_size), hex_string (start_addr));
|
||
return -1;
|
||
}
|
||
|
||
/* Perform the search.
|
||
|
||
The loop is kept simple by allocating [N + pattern-length - 1] bytes.
|
||
When we've scanned N bytes we copy the trailing bytes to the start and
|
||
read in another N bytes. */
|
||
|
||
while (search_space_len >= pattern_len)
|
||
{
|
||
gdb_byte *found_ptr;
|
||
unsigned nr_search_bytes
|
||
= std::min (search_space_len, (ULONGEST) search_buf_size);
|
||
|
||
found_ptr = (gdb_byte *) memmem (search_buf.data (), nr_search_bytes,
|
||
pattern, pattern_len);
|
||
|
||
if (found_ptr != NULL)
|
||
{
|
||
CORE_ADDR found_addr = start_addr + (found_ptr - search_buf.data ());
|
||
|
||
*found_addrp = found_addr;
|
||
return 1;
|
||
}
|
||
|
||
/* Not found in this chunk, skip to next chunk. */
|
||
|
||
/* Don't let search_space_len wrap here, it's unsigned. */
|
||
if (search_space_len >= chunk_size)
|
||
search_space_len -= chunk_size;
|
||
else
|
||
search_space_len = 0;
|
||
|
||
if (search_space_len >= pattern_len)
|
||
{
|
||
unsigned keep_len = search_buf_size - chunk_size;
|
||
CORE_ADDR read_addr = start_addr + chunk_size + keep_len;
|
||
int nr_to_read;
|
||
|
||
/* Copy the trailing part of the previous iteration to the front
|
||
of the buffer for the next iteration. */
|
||
gdb_assert (keep_len == pattern_len - 1);
|
||
memcpy (&search_buf[0], &search_buf[chunk_size], keep_len);
|
||
|
||
nr_to_read = std::min (search_space_len - keep_len,
|
||
(ULONGEST) chunk_size);
|
||
|
||
if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
|
||
&search_buf[keep_len], read_addr,
|
||
nr_to_read) != nr_to_read)
|
||
{
|
||
warning (_("Unable to access %s bytes of target "
|
||
"memory at %s, halting search."),
|
||
plongest (nr_to_read),
|
||
hex_string (read_addr));
|
||
return -1;
|
||
}
|
||
|
||
start_addr += chunk_size;
|
||
}
|
||
}
|
||
|
||
/* Not found. */
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Default implementation of memory-searching. */
|
||
|
||
static int
|
||
default_search_memory (struct target_ops *self,
|
||
CORE_ADDR start_addr, ULONGEST search_space_len,
|
||
const gdb_byte *pattern, ULONGEST pattern_len,
|
||
CORE_ADDR *found_addrp)
|
||
{
|
||
/* Start over from the top of the target stack. */
|
||
return simple_search_memory (current_top_target (),
|
||
start_addr, search_space_len,
|
||
pattern, pattern_len, found_addrp);
|
||
}
|
||
|
||
/* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
|
||
sequence of bytes in PATTERN with length PATTERN_LEN.
|
||
|
||
The result is 1 if found, 0 if not found, and -1 if there was an error
|
||
requiring halting of the search (e.g. memory read error).
|
||
If the pattern is found the address is recorded in FOUND_ADDRP. */
|
||
|
||
int
|
||
target_search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
|
||
const gdb_byte *pattern, ULONGEST pattern_len,
|
||
CORE_ADDR *found_addrp)
|
||
{
|
||
return current_top_target ()->search_memory (start_addr, search_space_len,
|
||
pattern, pattern_len, found_addrp);
|
||
}
|
||
|
||
/* Look through the currently pushed targets. If none of them will
|
||
be able to restart the currently running process, issue an error
|
||
message. */
|
||
|
||
void
|
||
target_require_runnable (void)
|
||
{
|
||
for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
|
||
{
|
||
/* If this target knows how to create a new program, then
|
||
assume we will still be able to after killing the current
|
||
one. Either killing and mourning will not pop T, or else
|
||
find_default_run_target will find it again. */
|
||
if (t->can_create_inferior ())
|
||
return;
|
||
|
||
/* Do not worry about targets at certain strata that can not
|
||
create inferiors. Assume they will be pushed again if
|
||
necessary, and continue to the process_stratum. */
|
||
if (t->stratum () > process_stratum)
|
||
continue;
|
||
|
||
error (_("The \"%s\" target does not support \"run\". "
|
||
"Try \"help target\" or \"continue\"."),
|
||
t->shortname ());
|
||
}
|
||
|
||
/* This function is only called if the target is running. In that
|
||
case there should have been a process_stratum target and it
|
||
should either know how to create inferiors, or not... */
|
||
internal_error (__FILE__, __LINE__, _("No targets found"));
|
||
}
|
||
|
||
/* Whether GDB is allowed to fall back to the default run target for
|
||
"run", "attach", etc. when no target is connected yet. */
|
||
static bool auto_connect_native_target = true;
|
||
|
||
static void
|
||
show_auto_connect_native_target (struct ui_file *file, int from_tty,
|
||
struct cmd_list_element *c, const char *value)
|
||
{
|
||
fprintf_filtered (file,
|
||
_("Whether GDB may automatically connect to the "
|
||
"native target is %s.\n"),
|
||
value);
|
||
}
|
||
|
||
/* A pointer to the target that can respond to "run" or "attach".
|
||
Native targets are always singletons and instantiated early at GDB
|
||
startup. */
|
||
static target_ops *the_native_target;
|
||
|
||
/* See target.h. */
|
||
|
||
void
|
||
set_native_target (target_ops *target)
|
||
{
|
||
if (the_native_target != NULL)
|
||
internal_error (__FILE__, __LINE__,
|
||
_("native target already set (\"%s\")."),
|
||
the_native_target->longname ());
|
||
|
||
the_native_target = target;
|
||
}
|
||
|
||
/* See target.h. */
|
||
|
||
target_ops *
|
||
get_native_target ()
|
||
{
|
||
return the_native_target;
|
||
}
|
||
|
||
/* Look through the list of possible targets for a target that can
|
||
execute a run or attach command without any other data. This is
|
||
used to locate the default process stratum.
