8sa1-binutils-gdb/gdb/arm-linux-nat.c
Richard Earnshaw 85ae890cdf * arm-linux-nat.c (store_newfpe_single): Use regcache_collect.
(store_newfpe_double, store_newfpe_extended, store_fpregister)
(store_register, store_regs, fill_gregset, fill_fpregset): Likewise.
2002-02-23 12:36:50 +00:00

699 lines
16 KiB
C

/* GNU/Linux on ARM native support.
Copyright 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
This file is part of GDB.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA. */
#include "defs.h"
#include "inferior.h"
#include "gdbcore.h"
#include "gdb_string.h"
#include "regcache.h"
#include "arm-tdep.h"
#include <sys/user.h>
#include <sys/ptrace.h>
#include <sys/utsname.h>
#include <sys/procfs.h>
/* Prototypes for supply_gregset etc. */
#include "gregset.h"
extern int arm_apcs_32;
#define typeNone 0x00
#define typeSingle 0x01
#define typeDouble 0x02
#define typeExtended 0x03
#define FPWORDS 28
#define ARM_CPSR_REGNUM 16
typedef union tagFPREG
{
unsigned int fSingle;
unsigned int fDouble[2];
unsigned int fExtended[3];
}
FPREG;
typedef struct tagFPA11
{
FPREG fpreg[8]; /* 8 floating point registers */
unsigned int fpsr; /* floating point status register */
unsigned int fpcr; /* floating point control register */
unsigned char fType[8]; /* type of floating point value held in
floating point registers. */
int initflag; /* NWFPE initialization flag. */
}
FPA11;
/* The following variables are used to determine the version of the
underlying GNU/Linux operating system. Examples:
GNU/Linux 2.0.35 GNU/Linux 2.2.12
os_version = 0x00020023 os_version = 0x0002020c
os_major = 2 os_major = 2
os_minor = 0 os_minor = 2
os_release = 35 os_release = 12
Note: os_version = (os_major << 16) | (os_minor << 8) | os_release
These are initialized using get_linux_version() from
_initialize_arm_linux_nat(). */
static unsigned int os_version, os_major, os_minor, os_release;
/* On GNU/Linux, threads are implemented as pseudo-processes, in which
case we may be tracing more than one process at a time. In that
case, inferior_ptid will contain the main process ID and the
individual thread (process) ID. get_thread_id () is used to get
the thread id if it's available, and the process id otherwise. */
int
get_thread_id (ptid_t ptid)
{
int tid = TIDGET (ptid);
if (0 == tid)
tid = PIDGET (ptid);
return tid;
}
#define GET_THREAD_ID(PTID) get_thread_id ((PTID));
static void
fetch_nwfpe_single (unsigned int fn, FPA11 * fpa11)
{
unsigned int mem[3];
mem[0] = fpa11->fpreg[fn].fSingle;
mem[1] = 0;
mem[2] = 0;
supply_register (ARM_F0_REGNUM + fn, (char *) &mem[0]);
}
static void
fetch_nwfpe_double (unsigned int fn, FPA11 * fpa11)
{
unsigned int mem[3];
mem[0] = fpa11->fpreg[fn].fDouble[1];
mem[1] = fpa11->fpreg[fn].fDouble[0];
mem[2] = 0;
supply_register (ARM_F0_REGNUM + fn, (char *) &mem[0]);
}
static void
fetch_nwfpe_none (unsigned int fn)
{
unsigned int mem[3] =
{0, 0, 0};
supply_register (ARM_F0_REGNUM + fn, (char *) &mem[0]);
}
static void
