8sa1-binutils-gdb/gdb/compile/compile-c-types.c
Simon Marchi 6ac373717c gdb: rename type::{arch,objfile} -> type::{arch_owner,objfile_owner}
I think this makes the names of the methods clearer, especially for the
arch.  The type::arch method (which gets the arch owner, or NULL if the
type is not arch owned) is easily confused with the get_type_arch method
(which returns an arch no matter what).  The name "arch_owner" will make
it intuitive that the method returns NULL if the type is not arch-owned.

Also, this frees the type::arch name, so we will be able to morph the
get_type_arch function into the type::arch method.

gdb/ChangeLog:

	* gdbtypes.h (struct type) <arch>: Rename to...
	<arch_owner>: ... this, update all users.
	<objfile>: Rename to...
	<objfile_owner>: ... this, update all users.

Change-Id: Ie7c28684c7b565adec05a7619c418c69429bd8c0
2021-01-28 10:09:02 -05:00

402 lines
12 KiB
C
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/* Convert types from GDB to GCC
Copyright (C) 2014-2021 Free Software Foundation, Inc.
This file is part of GDB.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>. */
#include "defs.h"
#include "gdbtypes.h"
#include "compile-internal.h"
#include "compile-c.h"
#include "objfiles.h"
/* Convert a pointer type to its gcc representation. */
static gcc_type
convert_pointer (compile_c_instance *context, struct type *type)
{
gcc_type target = context->convert_type (TYPE_TARGET_TYPE (type));
return context->plugin ().build_pointer_type (target);
}
/* Convert an array type to its gcc representation. */
static gcc_type
convert_array (compile_c_instance *context, struct type *type)
{
gcc_type element_type;
struct type *range = type->index_type ();
element_type = context->convert_type (TYPE_TARGET_TYPE (type));
if (range->bounds ()->low.kind () != PROP_CONST)
return context->plugin ().error (_("array type with non-constant"
" lower bound is not supported"));
if (range->bounds ()->low.const_val () != 0)
return context->plugin ().error (_("cannot convert array type with "
"non-zero lower bound to C"));
if (range->bounds ()->high.kind () == PROP_LOCEXPR
|| range->bounds ()->high.kind () == PROP_LOCLIST)
{
gcc_type result;
if (type->is_vector ())
return context->plugin ().error (_("variably-sized vector type"
" is not supported"));
std::string upper_bound
= c_get_range_decl_name (&range->bounds ()->high);
result = context->plugin ().build_vla_array_type (element_type,
upper_bound.c_str ());
return result;
}
else
{
LONGEST low_bound, high_bound, count;
if (!get_array_bounds (type, &low_bound, &high_bound))
count = -1;
else
{
gdb_assert (low_bound == 0); /* Ensured above. */
count = high_bound + 1;
}
if (type->is_vector ())
return context->plugin ().build_vector_type (element_type, count);
return context->plugin ().build_array_type (element_type, count);
}
}
/* Convert a struct or union type to its gcc representation. */
static gcc_type
convert_struct_or_union (compile_c_instance *context, struct type *type)
{
int i;
gcc_type result;
/* First we create the resulting type and enter it into our hash
table. This lets recursive types work. */
if (type->code () == TYPE_CODE_STRUCT)
result = context->plugin ().build_record_type ();
else
{
gdb_assert (type->code () == TYPE_CODE_UNION);
result = context->plugin ().build_union_type ();
}
context->insert_type (type, result);
for (i = 0; i < type->num_fields (); ++i)
{
gcc_type field_type;
unsigned long bitsize = TYPE_FIELD_BITSIZE (type, i);
field_type = context->convert_type (type->field (i).type ());
if (bitsize == 0)
bitsize = 8 * TYPE_LENGTH (type->field (i).type ());
context->plugin ().build_add_field (result,
TYPE_FIELD_NAME (type, i),
field_type,
bitsize,
TYPE_FIELD_BITPOS (type, i));
}