|
||
|
||
If DO_MESG is not NULL, the result is always valid (error() is
|
||
called for errors); else, return NULL on error. */
|
||
|
||
static struct target_ops *
|
||
find_default_run_target (const char *do_mesg)
|
||
{
|
||
if (auto_connect_native_target && the_native_target != NULL)
|
||
return the_native_target;
|
||
|
||
if (do_mesg != NULL)
|
||
error (_("Don't know how to %s. Try \"help target\"."), do_mesg);
|
||
return NULL;
|
||
}
|
||
|
||
/* See target.h. */
|
||
|
||
struct target_ops *
|
||
find_attach_target (void)
|
||
{
|
||
/* If a target on the current stack can attach, use it. */
|
||
for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
|
||
{
|
||
if (t->can_attach ())
|
||
return t;
|
||
}
|
||
|
||
/* Otherwise, use the default run target for attaching. */
|
||
return find_default_run_target ("attach");
|
||
}
|
||
|
||
/* See target.h. */
|
||
|
||
struct target_ops *
|
||
find_run_target (void)
|
||
{
|
||
/* If a target on the current stack can run, use it. */
|
||
for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
|
||
{
|
||
if (t->can_create_inferior ())
|
||
return t;
|
||
}
|
||
|
||
/* Otherwise, use the default run target. */
|
||
return find_default_run_target ("run");
|
||
}
|
||
|
||
bool
|
||
target_ops::info_proc (const char *args, enum info_proc_what what)
|
||
{
|
||
return false;
|
||
}
|
||
|
||
/* Implement the "info proc" command. */
|
||
|
||
int
|
||
target_info_proc (const char *args, enum info_proc_what what)
|
||
{
|
||
struct target_ops *t;
|
||
|
||
/* If we're already connected to something that can get us OS
|
||
related data, use it. Otherwise, try using the native
|
||
target. */
|
||
t = find_target_at (process_stratum);
|
||
if (t == NULL)
|
||
t = find_default_run_target (NULL);
|
||
|
||
for (; t != NULL; t = t->beneath ())
|
||
{
|
||
if (t->info_proc (args, what))
|
||
{
|
||
if (targetdebug)
|
||
fprintf_unfiltered (gdb_stdlog,
|
||
"target_info_proc (\"%s\", %d)\n", args, what);
|
||
|
||
return 1;
|
||
}
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
static int
|
||
find_default_supports_disable_randomization (struct target_ops *self)
|
||
{
|
||
struct target_ops *t;
|
||
|
||
t = find_default_run_target (NULL);
|
||
if (t != NULL)
|
||
return t->supports_disable_randomization ();
|
||
return 0;
|
||
}
|
||
|
||
int
|
||
target_supports_disable_randomization (void)
|
||
{
|
||
return current_top_target ()->supports_disable_randomization ();
|
||
}
|
||
|
||
/* See target/target.h. */
|
||
|
||
int
|
||
target_supports_multi_process (void)
|
||
{
|
||
return current_top_target ()->supports_multi_process ();
|
||
}
|
||
|
||
/* See target.h. */
|
||
|
||
gdb::optional<gdb::char_vector>
|
||
target_get_osdata (const char *type)
|
||
{
|
||
struct target_ops *t;
|
||
|
||
/* If we're already connected to something that can get us OS
|
||
related data, use it. Otherwise, try using the native
|
||
target. */
|
||
t = find_target_at (process_stratum);
|
||
if (t == NULL)
|
||
t = find_default_run_target ("get OS data");
|
||
|
||
if (!t)
|
||
return {};
|
||
|
||
return target_read_stralloc (t, TARGET_OBJECT_OSDATA, type);
|
||
}
|
||
|
||
/* Determine the current address space of thread PTID. */
|
||
|
||
struct address_space *
|
||
target_thread_address_space (ptid_t ptid)
|
||
{
|
||
struct address_space *aspace;
|
||
|
||
aspace = current_top_target ()->thread_address_space (ptid);
|
||
gdb_assert (aspace != NULL);
|
||
|
||
return aspace;
|
||
}
|
||
|
||
/* See target.h. */
|
||
|
||
target_ops *
|
||
target_ops::beneath () const
|
||
{
|
||
return current_inferior ()->find_target_beneath (this);
|
||
}
|
||
|
||
void
|
||
target_ops::close ()
|
||
{
|
||
}
|
||
|
||
bool
|
||
target_ops::can_attach ()
|
||
{
|
||
return 0;
|
||
}
|
||
|
||
void
|
||
target_ops::attach (const char *, int)
|
||
{
|
||
gdb_assert_not_reached ("target_ops::attach called");
|
||
}
|
||
|
||
bool
|
||
target_ops::can_create_inferior ()
|
||
{
|
||
return 0;
|
||
}
|
||
|
||
void
|
||
target_ops::create_inferior (const char *, const std::string &,
|
||
char **, int)
|
||
{
|
||
gdb_assert_not_reached ("target_ops::create_inferior called");
|
||
}
|
||
|
||
bool
|
||
target_ops::can_run ()
|
||
{
|
||
return false;
|
||
}
|
||
|
||
int
|
||
target_can_run ()
|
||
{
|
||
for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
|
||
{
|
||
if (t->can_run ())
|
||
return 1;
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Target file operations. */
|
||
|
||
static struct target_ops *
|
||
default_fileio_target (void)
|
||
{
|
||
struct target_ops *t;
|
||
|
||
/* If we're already connected to something that can perform
|
||
file I/O, use it. Otherwise, try using the native target. */
|
||
t = find_target_at (process_stratum);
|
||
if (t != NULL)
|
||
return t;
|
||
return find_default_run_target ("file I/O");
|
||
}
|
||
|
||
/* File handle for target file operations. */
|
||
|
||
struct fileio_fh_t
|
||
{
|
||
/* The target on which this file is open. NULL if the target is
|
||
meanwhile closed while the handle is open. */
|
||
target_ops *target;
|
||
|
||
/* The file descriptor on the target. */
|
||
int target_fd;
|
||
|
||
/* Check whether this fileio_fh_t represents a closed file. */
|
||
bool is_closed ()
|
||
{
|
||
return target_fd < 0;
|
||
}
|
||
};
|
||
|
||
/* Vector of currently open file handles. The value returned by
|
||
target_fileio_open and passed as the FD argument to other
|
||
target_fileio_* functions is an index into this vector. This
|
||
vector's entries are never freed; instead, files are marked as
|
||
closed, and the handle becomes available for reuse. */
|
||
static std::vector<fileio_fh_t> fileio_fhandles;
|
||
|
||
/* Index into fileio_fhandles of the lowest handle that might be
|
||
closed. This permits handle reuse without searching the whole
|
||
list each time a new file is opened. */
|
||
static int lowest_closed_fd;
|
||
|
||
/* Invalidate the target associated with open handles that were open
|
||
on target TARG, since we're about to close (and maybe destroy) the
|
||
target. The handles remain open from the client's perspective, but
|
||
trying to do anything with them other than closing them will fail
|
||
with EIO. */
|
||
|
||
static void
|
||