fetch_nwfpe_extended (unsigned int fn, FPA11 * fpa11)
{
unsigned int mem[3];
mem[0] = fpa11->fpreg[fn].fExtended[0]; /* sign & exponent */
mem[1] = fpa11->fpreg[fn].fExtended[2]; /* ls bits */
mem[2] = fpa11->fpreg[fn].fExtended[1]; /* ms bits */
supply_register (ARM_F0_REGNUM + fn, (char *) &mem[0]);
}
static void
fetch_nwfpe_register (int regno, FPA11 * fpa11)
{
int fn = regno - ARM_F0_REGNUM;
switch (fpa11->fType[fn])
{
case typeSingle:
fetch_nwfpe_single (fn, fpa11);
break;
case typeDouble:
fetch_nwfpe_double (fn, fpa11);
break;
case typeExtended:
fetch_nwfpe_extended (fn, fpa11);
break;
default:
fetch_nwfpe_none (fn);
}
}
static void
store_nwfpe_single (unsigned int fn, FPA11 *fpa11)
{
unsigned int mem[3];
regcache_collect (ARM_F0_REGNUM + fn, (char *) &mem[0]);
fpa11->fpreg[fn].fSingle = mem[0];
fpa11->fType[fn] = typeSingle;
}
static void
store_nwfpe_double (unsigned int fn, FPA11 *fpa11)
{
unsigned int mem[3];
regcache_collect (ARM_F0_REGNUM + fn, (char *) &mem[0]);
fpa11->fpreg[fn].fDouble[1] = mem[0];
fpa11->fpreg[fn].fDouble[0] = mem[1];
fpa11->fType[fn] = typeDouble;
}
void
store_nwfpe_extended (unsigned int fn, FPA11 *fpa11)
{
unsigned int mem[3];
regcache_collect (ARM_F0_REGNUM + fn, (char *) &mem[0]);
fpa11->fpreg[fn].fExtended[0] = mem[0]; /* sign & exponent */
fpa11->fpreg[fn].fExtended[2] = mem[1]; /* ls bits */
fpa11->fpreg[fn].fExtended[1] = mem[2]; /* ms bits */
fpa11->fType[fn] = typeDouble;
}
void
store_nwfpe_register (int regno, FPA11 * fpa11)
{
if (register_cached (regno))
{
unsigned int fn = regno - ARM_F0_REGNUM;
switch (fpa11->fType[fn])
{
case typeSingle:
store_nwfpe_single (fn, fpa11);
break;
case typeDouble:
store_nwfpe_double (fn, fpa11);
break;
case typeExtended:
store_nwfpe_extended (fn, fpa11);
break;
}
}
}
/* Get the value of a particular register from the floating point
state of the process and store it into regcache. */
static void
fetch_fpregister (int regno)
{
int ret, tid;
FPA11 fp;
/* Get the thread id for the ptrace call. */
tid = GET_THREAD_ID (inferior_ptid);
/* Read the floating point state. */
ret = ptrace (PT_GETFPREGS, tid, 0, &fp);
if (ret < 0)
{
warning ("Unable to fetch floating point register.");
return;
}
/* Fetch fpsr. */
if (ARM_FPS_REGNUM == regno)
supply_register (ARM_FPS_REGNUM, (char *) &fp.fpsr);
/* Fetch the floating point register. */
if (regno >= ARM_F0_REGNUM && regno <= ARM_F7_REGNUM)
{
int fn = regno - ARM_F0_REGNUM;
switch (fp.fType[fn])
{
case typeSingle:
fetch_nwfpe_single (fn, &fp);
break;
case typeDouble:
fetch_nwfpe_double (fn, &fp);
break;
case typeExtended:
fetch_nwfpe_extended (fn, &fp);
break;
default:
fetch_nwfpe_none (fn);
}
}
}
/* Get the whole floating point state of the process and store it
into regcache. */
static void
fetch_fpregs (void)
{
int ret, regno, tid;
FPA11 fp;
/* Get the thread id for the ptrace call. */
tid = GET_THREAD_ID (inferior_ptid);
/* Read the floating point state. */
ret = ptrace (PT_GETFPREGS, tid, 0, &fp);
