791915db42
5 Commits
Author | SHA1 | Message | Date | |
---|---|---|---|---|
|
791915db42 |
libctf: handle nonrepresentable types at link time
GCC can emit references to type 0 to indicate that this type is one that is not representable in the version of CTF it emits (for instance, version 3 cannot encode vector types). Type 0 is already used in the function section to indicate padding inserted to skip functions we do not want to encode the type of, so using zero in this way is a good extension of the format: but libctf reports such types as ECTF_BADID, which is indistinguishable from file corruption via links to truly nonexistent types with IDs like 0xDEADBEEF etc, which we really do want to stop for. In particular, this stops all traversals of types dead at this point, preventing us from even dumping CTF files containing unrepresentable types to see what's going on! So add a new error, ECTF_NONREPRESENTABLE, which is returned by recursive type resolution when a reference to a zero type is found. (No zero type is ever emitted into the CTF file by GCC, only references to one). We can't do much with types that are ultimately nonrepresentable, but we can do enough to keep functioning. Adjust ctf_add_type to ensure that top-level types of type zero and structure and union members of ultimate type zero are simply skipped without reporting an error, so we can copy structures and unions that contain nonrepresentable members (skipping them and leaving a hole where they would be, so no consumers downstream of the linker need to worry about this): adjust the dumper so that we dump members of nonrepresentable types in a simple form that indicates nonrepresentability rather than terminating the dump, and do not falsely assume all errors to be -ENOMEM: adjust the linker so that types that fail to get added are simply skipped, so that both nonrepresentable types and outright errors do not terminate the type addition, which could skip many valid types and cause further errors when variables of those types are added. In future, when we gain the ability to call back to the linker to report link-time type resolution errors, we should report failures to add all but nonrepresentable types. But we can't do that yet. v5: Fix tabdamage. include/ * ctf-api.h (ECTF_NONREPRESENTABLE): New. libctf/ * ctf-types.c (ctf_type_resolve): Return ECTF_NONREPRESENTABLE on type zero. * ctf-create.c (ctf_add_type): Detect and skip nonrepresentable members and types. (ctf_add_variable): Likewise for variables pointing to them. * ctf-link.c (ctf_link_one_type): Do not warn for nonrepresentable type link failure, but do warn for others. * ctf-dump.c (ctf_dump_format_type): Likewise. Do not assume all errors to be ENOMEM. (ctf_dump_member): Likewise. (ctf_dump_type): Likewise. (ctf_dump_header_strfield): Do not assume all errors to be ENOMEM. (ctf_dump_header_sectfield): Do not assume all errors to be ENOMEM. (ctf_dump_header): Likewise. (ctf_dump_label): likewise. (ctf_dump_objts): likewise. (ctf_dump_funcs): likewise. (ctf_dump_var): likewise. (ctf_dump_str): Likewise. |
||
|
0ac6231298 |
libctf: Add iteration over non-root types
The existing function ctf_type_iter lets you iterate over root-visible types (types you can look up by name). There is no way to iterate over non-root-visible types, which is troublesome because both the linker and dumper want to do that. So add a new function that can do it: the callback it takes accepts an extra parameter which indicates whether the type is root-visible or not. include/ * ctf-api.h (ctf_type_all_f): New. (ctf_type_iter_all): New. libctf/ * ctf_types.c (ctf_type_iter_all): New. |
||
|
12a0b67d28 |
libctf: introduce ctf_func_type_{info,args}, ctf_type_aname_raw
The first two of these allow you to get function type info and args out of the types section give a type ID: astonishingly, this was missing from libctf before now: so even though types of kind CTF_K_FUNCTION were supported, you couldn't find out anything about them. (The existing ctf_func_info and ctf_func_args only allow you to get info about functions in the function section, i.e. given symbol table indexes, not type IDs.) The second of these allows you to get the raw undecorated name out of the CTF section (strdupped for safety) without traversing subtypes to build a full C identifier out of it. It's useful for things that are already tracking the type kind etc and just need an unadorned name. include/ * ctf-api.h (ECTF_NOTFUNC): Fix description. (ctf_func_type_info): New. (ctf_func_type_args): Likewise. libctf/ * ctf-types.c (ctf_type_aname_raw): New. (ctf_func_type_info): Likewise. (ctf_func_type_args): Likewise. * ctf-error.c (_ctf_errlist): Fix description. |