fileio_handles_invalidate_target (target_ops *targ)
|
||
{
|
||
for (fileio_fh_t &fh : fileio_fhandles)
|
||
if (fh.target == targ)
|
||
fh.target = NULL;
|
||
}
|
||
|
||
/* Acquire a target fileio file descriptor. */
|
||
|
||
static int
|
||
acquire_fileio_fd (target_ops *target, int target_fd)
|
||
{
|
||
/* Search for closed handles to reuse. */
|
||
for (; lowest_closed_fd < fileio_fhandles.size (); lowest_closed_fd++)
|
||
{
|
||
fileio_fh_t &fh = fileio_fhandles[lowest_closed_fd];
|
||
|
||
if (fh.is_closed ())
|
||
break;
|
||
}
|
||
|
||
/* Push a new handle if no closed handles were found. */
|
||
if (lowest_closed_fd == fileio_fhandles.size ())
|
||
fileio_fhandles.push_back (fileio_fh_t {target, target_fd});
|
||
else
|
||
fileio_fhandles[lowest_closed_fd] = {target, target_fd};
|
||
|
||
/* Should no longer be marked closed. */
|
||
gdb_assert (!fileio_fhandles[lowest_closed_fd].is_closed ());
|
||
|
||
/* Return its index, and start the next lookup at
|
||
the next index. */
|
||
return lowest_closed_fd++;
|
||
}
|
||
|
||
/* Release a target fileio file descriptor. */
|
||
|
||
static void
|
||
release_fileio_fd (int fd, fileio_fh_t *fh)
|
||
{
|
||
fh->target_fd = -1;
|
||
lowest_closed_fd = std::min (lowest_closed_fd, fd);
|
||
}
|
||
|
||
/* Return a pointer to the fileio_fhandle_t corresponding to FD. */
|
||
|
||
static fileio_fh_t *
|
||
fileio_fd_to_fh (int fd)
|
||
{
|
||
return &fileio_fhandles[fd];
|
||
}
|
||
|
||
|
||
/* Default implementations of file i/o methods. We don't want these
|
||
to delegate automatically, because we need to know which target
|
||
supported the method, in order to call it directly from within
|
||
pread/pwrite, etc. */
|
||
|
||
int
|
||
target_ops::fileio_open (struct inferior *inf, const char *filename,
|
||
int flags, int mode, int warn_if_slow,
|
||
int *target_errno)
|
||
{
|
||
*target_errno = FILEIO_ENOSYS;
|
||
return -1;
|
||
}
|
||
|
||
int
|
||
target_ops::fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
|
||
ULONGEST offset, int *target_errno)
|
||
{
|
||
*target_errno = FILEIO_ENOSYS;
|
||
return -1;
|
||
}
|
||
|
||
int
|
||
target_ops::fileio_pread (int fd, gdb_byte *read_buf, int len,
|
||
ULONGEST offset, int *target_errno)
|
||
{
|
||
*target_errno = FILEIO_ENOSYS;
|
||
return -1;
|
||
}
|
||
|
||
int
|
||
target_ops::fileio_fstat (int fd, struct stat *sb, int *target_errno)
|
||
{
|
||
*target_errno = FILEIO_ENOSYS;
|
||
return -1;
|
||
}
|
||
|
||
int
|
||
target_ops::fileio_close (int fd, int *target_errno)
|
||
{
|
||
*target_errno = FILEIO_ENOSYS;
|
||
return -1;
|
||
}
|
||
|
||
int
|
||
target_ops::fileio_unlink (struct inferior *inf, const char *filename,
|
||
int *target_errno)
|
||
{
|
||
*target_errno = FILEIO_ENOSYS;
|
||
return -1;
|
||
}
|
||
|
||
gdb::optional<std::string>
|
||
target_ops::fileio_readlink (struct inferior *inf, const char *filename,
|
||
int *target_errno)
|
||
{
|
||
*target_errno = FILEIO_ENOSYS;
|
||
return {};
|
||
}
|
||
|
||
/* Helper for target_fileio_open and
|
||
target_fileio_open_warn_if_slow. */
|
||
|
||
static int
|
||
target_fileio_open_1 (struct inferior *inf, const char *filename,
|
||
int flags, int mode, int warn_if_slow,
|
||
int *target_errno)
|
||
{
|
||
for (target_ops *t = default_fileio_target (); t != NULL; t = t->beneath ())
|
||
{
|
||
int fd = t->fileio_open (inf, filename, flags, mode,
|
||
warn_if_slow, target_errno);
|
||
|
||
if (fd == -1 && *target_errno == FILEIO_ENOSYS)
|
||
continue;
|
||
|
||
if (fd < 0)
|
||
fd = -1;
|
||
else
|
||
fd = acquire_fileio_fd (t, fd);
|
||
|
||
if (targetdebug)
|
||
fprintf_unfiltered (gdb_stdlog,
|
||
"target_fileio_open (%d,%s,0x%x,0%o,%d)"
|
||
" = %d (%d)\n",
|
||
inf == NULL ? 0 : inf->num,
|
||
filename, flags, mode,
|
||
warn_if_slow, fd,
|
||
fd != -1 ? 0 : *target_errno);
|
||
return fd;
|
||
}
|
||
|
||
*target_errno = FILEIO_ENOSYS;
|
||
return -1;
|
||
}
|
||
|
||
/* See target.h. */
|
||
|
||
int
|
||
target_fileio_open (struct inferior *inf, const char *filename,
|
||
int flags, int mode, int *target_errno)
|
||
{
|
||
return target_fileio_open_1 (inf, filename, flags, mode, 0,
|
||
target_errno);
|
||
}
|
||
|
||
/* See target.h. */
|
||
|
||
int
|
||
target_fileio_open_warn_if_slow (struct inferior *inf,
|
||
const char *filename,
|
||
int flags, int mode, int *target_errno)
|
||
{
|
||
return target_fileio_open_1 (inf, filename, flags, mode, 1,
|
||
target_errno);
|
||
}
|
||
|
||
/* See target.h. */
|
||
|
||
int
|
||
target_fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
|
||
ULONGEST offset, int *target_errno)
|
||
{
|
||
fileio_fh_t *fh = fileio_fd_to_fh (fd);
|
||
int ret = -1;
|
||
|
||
if (fh->is_closed ())
|
||
*target_errno = EBADF;
|
||
else if (fh->target == NULL)
|
||
*target_errno = EIO;
|
||
else
|
||
ret = fh->target->fileio_pwrite (fh->target_fd, write_buf,
|
||
len, offset, target_errno);
|
||
|
||
if (targetdebug)
|
||
fprintf_unfiltered (gdb_stdlog,
|
||
"target_fileio_pwrite (%d,...,%d,%s) "
|
||
"= %d (%d)\n",
|
||
fd, len, pulongest (offset),
|
||
ret, ret != -1 ? 0 : *target_errno);
|
||
return ret;
|
||
}
|
||
|
||
/* See target.h. */
|
||
|
||
int
|
||
target_fileio_pread (int fd, gdb_byte *read_buf, int len,
|
||
ULONGEST offset, int *target_errno)
|
||
{
|
||
fileio_fh_t *fh = fileio_fd_to_fh (fd);
|
||
int ret = -1;
|
||
|
||
if (fh->is_closed ())
|
||
*target_errno = EBADF;
|
||
else if (fh->target == NULL)
|
||
*target_errno = EIO;
|
||
else
|
||
ret = fh->target->fileio_pread (fh->target_fd, read_buf,
|
||
len, offset, target_errno);
|
||
|
||
if (targetdebug)
|
||
fprintf_unfiltered (gdb_stdlog,
|
||
"target_fileio_pread (%d,...,%d,%s) "
|
||
"= %d (%d)\n",
|
||
fd, len, pulongest (offset),
|
||
ret, ret != -1 ? 0 : *target_errno);
|
||
return ret;
|
||
}
|
||
|
||
/* See target.h. */
|
||
|
||
int
|
||
target_fileio_fstat (int fd, struct stat *sb, int *target_errno)
|
||
{
|
||
fileio_fh_t *fh = fileio_fd_to_fh (fd);
|
||
int ret = -1;
|
||
|
||
if (fh->is_closed ())
|
||
*target_errno = EBADF;
|
||
else if (fh->target == NULL)
|
||
*target_errno = EIO;
|
||
else
|
||
ret = fh->target->fileio_fstat (fh->target_fd, sb, target_errno);
|
||
|
||
if (targetdebug)
|
||
fprintf_unfiltered (gdb_stdlog,
|
||
"target_fileio_fstat (%d) = %d (%d)\n",
|
||