context->plugin ().finish_record_or_union (result, TYPE_LENGTH (type));
return result;
}
/* Convert an enum type to its gcc representation. */
static gcc_type
convert_enum (compile_c_instance *context, struct type *type)
{
gcc_type int_type, result;
int i;
int_type = context->plugin ().int_type_v0 (type->is_unsigned (),
TYPE_LENGTH (type));
result = context->plugin ().build_enum_type (int_type);
for (i = 0; i < type->num_fields (); ++i)
{
context->plugin ().build_add_enum_constant
(result, TYPE_FIELD_NAME (type, i), TYPE_FIELD_ENUMVAL (type, i));
}
context->plugin ().finish_enum_type (result);
return result;
}
/* Convert a function type to its gcc representation. */
static gcc_type
convert_func (compile_c_instance *context, struct type *type)
{
int i;
gcc_type result, return_type;
struct gcc_type_array array;
int is_varargs = type->has_varargs () || !type->is_prototyped ();
struct type *target_type = TYPE_TARGET_TYPE (type);
/* Functions with no debug info have no return type. Ideally we'd
want to fallback to the type of the cast just before the
function, like GDB's built-in expression parser, but we don't
have access to that type here. For now, fallback to int, like
GDB's parser used to do. */
if (target_type == NULL)
{
if (type->is_objfile_owned ())
target_type = objfile_type (type->objfile_owner ())->builtin_int;
else
target_type = builtin_type (type->arch_owner ())->builtin_int;
warning (_("function has unknown return type; assuming int"));
}
/* This approach means we can't make self-referential function
types. Those are impossible in C, though. */
return_type = context->convert_type (target_type);
array.n_elements = type->num_fields ();
std::vector<gcc_type> elements (array.n_elements);
array.elements = elements.data ();
for (i = 0; i < type->num_fields (); ++i)
array.elements[i] = context->convert_type (type->field (i).type ());
result = context->plugin ().build_function_type (return_type,
&array, is_varargs);
return result;
}
/* Convert an integer type to its gcc representation. */
static gcc_type
convert_int (compile_c_instance *context, struct type *type)
{
if (context->plugin ().version () >= GCC_C_FE_VERSION_1)
{
if (type->has_no_signedness ())
{
gdb_assert (TYPE_LENGTH (type) == 1);
return context->plugin ().char_type ();
}
return context->plugin ().int_type (type->is_unsigned (),
TYPE_LENGTH (type),
type->name ());
}
else
return context->plugin ().int_type_v0 (type->is_unsigned (),
TYPE_LENGTH (type));
}
/* Convert a floating-point type to its gcc representation. */
static gcc_type
convert_float (compile_c_instance *context, struct type *type)
{
if (context->plugin ().version () >= GCC_C_FE_VERSION_1)
return context->plugin ().float_type (TYPE_LENGTH (type),
type->name ());
else
return context->plugin ().float_type_v0 (TYPE_LENGTH (type));
}
/* Convert the 'void' type to its gcc representation. */
static gcc_type
convert_void (compile_c_instance *context, struct type *type)
{
return context->plugin ().void_type ();
}
/* Convert a boolean type to its gcc representation. */
static gcc_type
convert_bool (compile_c_instance *context, struct type *type)
{
return context->plugin ().bool_type ();
}
/* Convert a qualified type to its gcc representation. */
static gcc_type
convert_qualified (compile_c_instance *context, struct type *type)
{
struct type *unqual = make_unqualified_type (type);
gcc_type unqual_converted;
gcc_qualifiers_flags quals = 0;
unqual_converted = context->convert_type (unqual);
if (TYPE_CONST (type))
quals |= GCC_QUALIFIER_CONST;
if (TYPE_VOLATILE (type))
quals |= GCC_QUALIFIER_VOLATILE;
if (TYPE_RESTRICT (type))
quals |= GCC_QUALIFIER_RESTRICT;
return context->plugin ().build_qualified_type (unqual_converted,
quals.raw ());
}
/* Convert a complex type to its gcc representation. */