if (ret < 0)
{
warning ("Unable to fetch the floating point registers.");
return;
}
/* Fetch fpsr. */
supply_register (ARM_FPS_REGNUM, (char *) &fp.fpsr);
/* Fetch the floating point registers. */
for (regno = ARM_F0_REGNUM; regno <= ARM_F7_REGNUM; regno++)
{
int fn = regno - ARM_F0_REGNUM;
switch (fp.fType[fn])
{
case typeSingle:
fetch_nwfpe_single (fn, &fp);
break;
case typeDouble:
fetch_nwfpe_double (fn, &fp);
break;
case typeExtended:
fetch_nwfpe_extended (fn, &fp);
break;
default:
fetch_nwfpe_none (fn);
}
}
}
/* Save a particular register into the floating point state of the
process using the contents from regcache. */
static void
store_fpregister (int regno)
{
int ret, tid;
FPA11 fp;
/* Get the thread id for the ptrace call. */
tid = GET_THREAD_ID (inferior_ptid);
/* Read the floating point state. */
ret = ptrace (PT_GETFPREGS, tid, 0, &fp);
if (ret < 0)
{
warning ("Unable to fetch the floating point registers.");
return;
}
/* Store fpsr. */
if (ARM_FPS_REGNUM == regno && register_cached (ARM_FPS_REGNUM))
regcache_collect (ARM_FPS_REGNUM, (char *) &fp.fpsr);
/* Store the floating point register. */
if (regno >= ARM_F0_REGNUM && regno <= ARM_F7_REGNUM)
{
store_nwfpe_register (regno, &fp);
}
ret = ptrace (PTRACE_SETFPREGS, tid, 0, &fp);
if (ret < 0)
{
warning ("Unable to store floating point register.");
return;
}
}
/* Save the whole floating point state of the process using
the contents from regcache. */
static void
store_fpregs (void)
{
int ret, regno, tid;
FPA11 fp;
/* Get the thread id for the ptrace call. */
tid = GET_THREAD_ID (inferior_ptid);
/* Read the floating point state. */
ret = ptrace (PT_GETFPREGS, tid, 0, &fp);
if (ret < 0)
{
warning ("Unable to fetch the floating point registers.");
return;
}
/* Store fpsr. */
if (register_cached (ARM_FPS_REGNUM))
regcache_collect (ARM_FPS_REGNUM, (char *) &fp.fpsr);
/* Store the floating point registers. */
for (regno = ARM_F0_REGNUM; regno <= ARM_F7_REGNUM; regno++)
{
fetch_nwfpe_register (regno, &fp);
}
ret = ptrace (PTRACE_SETFPREGS, tid, 0, &fp);
if (ret < 0)
{
warning ("Unable to store floating point registers.");
return;
}
}
/* Fetch a general register of the process and store into
regcache. */
static void
fetch_register (int regno)
{
int ret, tid;
elf_gregset_t regs;
/* Get the thread id for the ptrace call. */
tid = GET_THREAD_ID (inferior_ptid);
ret = ptrace (PTRACE_GETREGS, tid, 0, &regs);
if (ret < 0)
{
warning ("Unable to fetch general register.");
return;
}
if (regno >= ARM_A1_REGNUM && regno < ARM_PC_REGNUM)
supply_register (regno, (char *) &regs[regno]);
if (ARM_PS_REGNUM == regno)
{
if (arm_apcs_32)
supply_register (ARM_PS_REGNUM, (char *) &regs[ARM_CPSR_REGNUM]);
else
supply_register (ARM_PS_REGNUM, (char *) &regs[ARM_PC_REGNUM]);
}
if (ARM_PC_REGNUM == regno)
{
regs[ARM_PC_REGNUM] = ADDR_BITS_REMOVE (regs[ARM_PC_REGNUM]);
supply_register (ARM_PC_REGNUM, (char *) &regs[ARM_PC_REGNUM]);
}
}
/* Fetch all general registers of the process and store into