fd, ret, ret != -1 ? 0 : *target_errno);
|
||
return ret;
|
||
}
|
||
|
||
/* See target.h. */
|
||
|
||
int
|
||
target_fileio_close (int fd, int *target_errno)
|
||
{
|
||
fileio_fh_t *fh = fileio_fd_to_fh (fd);
|
||
int ret = -1;
|
||
|
||
if (fh->is_closed ())
|
||
*target_errno = EBADF;
|
||
else
|
||
{
|
||
if (fh->target != NULL)
|
||
ret = fh->target->fileio_close (fh->target_fd,
|
||
target_errno);
|
||
else
|
||
ret = 0;
|
||
release_fileio_fd (fd, fh);
|
||
}
|
||
|
||
if (targetdebug)
|
||
fprintf_unfiltered (gdb_stdlog,
|
||
"target_fileio_close (%d) = %d (%d)\n",
|
||
fd, ret, ret != -1 ? 0 : *target_errno);
|
||
return ret;
|
||
}
|
||
|
||
/* See target.h. */
|
||
|
||
int
|
||
target_fileio_unlink (struct inferior *inf, const char *filename,
|
||
int *target_errno)
|
||
{
|
||
for (target_ops *t = default_fileio_target (); t != NULL; t = t->beneath ())
|
||
{
|
||
int ret = t->fileio_unlink (inf, filename, target_errno);
|
||
|
||
if (ret == -1 && *target_errno == FILEIO_ENOSYS)
|
||
continue;
|
||
|
||
if (targetdebug)
|
||
fprintf_unfiltered (gdb_stdlog,
|
||
"target_fileio_unlink (%d,%s)"
|
||
" = %d (%d)\n",
|
||
inf == NULL ? 0 : inf->num, filename,
|
||
ret, ret != -1 ? 0 : *target_errno);
|
||
return ret;
|
||
}
|
||
|
||
*target_errno = FILEIO_ENOSYS;
|
||
return -1;
|
||
}
|
||
|
||
/* See target.h. */
|
||
|
||
gdb::optional<std::string>
|
||
target_fileio_readlink (struct inferior *inf, const char *filename,
|
||
int *target_errno)
|
||
{
|
||
for (target_ops *t = default_fileio_target (); t != NULL; t = t->beneath ())
|
||
{
|
||
gdb::optional<std::string> ret
|
||
= t->fileio_readlink (inf, filename, target_errno);
|
||
|
||
if (!ret.has_value () && *target_errno == FILEIO_ENOSYS)
|
||
continue;
|
||
|
||
if (targetdebug)
|
||
fprintf_unfiltered (gdb_stdlog,
|
||
"target_fileio_readlink (%d,%s)"
|
||
" = %s (%d)\n",
|
||
inf == NULL ? 0 : inf->num,
|
||
filename, ret ? ret->c_str () : "(nil)",
|
||
ret ? 0 : *target_errno);
|
||
return ret;
|
||
}
|
||
|
||
*target_errno = FILEIO_ENOSYS;
|
||
return {};
|
||
}
|
||
|
||
/* Like scoped_fd, but specific to target fileio. */
|
||
|
||
class scoped_target_fd
|
||
{
|
||
public:
|
||
explicit scoped_target_fd (int fd) noexcept
|
||
: m_fd (fd)
|
||
{
|
||
}
|
||
|
||
~scoped_target_fd ()
|
||
{
|
||
if (m_fd >= 0)
|
||
{
|
||
int target_errno;
|
||
|
||
target_fileio_close (m_fd, &target_errno);
|
||
}
|
||
}
|
||
|
||
DISABLE_COPY_AND_ASSIGN (scoped_target_fd);
|
||
|
||
int get () const noexcept
|
||
{
|
||
return m_fd;
|
||
}
|
||
|
||
private:
|
||
int m_fd;
|
||
};
|
||
|
||
/* Read target file FILENAME, in the filesystem as seen by INF. If
|
||
INF is NULL, use the filesystem seen by the debugger (GDB or, for
|
||
remote targets, the remote stub). Store the result in *BUF_P and
|
||
return the size of the transferred data. PADDING additional bytes
|
||
are available in *BUF_P. This is a helper function for
|
||
target_fileio_read_alloc; see the declaration of that function for
|
||
more information. */
|
||
|
||
static LONGEST
|
||
target_fileio_read_alloc_1 (struct inferior *inf, const char *filename,
|
||
gdb_byte **buf_p, int padding)
|
||
{
|
||
size_t buf_alloc, buf_pos;
|
||
gdb_byte *buf;
|
||
LONGEST n;
|
||
int target_errno;
|
||
|
||
scoped_target_fd fd (target_fileio_open (inf, filename, FILEIO_O_RDONLY,
|
||
0700, &target_errno));
|
||
if (fd.get () == -1)
|
||
return -1;
|
||
|
||
/* Start by reading up to 4K at a time. The target will throttle
|
||
this number down if necessary. */
|
||
buf_alloc = 4096;
|
||
buf = (gdb_byte *) xmalloc (buf_alloc);
|
||
buf_pos = 0;
|
||
while (1)
|
||
{
|
||
n = target_fileio_pread (fd.get (), &buf[buf_pos],
|
||
buf_alloc - buf_pos - padding, buf_pos,
|
||
&target_errno);
|
||
if (n < 0)
|
||
{
|
||
/* An error occurred. */
|
||
xfree (buf);
|
||
return -1;
|
||
}
|
||
else if (n == 0)
|
||
{
|
||
/* Read all there was. */
|
||
if (buf_pos == 0)
|
||
xfree (buf);
|
||
else
|
||
*buf_p = buf;
|
||
return buf_pos;
|
||
}
|
||
|
||
buf_pos += n;
|
||
|
||
/* If the buffer is filling up, expand it. */
|
||
if (buf_alloc < buf_pos * 2)
|
||
{
|
||
buf_alloc *= 2;
|
||
buf = (gdb_byte *) xrealloc (buf, buf_alloc);
|
||
}
|
||
|
||
QUIT;
|
||
}
|
||
}
|
||
|
||
/* See target.h. */
|
||
|
||
LONGEST
|
||
target_fileio_read_alloc (struct inferior *inf, const char *filename,
|
||
gdb_byte **buf_p)
|
||
{
|
||
return target_fileio_read_alloc_1 (inf, filename, buf_p, 0);
|
||
}
|
||
|
||
/* See target.h. */
|
||
|
||
gdb::unique_xmalloc_ptr<char>
|
||
target_fileio_read_stralloc (struct inferior *inf, const char *filename)
|
||
{
|
||
gdb_byte *buffer;
|
||
char *bufstr;
|
||
LONGEST i, transferred;
|
||
|
||
transferred = target_fileio_read_alloc_1 (inf, filename, &buffer, 1);
|
||
bufstr = (char *) buffer;
|
||
|
||
if (transferred < 0)
|
||
return gdb::unique_xmalloc_ptr<char> (nullptr);
|
||
|
||
if (transferred == 0)
|
||
return make_unique_xstrdup ("");
|
||
|
||
bufstr[transferred] = 0;
|
||
|
||
/* Check for embedded NUL bytes; but allow trailing NULs. */
|
||
for (i = strlen (bufstr); i < transferred; i++)
|
||
if (bufstr[i] != 0)
|
||
{
|
||
warning (_("target file %s "
|
||
"contained unexpected null characters"),
|
||
filename);
|
||
break;
|
||
}
|
||
|
||
return gdb::unique_xmalloc_ptr<char> (bufstr);
|
||
}
|
||
|
||
|
||
static int
|
||
default_region_ok_for_hw_watchpoint (struct target_ops *self,
|
||
CORE_ADDR addr, int len)
|
||
{
|
||
return (len <= gdbarch_ptr_bit (target_gdbarch ()) / TARGET_CHAR_BIT);
|
||
}
|
||
|
||
static int
|
||
default_watchpoint_addr_within_range (struct target_ops *target,
|
||
CORE_ADDR addr,
|
||
CORE_ADDR start, int length)
|
||
{
|
||
return addr >= start && addr < start + length;
|
||
}
|
||
|
||
/* See target.h. */
|
||
|
||
target_ops *
|
||
target_stack::find_beneath (const target_ops *t) const
|
||
{
|
||
/* Look for a non-empty slot at stratum levels beneath T's. */
|
||
for (int stratum = t->stratum () - 1; stratum >= 0; --stratum)
|
||
if (m_stack[stratum] != NULL)
|
||
return m_stack[stratum];
|
||
|
||
return NULL;
|
||
}
|
||
|
||
/* See target.h. */
|
||
|
||
struct target_ops *
|
||
find_target_at (enum strata stratum)
|
||
{
|
||
return current_inferior ()->target_at (stratum);
|
||
}
|