static gcc_type
convert_complex (compile_c_instance *context, struct type *type)
{
gcc_type base = context->convert_type (TYPE_TARGET_TYPE (type));
return context->plugin ().build_complex_type (base);
}
/* A helper function which knows how to convert most types from their
gdb representation to the corresponding gcc form. This examines
the TYPE and dispatches to the appropriate conversion function. It
returns the gcc type. */
static gcc_type
convert_type_basic (compile_c_instance *context, struct type *type)
{
/* If we are converting a qualified type, first convert the
unqualified type and then apply the qualifiers. */
if ((type->instance_flags () & (TYPE_INSTANCE_FLAG_CONST
| TYPE_INSTANCE_FLAG_VOLATILE
| TYPE_INSTANCE_FLAG_RESTRICT)) != 0)
return convert_qualified (context, type);
switch (type->code ())
{
case TYPE_CODE_PTR:
return convert_pointer (context, type);
case TYPE_CODE_ARRAY:
return convert_array (context, type);
case TYPE_CODE_STRUCT:
case TYPE_CODE_UNION:
return convert_struct_or_union (context, type);
case TYPE_CODE_ENUM:
return convert_enum (context, type);
case TYPE_CODE_FUNC:
return convert_func (context, type);
case TYPE_CODE_INT:
return convert_int (context, type);
case TYPE_CODE_FLT:
return convert_float (context, type);
case TYPE_CODE_VOID:
return convert_void (context, type);
case TYPE_CODE_BOOL:
return convert_bool (context, type);
case TYPE_CODE_COMPLEX:
return convert_complex (context, type);
case TYPE_CODE_ERROR:
{
/* Ideally, if we get here due to a cast expression, we'd use
the cast-to type as the variable's type, like GDB's
built-in parser does. For now, assume "int" like GDB's
built-in parser used to do, but at least warn. */
struct type *fallback;
if (type->is_objfile_owned ())
fallback = objfile_type (type->objfile_owner ())->builtin_int;
else
fallback = builtin_type (type->arch_owner ())->builtin_int;
warning (_("variable has unknown type; assuming int"));
return convert_int (context, fallback);
}
}
return context->plugin ().error (_("cannot convert gdb type to gcc type"));
}
/* Default compile flags for C. */
const char *compile_c_instance::m_default_cflags = "-std=gnu11"
/* Otherwise the .o file may need
"_Unwind_Resume" and
"__gcc_personality_v0". */
" -fno-exceptions"
" -Wno-implicit-function-declaration";
/* See compile-c.h. */
gcc_type
compile_c_instance::convert_type (struct type *type)
{
/* We don't ever have to deal with typedefs in this code, because
those are only needed as symbols by the C compiler. */
type = check_typedef (type);
gcc_type result;
if (get_cached_type (type, &result))
return result;
result = convert_type_basic (this, type);
insert_type (type, result);
return result;
}
/* C plug-in wrapper. */
#define FORWARD(OP,...) m_context->c_ops->OP(m_context, ##__VA_ARGS__)
#define GCC_METHOD0(R, N) \
R gcc_c_plugin::N () const \
{ return FORWARD (N); }
#define GCC_METHOD1(R, N, A) \
R gcc_c_plugin::N (A a) const \
{ return FORWARD (N, a); }
#define GCC_METHOD2(R, N, A, B) \
R gcc_c_plugin::N (A a, B b) const \
{ return FORWARD (N, a, b); }
#define GCC_METHOD3(R, N, A, B, C) \
R gcc_c_plugin::N (A a, B b, C c) const \
{ return FORWARD (N, a, b, c); }
#define GCC_METHOD4(R, N, A, B, C, D) \
R gcc_c_plugin::N (A a, B b, C c, D d) const \
{ return FORWARD (N, a, b, c, d); }
#define GCC_METHOD5(R, N, A, B, C, D, E) \
R gcc_c_plugin::N (A a, B b, C c, D d, E e) const \
{ return FORWARD (N, a, b, c, d, e); }
#define GCC_METHOD7(R, N, A, B, C, D, E, F, G) \
R gcc_c_plugin::N (A a, B b, C c, D d, E e, F f, G g) const \
{ return FORWARD (N, a, b, c, d, e, f, g); }
#include "gcc-c-fe.def"
#undef GCC_METHOD0
#undef GCC_METHOD1
#undef GCC_METHOD2
#undef GCC_METHOD3
#undef GCC_METHOD4
#undef GCC_METHOD5
#undef GCC_METHOD7
#undef FORWARD