regcache. */
static void
fetch_regs (void)
{
int ret, regno, tid;
elf_gregset_t regs;
/* Get the thread id for the ptrace call. */
tid = GET_THREAD_ID (inferior_ptid);
ret = ptrace (PTRACE_GETREGS, tid, 0, &regs);
if (ret < 0)
{
warning ("Unable to fetch general registers.");
return;
}
for (regno = ARM_A1_REGNUM; regno < ARM_PC_REGNUM; regno++)
supply_register (regno, (char *) &regs[regno]);
if (arm_apcs_32)
supply_register (ARM_PS_REGNUM, (char *) &regs[ARM_CPSR_REGNUM]);
else
supply_register (ARM_PS_REGNUM, (char *) &regs[ARM_PC_REGNUM]);
regs[ARM_PC_REGNUM] = ADDR_BITS_REMOVE (regs[ARM_PC_REGNUM]);
supply_register (ARM_PC_REGNUM, (char *) &regs[ARM_PC_REGNUM]);
}
/* Store all general registers of the process from the values in
regcache. */
static void
store_register (int regno)
{
int ret, tid;
elf_gregset_t regs;
if (!register_cached (regno))
return;
/* Get the thread id for the ptrace call. */
tid = GET_THREAD_ID (inferior_ptid);
/* Get the general registers from the process. */
ret = ptrace (PTRACE_GETREGS, tid, 0, &regs);
if (ret < 0)
{
warning ("Unable to fetch general registers.");
return;
}
if (regno >= ARM_A1_REGNUM && regno <= ARM_PC_REGNUM)
regcache_collect (regno, (char *) &regs[regno]);
ret = ptrace (PTRACE_SETREGS, tid, 0, &regs);
if (ret < 0)
{
warning ("Unable to store general register.");
return;
}
}
static void
store_regs (void)
{
int ret, regno, tid;
elf_gregset_t regs;
/* Get the thread id for the ptrace call. */
tid = GET_THREAD_ID (inferior_ptid);
/* Fetch the general registers. */
ret = ptrace (PTRACE_GETREGS, tid, 0, &regs);
if (ret < 0)
{
warning ("Unable to fetch general registers.");
return;
}
for (regno = ARM_A1_REGNUM; regno <= ARM_PC_REGNUM; regno++)
{
if (register_cached (regno))
regcache_collect (regno, (char *) &regs[regno]);
}
ret = ptrace (PTRACE_SETREGS, tid, 0, &regs);
if (ret < 0)
{
warning ("Unable to store general registers.");
return;
}
}
/* Fetch registers from the child process. Fetch all registers if
regno == -1, otherwise fetch all general registers or all floating
point registers depending upon the value of regno. */
void
fetch_inferior_registers (int regno)
{
if (-1 == regno)
{
fetch_regs ();
fetch_fpregs ();
}
else
{
if (regno < ARM_F0_REGNUM || regno > ARM_FPS_REGNUM)
fetch_register (regno);
if (regno >= ARM_F0_REGNUM && regno <= ARM_FPS_REGNUM)
fetch_fpregister (regno);
}
}
/* Store registers back into the inferior. Store all registers if
regno == -1, otherwise store all general registers or all floating
point registers depending upon the value of regno. */
void
store_inferior_registers (int regno)
{
if (-1 == regno)
{
store_regs ();
store_fpregs ();
}
else
{
if ((regno < ARM_F0_REGNUM) || (regno > ARM_FPS_REGNUM))
store_register (regno);
if ((regno >= ARM_F0_REGNUM) && (regno <= ARM_FPS_REGNUM))
store_fpregister (regno);
}
}
/* Fill register regno (if it is a general-purpose register) in
*gregsetp with the appropriate value from GDB's register array.