||
|
||
|
||
|
||
/* See target.h */
|
||
|
||
void
|
||
target_announce_detach (int from_tty)
|
||
{
|
||
pid_t pid;
|
||
const char *exec_file;
|
||
|
||
if (!from_tty)
|
||
return;
|
||
|
||
exec_file = get_exec_file (0);
|
||
if (exec_file == NULL)
|
||
exec_file = "";
|
||
|
||
pid = inferior_ptid.pid ();
|
||
printf_unfiltered (_("Detaching from program: %s, %s\n"), exec_file,
|
||
target_pid_to_str (ptid_t (pid)).c_str ());
|
||
}
|
||
|
||
/* The inferior process has died. Long live the inferior! */
|
||
|
||
void
|
||
generic_mourn_inferior (void)
|
||
{
|
||
inferior *inf = current_inferior ();
|
||
|
||
inferior_ptid = null_ptid;
|
||
|
||
/* Mark breakpoints uninserted in case something tries to delete a
|
||
breakpoint while we delete the inferior's threads (which would
|
||
fail, since the inferior is long gone). */
|
||
mark_breakpoints_out ();
|
||
|
||
if (inf->pid != 0)
|
||
exit_inferior (inf);
|
||
|
||
/* Note this wipes step-resume breakpoints, so needs to be done
|
||
after exit_inferior, which ends up referencing the step-resume
|
||
breakpoints through clear_thread_inferior_resources. */
|
||
breakpoint_init_inferior (inf_exited);
|
||
|
||
registers_changed ();
|
||
|
||
reopen_exec_file ();
|
||
reinit_frame_cache ();
|
||
|
||
if (deprecated_detach_hook)
|
||
deprecated_detach_hook ();
|
||
}
|
||
|
||
/* Convert a normal process ID to a string. Returns the string in a
|
||
static buffer. */
|
||
|
||
std::string
|
||
normal_pid_to_str (ptid_t ptid)
|
||
{
|
||
return string_printf ("process %d", ptid.pid ());
|
||
}
|
||
|
||
static std::string
|
||
default_pid_to_str (struct target_ops *ops, ptid_t ptid)
|
||
{
|
||
return normal_pid_to_str (ptid);
|
||
}
|
||
|
||
/* Error-catcher for target_find_memory_regions. */
|
||
static int
|
||
dummy_find_memory_regions (struct target_ops *self,
|
||
find_memory_region_ftype ignore1, void *ignore2)
|
||
{
|
||
error (_("Command not implemented for this target."));
|
||
return 0;
|
||
}
|
||
|
||
/* Error-catcher for target_make_corefile_notes. */
|
||
static char *
|
||
dummy_make_corefile_notes (struct target_ops *self,
|
||
bfd *ignore1, int *ignore2)
|
||
{
|
||
error (_("Command not implemented for this target."));
|
||
return NULL;
|
||
}
|
||
|
||
#include "target-delegates.c"
|
||
|
||
/* The initial current target, so that there is always a semi-valid
|
||
current target. */
|
||
|
||
static dummy_target the_dummy_target;
|
||
|
||
/* See target.h. */
|
||
|
||
target_ops *
|
||
get_dummy_target ()
|
||
{
|
||
return &the_dummy_target;
|
||
}
|
||
|
||
static const target_info dummy_target_info = {
|
||
"None",
|
||
N_("None"),
|
||
""
|
||
};
|
||
|
||
strata
|
||
dummy_target::stratum () const
|
||
{
|
||
return dummy_stratum;
|
||
}
|
||
|
||
strata
|
||
debug_target::stratum () const
|
||
{
|
||
return debug_stratum;
|
||
}
|
||
|
||
const target_info &
|
||
dummy_target::info () const
|
||
{
|
||
return dummy_target_info;
|
||
}
|
||
|
||
const target_info &
|
||
debug_target::info () const
|
||
{
|
||
return beneath ()->info ();
|
||
}
|
||
|
||
|
||
|
||
void
|
||
target_close (struct target_ops *targ)
|
||
{
|
||
gdb_assert (!target_is_pushed (targ));
|
||
|
||
fileio_handles_invalidate_target (targ);
|
||
|
||
targ->close ();
|
||
|
||
if (targetdebug)
|
||
fprintf_unfiltered (gdb_stdlog, "target_close ()\n");
|
||
}
|
||
|
||
int
|
||
target_thread_alive (ptid_t ptid)
|
||
{
|
||
return current_top_target ()->thread_alive (ptid);
|
||
}
|
||
|
||
void
|
||
target_update_thread_list (void)
|
||
{
|
||
current_top_target ()->update_thread_list ();
|
||
}
|
||
|
||
void
|
||
target_stop (ptid_t ptid)
|
||
{
|
||
if (!may_stop)
|
||
{
|
||
warning (_("May not interrupt or stop the target, ignoring attempt"));
|
||
return;
|
||
}
|
||
|
||
current_top_target ()->stop (ptid);
|
||
}
|
||
|
||
void
|
||
target_interrupt ()
|
||
{
|
||
if (!may_stop)
|
||
{
|
||
warning (_("May not interrupt or stop the target, ignoring attempt"));
|
||
return;
|
||
}
|
||
|
||
current_top_target ()->interrupt ();
|
||
}
|
||
|
||
/* See target.h. */
|
||
|
||
void
|
||
target_pass_ctrlc (void)
|
||
{
|
||
/* Pass the Ctrl-C to the first target that has a thread
|
||
running. */
|
||
for (inferior *inf : all_inferiors ())
|
||
{
|
||
target_ops *proc_target = inf->process_target ();
|
||
if (proc_target == NULL)
|
||
continue;
|
||
|
||
for (thread_info *thr : inf->threads ())
|
||
{
|
||
/* A thread can be THREAD_STOPPED and executing, while
|
||
running an infcall. */
|
||
if (thr->state == THREAD_RUNNING || thr->executing)
|
||
{
|
||
/* We can get here quite deep in target layers. Avoid
|
||
switching thread context or anything that would
|
||
communicate with the target (e.g., to fetch
|
||
registers), or flushing e.g., the frame cache. We
|
||
just switch inferior in order to be able to call
|
||
through the target_stack. */
|
||
scoped_restore_current_inferior restore_inferior;
|
||
set_current_inferior (inf);
|
||
current_top_target ()->pass_ctrlc ();
|
||
return;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
/* See target.h. */
|
||
|
||
void
|
||
default_target_pass_ctrlc (struct target_ops *ops)
|
||
{
|
||
target_interrupt ();
|
||
}
|
||
|
||
/* See target/target.h. */
|
||
|
||
void
|
||
target_stop_and_wait (ptid_t ptid)
|
||
{
|
||
struct target_waitstatus status;
|
||
bool was_non_stop = non_stop;
|
||
|
||
non_stop = true;
|
||
target_stop (ptid);
|
||
|
||
memset (&status, 0, sizeof (status));
|
||
target_wait (ptid, &status, 0);
|
||
|
||
non_stop = was_non_stop;
|
||
}
|
||
|
||
/* See target/target.h. */
|
||
|
||
void
|
||
target_continue_no_signal (ptid_t ptid)
|
||
{
|
||
target_resume (ptid, 0, GDB_SIGNAL_0);
|
||
}
|
||
|
||
/* See target/target.h. */
|
||
|
||
void
|
||
target_continue (ptid_t ptid, enum gdb_signal signal)
|
||
{
|
||
target_resume (ptid, 0, signal);
|
||
}
|
||
|
||
/* Concatenate ELEM to LIST, a comma-separated list. */
|
||
|
||
static void
|
||
str_comma_list_concat_elem (std::string *list, const char *elem)
|
||
{
|
||
if (!list->empty ())
|
||
list->append (", ");
|
||
|
||
list->append (elem);
|
||
}
|
||
|
||
/* Helper for target_options_to_string. If OPT is present in
|
||
TARGET_OPTIONS, append the OPT_STR (string version of OPT) in RET.
|
||
OPT is removed from TARGET_OPTIONS. */
|
||
|
||
static void
|
||
do_option (int *target_options, std::string *ret,
|
||
int opt, const char *opt_str)
|
||
{
|
||
if ((*target_options & opt) != 0)
|
||
{
|
||
str_comma_list_concat_elem (ret, opt_str);
|
||
*target_options &= ~opt;
|
||
}
|
||
}
|
||
|
||
/* See target.h. */
|
||
|
||
std::string
|
||
target_options_to_string (int target_options)
|
||
{
|
||
std::string ret;
|
||
|
||
#define DO_TARG_OPTION(OPT) \
|
||
do_option (&target_options, &ret, OPT, #OPT)
|
||
|
||
DO_TARG_OPTION (TARGET_WNOHANG);
|
||
|
||
if (target_options != 0)
|
||
str_comma_list_concat_elem (&ret, "unknown???");
|
||
|
||
return ret;
|
||
}
|
||
|
||
void
|
||
target_fetch_registers (struct regcache *regcache, int regno)
|
||
{
|
||
current_top_target ()->fetch_registers (regcache, regno);
|
||
if (targetdebug)
|
||
regcache->debug_print_register ("target_fetch_registers", regno);
|
||
}
|
||
|
||
void
|
||
target_store_registers (struct regcache *regcache, int regno)
|
||
{
|
||
if (!may_write_registers)
|
||
error (_("Writing to registers is not allowed (regno %d)"), regno);
|
||
|
||
current_top_target ()->store_registers (regcache, regno);
|
||
if (targetdebug)
|
||
{
|
||
regcache->debug_print_register ("target_store_registers", regno);
|
||
}
|
||
}
|
||
|
||
int
|
||
target_core_of_thread (ptid_t ptid)
|
||
{
|
||
return current_top_target ()->core_of_thread (ptid);
|
||
}
|
||
|
||
int
|
||
simple_verify_memory (struct target_ops *ops,
|
||
const gdb_byte *data, CORE_ADDR lma, ULONGEST size)
|
||
{
|
||
LONGEST total_xfered = 0;
|
||
|
||
while (total_xfered < size)
|
||
{
|
||
ULONGEST xfered_len;
|
||
enum target_xfer_status status;
|
||
gdb_byte buf[1024];
|
||
ULONGEST howmuch = std::min<ULONGEST> (sizeof (buf), size - total_xfered);
|
||
|
||
status = target_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
|
||
buf, NULL, lma + total_xfered, howmuch,
|
||
&xfered_len);
|
||
if (status == TARGET_XFER_OK
|
||
&& memcmp (data + total_xfered, buf, xfered_len) == 0)
|
||
{
|
||
total_xfered += xfered_len;
|
||
QUIT;
|
||
}
|
||
else
|
||
return 0;
|
||
}
|
||
return 1;
|
||
}
|
||
|
||
/* Default implementation of memory verification. */
|
||
|
||
static int
|
||
default_verify_memory (struct target_ops *self,
|
||
const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
|
||
{
|
||
/* Start over from the top of the target stack. */
|
||
return simple_verify_memory (current_top_target (),
|
||
data, memaddr, size);
|
||
}
|
||
|
||
int
|
||
target_verify_memory (const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
|
||
{
|
||
return current_top_target ()->verify_memory (data, memaddr, size);
|
||
}
|
||
|
||
/* The documentation for this function is in its prototype declaration in
|
||
target.h. */
|
||
|
||
int
|
||
target_insert_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask,
|
||
enum target_hw_bp_type rw)
|
||
{
|
||
return current_top_target ()->insert_mask_watchpoint (addr, mask, rw);
|
||
}
|
||
|
||
/* The documentation for this function is in its prototype declaration in
|
||
target.h. */
|
||
|
||
int
|
||
target_remove_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask,
|
||
enum target_hw_bp_type rw)
|
||
{
|
||
return current_top_target ()->remove_mask_watchpoint (addr, mask, rw);
|
||
}
|
||
|
||
/* The documentation for this function is in its prototype declaration
|
||
in target.h. */
|
||
|
||
int
|
||
target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask)
|
||
{
|
||
return current_top_target ()->masked_watch_num_registers (addr, mask);
|
||
}
|
||
|
||
/* The documentation for this function is in its prototype declaration
|
||
in target.h. */
|
||
|
||
int
|
||
target_ranged_break_num_registers (void)
|
||
{
|
||
return current_top_target ()->ranged_break_num_registers ();
|
||
}
|
||
|
||
/* See target.h. */
|
||
|
||
struct btrace_target_info *
|
||
target_enable_btrace (ptid_t ptid, const struct btrace_config *conf)
|
||
{
|
||
return current_top_target ()->enable_btrace (ptid, conf);
|
||
}
|
||
|
||
/* See target.h. */
|
||
|
||
void
|
||
target_disable_btrace (struct btrace_target_info *btinfo)
|
||
{
|
||
current_top_target ()->disable_btrace (btinfo);
|
||
}
|
||
|
||
/* See target.h. */
|
||
|
||
void
|
||
target_teardown_btrace (struct btrace_target_info *btinfo)
|
||
{
|
||
current_top_target ()->teardown_btrace (btinfo);
|
||
}
|
||
|
||
/* See target.h. */
|
||
|
||
enum btrace_error
|
||
target_read_btrace (struct btrace_data *btrace,
|
||
struct btrace_target_info *btinfo,
|
||
enum btrace_read_type type)
|
||
{
|
||
return current_top_target ()->read_btrace (btrace, btinfo, type);
|
||
}
|
||
|
||
/* See target.h. */
|
||
|
||
const struct btrace_config *
|
||
target_btrace_conf (const struct btrace_target_info *btinfo)
|
||
{
|
||
return current_top_target ()->btrace_conf (btinfo);
|
||
}
|
||
|
||
/* See target.h. */
|
||
|
||
void
|
||
target_stop_recording (void)
|
||
{
|
||
current_top_target ()->stop_recording ();
|
||
}
|
||
|
||
/* See target.h. */
|
||
|
||
void
|
||
target_save_record (const char *filename)
|
||
{
|
||
current_top_target ()->save_record (filename);
|
||
}
|
||
|
||
/* See target.h. */
|
||
|
||
int
|
||
target_supports_delete_record ()
|
||
{
|
||
return current_top_target ()->supports_delete_record ();
|
||
}
|
||
|
||
/* See target.h. */
|
||
|
||
void
|
||
target_delete_record (void)
|
||
{
|
||
current_top_target ()->delete_record ();
|
||
}
|
||
|
||
/* See target.h. */
|
||
|
||
enum record_method
|
||
target_record_method (ptid_t ptid)
|
||
{
|
||
return current_top_target ()->record_method (ptid);
|
||
}
|
||
|
||
/* See target.h. */
|
||
|
||
int
|
||
target_record_is_replaying (ptid_t ptid)
|
||
{
|
||
return current_top_target ()->record_is_replaying (ptid);
|
||
}
|
||
|
||
/* See target.h. */
|
||
|
||
int
|
||
target_record_will_replay (ptid_t ptid, int dir)
|
||
{
|
||
return current_top_target ()->record_will_replay (ptid, dir);
|
||
}
|
||
|
||
/* See target.h. */
|
||
|
||
void
|
||
target_record_stop_replaying (void)
|
||
{
|
||
current_top_target ()->record_stop_replaying ();
|
||
}
|
||
|
||
/* See target.h. */
|
||
|
||
void
|
||
target_goto_record_begin (void)
|
||
{
|
||
current_top_target ()->goto_record_begin ();
|
||
}
|
||
|
||
/* See target.h. */
|
||
|
||
void
|
||
target_goto_record_end (void)
|
||
{
|
||
current_top_target ()->goto_record_end ();
|
||
}
|
||
|
||
/* See target.h. */
|
||
|
||
void
|
||
target_goto_record (ULONGEST insn)
|
||
{
|
||
current_top_target ()->goto_record (insn);
|
||
}
|
||
|
||
/* See target.h. */
|
||
|
||
void
|
||
target_insn_history (int size, gdb_disassembly_flags flags)
|
||
{
|
||
current_top_target ()->insn_history (size, flags);
|
||
}
|
||
|
||
/* See target.h. */
|
||
|
||
void
|
||
target_insn_history_from (ULONGEST from, int size,
|
||
gdb_disassembly_flags flags)
|
||
{
|
||
current_top_target ()->insn_history_from (from, size, flags);
|
||
}
|
||
|
||
/* See target.h. */
|
||
|
||
void
|
||
target_insn_history_range (ULONGEST begin, ULONGEST end,
|
||
gdb_disassembly_flags flags)
|
||
{
|
||