If regno is -1, do this for all registers. */
void
fill_gregset (gdb_gregset_t *gregsetp, int regno)
{
if (-1 == regno)
{
int regnum;
for (regnum = ARM_A1_REGNUM; regnum <= ARM_PC_REGNUM; regnum++)
regcache_collect (regnum, (char *) &(*gregsetp)[regnum]);
}
else if (regno >= ARM_A1_REGNUM && regno <= ARM_PC_REGNUM)
regcache_collect (regno, (char *) &(*gregsetp)[regno]);
if (ARM_PS_REGNUM == regno || -1 == regno)
{
if (arm_apcs_32)
regcache_collect (ARM_PS_REGNUM,
(char *) &(*gregsetp)[ARM_CPSR_REGNUM]);
else
regcache_collect (ARM_PC_REGNUM,
(char *) &(*gregsetp)[ARM_PC_REGNUM]);
}
}
/* Fill GDB's register array with the general-purpose register values
in *gregsetp. */
void
supply_gregset (gdb_gregset_t *gregsetp)
{
int regno, reg_pc;
for (regno = ARM_A1_REGNUM; regno < ARM_PC_REGNUM; regno++)
supply_register (regno, (char *) &(*gregsetp)[regno]);
if (arm_apcs_32)
supply_register (ARM_PS_REGNUM, (char *) &(*gregsetp)[ARM_CPSR_REGNUM]);
else
supply_register (ARM_PS_REGNUM, (char *) &(*gregsetp)[ARM_PC_REGNUM]);
reg_pc = ADDR_BITS_REMOVE ((CORE_ADDR)(*gregsetp)[ARM_PC_REGNUM]);
supply_register (ARM_PC_REGNUM, (char *) &reg_pc);
}
/* Fill register regno (if it is a floating-point register) in
*fpregsetp with the appropriate value from GDB's register array.
If regno is -1, do this for all registers. */
void
fill_fpregset (gdb_fpregset_t *fpregsetp, int regno)
{
FPA11 *fp = (FPA11 *) fpregsetp;
if (-1 == regno)
{
int regnum;
for (regnum = ARM_F0_REGNUM; regnum <= ARM_F7_REGNUM; regnum++)
store_nwfpe_register (regnum, fp);
}
else if (regno >= ARM_F0_REGNUM && regno <= ARM_F7_REGNUM)
{
store_nwfpe_register (regno, fp);
return;
}
/* Store fpsr. */
if (ARM_FPS_REGNUM == regno || -1 == regno)
regcache_collect (ARM_FPS_REGNUM, (char *) &fp->fpsr);
}
/* Fill GDB's register array with the floating-point register values
in *fpregsetp. */
void
supply_fpregset (gdb_fpregset_t *fpregsetp)
{
int regno;
FPA11 *fp = (FPA11 *) fpregsetp;
/* Fetch fpsr. */
supply_register (ARM_FPS_REGNUM, (char *) &fp->fpsr);
/* Fetch the floating point registers. */
for (regno = ARM_F0_REGNUM; regno <= ARM_F7_REGNUM; regno++)
{
fetch_nwfpe_register (regno, fp);
}
}
int
arm_linux_kernel_u_size (void)
{
return (sizeof (struct user));
}
static unsigned int
get_linux_version (unsigned int *vmajor,
unsigned int *vminor,
unsigned int *vrelease)
{
struct utsname info;
char *pmajor, *pminor, *prelease, *tail;
if (-1 == uname (&info))
{
warning ("Unable to determine GNU/Linux version.");
return -1;
}
pmajor = strtok (info.release, ".");
pminor = strtok (NULL, ".");
prelease = strtok (NULL, ".");
*vmajor = (unsigned int) strtoul (pmajor, &tail, 0);
*vminor = (unsigned int) strtoul (pminor, &tail, 0);
*vrelease = (unsigned int) strtoul (prelease, &tail, 0);
return ((*vmajor << 16) | (*vminor << 8) | *vrelease);
}
void
_initialize_arm_linux_nat (void)
{
os_version = get_linux_version (&os_major, &os_minor, &os_release);
}