current_top_target ()->insn_history_range (begin, end, flags);
|
||
}
|
||
|
||
/* See target.h. */
|
||
|
||
void
|
||
target_call_history (int size, record_print_flags flags)
|
||
{
|
||
current_top_target ()->call_history (size, flags);
|
||
}
|
||
|
||
/* See target.h. */
|
||
|
||
void
|
||
target_call_history_from (ULONGEST begin, int size, record_print_flags flags)
|
||
{
|
||
current_top_target ()->call_history_from (begin, size, flags);
|
||
}
|
||
|
||
/* See target.h. */
|
||
|
||
void
|
||
target_call_history_range (ULONGEST begin, ULONGEST end, record_print_flags flags)
|
||
{
|
||
current_top_target ()->call_history_range (begin, end, flags);
|
||
}
|
||
|
||
/* See target.h. */
|
||
|
||
const struct frame_unwind *
|
||
target_get_unwinder (void)
|
||
{
|
||
return current_top_target ()->get_unwinder ();
|
||
}
|
||
|
||
/* See target.h. */
|
||
|
||
const struct frame_unwind *
|
||
target_get_tailcall_unwinder (void)
|
||
{
|
||
return current_top_target ()->get_tailcall_unwinder ();
|
||
}
|
||
|
||
/* See target.h. */
|
||
|
||
void
|
||
target_prepare_to_generate_core (void)
|
||
{
|
||
current_top_target ()->prepare_to_generate_core ();
|
||
}
|
||
|
||
/* See target.h. */
|
||
|
||
void
|
||
target_done_generating_core (void)
|
||
{
|
||
current_top_target ()->done_generating_core ();
|
||
}
|
||
|
||
|
||
|
||
static char targ_desc[] =
|
||
"Names of targets and files being debugged.\nShows the entire \
|
||
stack of targets currently in use (including the exec-file,\n\
|
||
core-file, and process, if any), as well as the symbol file name.";
|
||
|
||
static void
|
||
default_rcmd (struct target_ops *self, const char *command,
|
||
struct ui_file *output)
|
||
{
|
||
error (_("\"monitor\" command not supported by this target."));
|
||
}
|
||
|
||
static void
|
||
do_monitor_command (const char *cmd, int from_tty)
|
||
{
|
||
target_rcmd (cmd, gdb_stdtarg);
|
||
}
|
||
|
||
/* Erases all the memory regions marked as flash. CMD and FROM_TTY are
|
||
ignored. */
|
||
|
||
void
|
||
flash_erase_command (const char *cmd, int from_tty)
|
||
{
|
||
/* Used to communicate termination of flash operations to the target. */
|
||
bool found_flash_region = false;
|
||
struct gdbarch *gdbarch = target_gdbarch ();
|
||
|
||
std::vector<mem_region> mem_regions = target_memory_map ();
|
||
|
||
/* Iterate over all memory regions. */
|
||
for (const mem_region &m : mem_regions)
|
||
{
|
||
/* Is this a flash memory region? */
|
||
if (m.attrib.mode == MEM_FLASH)
|
||
{
|
||
found_flash_region = true;
|
||
target_flash_erase (m.lo, m.hi - m.lo);
|
||
|
||
ui_out_emit_tuple tuple_emitter (current_uiout, "erased-regions");
|
||
|
||
current_uiout->message (_("Erasing flash memory region at address "));
|
||
current_uiout->field_core_addr ("address", gdbarch, m.lo);
|
||
current_uiout->message (", size = ");
|
||
current_uiout->field_string ("size", hex_string (m.hi - m.lo));
|
||
current_uiout->message ("\n");
|
||
}
|
||
}
|
||
|
||
/* Did we do any flash operations? If so, we need to finalize them. */
|
||
if (found_flash_region)
|
||
target_flash_done ();
|
||
else
|
||
current_uiout->message (_("No flash memory regions found.\n"));
|
||
}
|
||
|
||
/* Print the name of each layers of our target stack. */
|
||
|
||
static void
|
||
maintenance_print_target_stack (const char *cmd, int from_tty)
|
||
{
|
||
printf_filtered (_("The current target stack is:\n"));
|
||
|
||
for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
|
||
{
|
||
if (t->stratum () == debug_stratum)
|
||
continue;
|
||
printf_filtered (" - %s (%s)\n", t->shortname (), t->longname ());
|
||
}
|
||
}
|
||
|
||
/* See target.h. */
|
||
|
||
void
|
||
target_async (int enable)
|
||
{
|
||
infrun_async (enable);
|
||
current_top_target ()->async (enable);
|
||
}
|
||
|
||
/* See target.h. */
|
||
|
||
void
|
||
target_thread_events (int enable)
|
||
{
|
||
current_top_target ()->thread_events (enable);
|
||
}
|
||
|
||
/* Controls if targets can report that they can/are async. This is
|
||
just for maintainers to use when debugging gdb. */
|
||
bool target_async_permitted = true;
|
||
|
||
/* The set command writes to this variable. If the inferior is
|
||
executing, target_async_permitted is *not* updated. */
|
||
static bool target_async_permitted_1 = true;
|
||
|
||
static void
|
||
maint_set_target_async_command (const char *args, int from_tty,
|
||
struct cmd_list_element *c)
|
||
{
|
||
if (have_live_inferiors ())
|
||
{
|
||
target_async_permitted_1 = target_async_permitted;
|
||
error (_("Cannot change this setting while the inferior is running."));
|
||
}
|
||
|
||
target_async_permitted = target_async_permitted_1;
|
||
}
|
||
|
||
static void
|
||
maint_show_target_async_command (struct ui_file *file, int from_tty,
|
||
struct cmd_list_element *c,
|
||
const char *value)
|
||
{
|
||
fprintf_filtered (file,
|
||
_("Controlling the inferior in "
|
||
"asynchronous mode is %s.\n"), value);
|
||
}
|
||
|
||
/* Return true if the target operates in non-stop mode even with "set
|
||
non-stop off". */
|
||
|
||
static int
|
||
target_always_non_stop_p (void)
|
||
{
|
||
return current_top_target ()->always_non_stop_p ();
|
||
}
|
||
|
||
/* See target.h. */
|
||
|
||
int
|
||
target_is_non_stop_p (void)
|
||
{
|
||
return (non_stop
|
||
|| target_non_stop_enabled == AUTO_BOOLEAN_TRUE
|
||
|| (target_non_stop_enabled == AUTO_BOOLEAN_AUTO
|
||
&& target_always_non_stop_p ()));
|
||
}
|
||
|
||
/* Controls if targets can report that they always run in non-stop
|
||
mode. This is just for maintainers to use when debugging gdb. */
|
||
enum auto_boolean target_non_stop_enabled = AUTO_BOOLEAN_AUTO;
|
||
|
||
/* The set command writes to this variable. If the inferior is
|
||
executing, target_non_stop_enabled is *not* updated. */
|
||
static enum auto_boolean target_non_stop_enabled_1 = AUTO_BOOLEAN_AUTO;
|
||
|
||
/* Implementation of "maint set target-non-stop". */
|
||
|
||
static void
|
||
maint_set_target_non_stop_command (const char *args, int from_tty,
|
||
struct cmd_list_element *c)
|
||
{
|
||
if (have_live_inferiors ())
|
||
{
|
||
target_non_stop_enabled_1 = target_non_stop_enabled;
|
||
error (_("Cannot change this setting while the inferior is running."));
|
||
}
|
||
|
||
target_non_stop_enabled = target_non_stop_enabled_1;
|
||
}
|
||
|
||
/* Implementation of "maint show target-non-stop". */
|
||
|
||
static void
|
||
maint_show_target_non_stop_command (struct ui_file *file, int from_tty,
|
||
struct cmd_list_element *c,
|
||
const char *value)
|
||
{
|
||
if (target_non_stop_enabled == AUTO_BOOLEAN_AUTO)
|
||
fprintf_filtered (file,
|
||
_("Whether the target is always in non-stop mode "
|
||
"is %s (currently %s).\n"), value,
|
||
target_always_non_stop_p () ? "on" : "off");
|
||
else
|
||
fprintf_filtered (file,
|
||
_("Whether the target is always in non-stop mode "
|
||
"is %s.\n"), value);
|
||
}
|
||
|
||
/* Temporary copies of permission settings. */
|
||
|
||
static bool may_write_registers_1 = true;
|
||
static bool may_write_memory_1 = true;
|
||
static bool may_insert_breakpoints_1 = true;
|
||
static bool may_insert_tracepoints_1 = true;
|
||
static bool may_insert_fast_tracepoints_1 = true;
|
||
static bool may_stop_1 = true;
|
||
|
||
/* Make the user-set values match the real values again. */
|
||
|
||
void
|
||
update_target_permissions (void)
|
||
{
|
||
may_write_registers_1 = may_write_registers;
|
||
may_write_memory_1 = may_write_memory;
|
||
may_insert_breakpoints_1 = may_insert_breakpoints;
|
||
may_insert_tracepoints_1 = may_insert_tracepoints;
|
||
may_insert_fast_tracepoints_1 = may_insert_fast_tracepoints;
|
||
may_stop_1 = may_stop;
|
||
}
|
||
|
||
/* The one function handles (most of) the permission flags in the same
|
||
way. */
|
||
|
||
static void
|
||
set_target_permissions (const char *args, int from_tty,
|
||
struct cmd_list_element *c)
|
||
{
|
||
if (target_has_execution)
|
||
{
|
||
update_target_permissions ();
|
||
error (_("Cannot change this setting while the inferior is running."));
|
||
}
|
||
|
||
/* Make the real values match the user-changed values. */
|
||
may_write_registers = may_write_registers_1;
|
||
may_insert_breakpoints = may_insert_breakpoints_1;
|
||
may_insert_tracepoints = may_insert_tracepoints_1;
|
||
may_insert_fast_tracepoints = may_insert_fast_tracepoints_1;
|
||
may_stop = may_stop_1;
|
||
update_observer_mode ();
|
||
}
|
||
|
||
/* Set memory write permission independently of observer mode. */
|
||
|
||
static void
|
||
set_write_memory_permission (const char *args, int from_tty,
|
||
struct cmd_list_element *c)
|
||
{
|
||
/* Make the real values match the user-changed values. */
|
||
may_write_memory = may_write_memory_1;
|
||
update_observer_mode ();
|
||
}
|
||
|
||
void
|
||
_initialize_target ()
|
||
{
|
||
the_debug_target = new debug_target ();
|
||
|
||
add_info ("target", info_target_command, targ_desc);
|
||
add_info ("files", info_target_command, targ_desc);
|
||
|
||
add_setshow_zuinteger_cmd ("target", class_maintenance, &targetdebug, _("\
|
||
Set target debugging."), _("\
|
||
Show target debugging."), _("\
|
||
When non-zero, target debugging is enabled. Higher numbers are more\n\
|
||
verbose."),
|
||
set_targetdebug,
|
||
show_targetdebug,
|
||
&setdebuglist, &showdebuglist);
|
||
|
||
add_setshow_boolean_cmd ("trust-readonly-sections", class_support,
|
||
&trust_readonly, _("\
|
||
Set mode for reading from readonly sections."), _("\
|
||
Show mode for reading from readonly sections."), _("\
|
||
When this mode is on, memory reads from readonly sections (such as .text)\n\
|
||
will be read from the object file instead of from the target. This will\n\
|
||
result in significant performance improvement for remote targets."),
|
||
NULL,
|
||
show_trust_readonly,
|
||
&setlist, &showlist);
|
||
|
||
add_com ("monitor", class_obscure, do_monitor_command,
|
||
_("Send a command to the remote monitor (remote targets only)."));
|
||
|
||
add_cmd ("target-stack", class_maintenance, maintenance_print_target_stack,
|
||
_("Print the name of each layer of the internal target stack."),
|
||
&maintenanceprintlist);
|
||
|
||
add_setshow_boolean_cmd ("target-async", no_class,
|
||
&target_async_permitted_1, _("\
|
||
Set whether gdb controls the inferior in asynchronous mode."), _("\
|
||
Show whether gdb controls the inferior in asynchronous mode."), _("\
|
||
Tells gdb whether to control the inferior in asynchronous mode."),
|
||
maint_set_target_async_command,
|
||
maint_show_target_async_command,
|
||
&maintenance_set_cmdlist,
|
||
&maintenance_show_cmdlist);
|
||
|
||
add_setshow_auto_boolean_cmd ("target-non-stop", no_class,
|
||
&target_non_stop_enabled_1, _("\
|
||
Set whether gdb always controls the inferior in non-stop mode."), _("\
|
||
Show whether gdb always controls the inferior in non-stop mode."), _("\
|
||
Tells gdb whether to control the inferior in non-stop mode."),
|
||
maint_set_target_non_stop_command,
|
||
maint_show_target_non_stop_command,
|
||
&maintenance_set_cmdlist,
|
||
&maintenance_show_cmdlist);
|
||
|
||
add_setshow_boolean_cmd ("may-write-registers", class_support,
|
||
&may_write_registers_1, _("\
|
||
Set permission to write into registers."), _("\
|
||
Show permission to write into registers."), _("\
|
||
When this permission is on, GDB may write into the target's registers.\n\
|
||
Otherwise, any sort of write attempt will result in an error."),
|
||
set_target_permissions, NULL,
|
||
&setlist, &showlist);
|
||
|
||
add_setshow_boolean_cmd ("may-write-memory", class_support,
|
||
&may_write_memory_1, _("\
|
||
Set permission to write into target memory."), _("\
|
||
Show permission to write into target memory."), _("\
|
||
When this permission is on, GDB may write into the target's memory.\n\
|
||
Otherwise, any sort of write attempt will result in an error."),
|
||
set_write_memory_permission, NULL,
|
||
&setlist, &showlist);
|
||
|
||
add_setshow_boolean_cmd ("may-insert-breakpoints", class_support,
|
||
&may_insert_breakpoints_1, _("\
|
||
Set permission to insert breakpoints in the target."), _("\
|
||
Show permission to insert breakpoints in the target."), _("\
|
||
When this permission is on, GDB may insert breakpoints in the program.\n\
|
||
Otherwise, any sort of insertion attempt will result in an error."),
|
||
set_target_permissions, NULL,
|
||
&setlist, &showlist);
|
||
|
||
add_setshow_boolean_cmd ("may-insert-tracepoints", class_support,
|
||
&may_insert_tracepoints_1, _("\
|
||
Set permission to insert tracepoints in the target."), _("\
|
||
Show permission to insert tracepoints in the target."), _("\
|
||
When this permission is on, GDB may insert tracepoints in the program.\n\
|
||
Otherwise, any sort of insertion attempt will result in an error."),
|
||
set_target_permissions, NULL,
|
||
&setlist, &showlist);
|
||
|
||
add_setshow_boolean_cmd ("may-insert-fast-tracepoints", class_support,
|
||
&may_insert_fast_tracepoints_1, _("\
|
||
Set permission to insert fast tracepoints in the target."), _("\
|
||
Show permission to insert fast tracepoints in the target."), _("\
|
||
When this permission is on, GDB may insert fast tracepoints.\n\
|
||
Otherwise, any sort of insertion attempt will result in an error."),
|
||
set_target_permissions, NULL,
|
||
&setlist, &showlist);
|
||
|
||
add_setshow_boolean_cmd ("may-interrupt", class_support,
|
||
&may_stop_1, _("\
|
||
Set permission to interrupt or signal the target."), _("\
|
||
Show permission to interrupt or signal the target."), _("\
|
||
When this permission is on, GDB may interrupt/stop the target's execution.\n\
|
||
Otherwise, any attempt to interrupt or stop will be ignored."),
|
||
set_target_permissions, NULL,
|
||
&setlist, &showlist);
|
||
|
||
add_com ("flash-erase", no_class, flash_erase_command,
|
||
_("Erase all flash memory regions."));
|
||
|
||
add_setshow_boolean_cmd ("auto-connect-native-target", class_support,
|
||
&auto_connect_native_target, _("\
|
||
Set whether GDB may automatically connect to the native target."), _("\
|
||
Show whether GDB may automatically connect to the native target."), _("\
|
||
When on, and GDB is not connected to a target yet, GDB\n\
|
||
attempts \"run\" and other commands with the native target."),
|
||
NULL, show_auto_connect_native_target,
|
||
&setlist, &showlist);
|
||
}
|