||
|
a0486bac41 |
libctf: fix a number of build problems found on Solaris and NetBSD
- Use of nonportable <endian.h> - Use of qsort_r - Use of zlib without appropriate magic to pull in the binutils zlib - Use of off64_t without checking (fixed by dropping the unused fields that need off64_t entirely) - signedness problems due to long being too short a type on 32-bit platforms: ctf_id_t is now 'unsigned long', and CTF_ERR must be used only for functions that return ctf_id_t - One lingering use of bzero() and of <sys/errno.h> All fixed, using code from gnulib where possible. Relatedly, set cts_size in a couple of places it was missed (string table and symbol table loading upon ctf_bfdopen()). binutils/ * objdump.c (make_ctfsect): Drop cts_type, cts_flags, and cts_offset. * readelf.c (shdr_to_ctf_sect): Likewise. include/ * ctf-api.h (ctf_sect_t): Drop cts_type, cts_flags, and cts_offset. (ctf_id_t): This is now an unsigned type. (CTF_ERR): Cast it to ctf_id_t. Note that it should only be used for ctf_id_t-returning functions. libctf/ * Makefile.am (ZLIB): New. (ZLIBINC): Likewise. (AM_CFLAGS): Use them. (libctf_a_LIBADD): New, for LIBOBJS. * configure.ac: Check for zlib, endian.h, and qsort_r. * ctf-endian.h: New, providing htole64 and le64toh. * swap.h: Code style fixes. (bswap_identity_64): New. * qsort_r.c: New, from gnulib (with one added #include). * ctf-decls.h: New, providing a conditional qsort_r declaration, and unconditional definitions of MIN and MAX. * ctf-impl.h: Use it. Do not use <sys/errno.h>. (ctf_set_errno): Now returns unsigned long. * ctf-util.c (ctf_set_errno): Adjust here too. * ctf-archive.c: Use ctf-endian.h. (ctf_arc_open_by_offset): Use memset, not bzero. Drop cts_type, cts_flags and cts_offset. (ctf_arc_write): Drop debugging dependent on the size of off_t. * ctf-create.c: Provide a definition of roundup if not defined. (ctf_create): Drop cts_type, cts_flags and cts_offset. (ctf_add_reftype): Do not check if type IDs are below zero. (ctf_add_slice): Likewise. (ctf_add_typedef): Likewise. (ctf_add_member_offset): Cast error-returning ssize_t's to size_t when known error-free. Drop CTF_ERR usage for functions returning int. (ctf_add_member_encoded): Drop CTF_ERR usage for functions returning int. (ctf_add_variable): Likewise. (enumcmp): Likewise. (enumadd): Likewise. (membcmp): Likewise. (ctf_add_type): Likewise. Cast error-returning ssize_t's to size_t when known error-free. * ctf-dump.c (ctf_is_slice): Drop CTF_ERR usage for functions returning int: use CTF_ERR for functions returning ctf_type_id. (ctf_dump_label): Likewise. (ctf_dump_objts): Likewise. * ctf-labels.c (ctf_label_topmost): Likewise. (ctf_label_iter): Likewise. (ctf_label_info): Likewise. * ctf-lookup.c (ctf_func_args): Likewise. * ctf-open.c (upgrade_types): Cast to size_t where appropriate. (ctf_bufopen): Likewise. Use zlib types as needed. * ctf-types.c (ctf_member_iter): Drop CTF_ERR usage for functions returning int. (ctf_enum_iter): Likewise. (ctf_type_size): Likewise. (ctf_type_align): Likewise. Cast to size_t where appropriate. (ctf_type_kind_unsliced): Likewise. (ctf_type_kind): Likewise. (ctf_type_encoding): Likewise. (ctf_member_info): Likewise. (ctf_array_info): Likewise. (ctf_enum_value): Likewise. (ctf_type_rvisit): Likewise. * ctf-open-bfd.c (ctf_bfdopen): Drop cts_type, cts_flags and cts_offset. (ctf_simple_open): Likewise. (ctf_bfdopen_ctfsect): Likewise. Set cts_size properly. * Makefile.in: Regenerate. * aclocal.m4: Likewise. * config.h: Likewise. * configure: Likewise. |
||
|
316afdb130 |
libctf: core type lookup
Finally we get to the functions used to actually look up and enumerate properties of types in a container (names, sizes, members, what type a pointer or cv-qual references, determination of whether two types are assignment-compatible, etc). With a very few exceptions these do not work for types newly added via ctf_add_*(): they only work on types in read-only containers, or types added before the most recent call to ctf_update(). This also adds support for lookup of "variables" (string -> type ID mappings) and for generation of C type names corresponding to a type ID. libctf/ * ctf-decl.c: New file. * ctf-types.c: Likewise. * ctf-impl.h: New declarations. include/ * ctf-api.h (ctf_visit_f): New definition. (ctf_member_f): Likewise. (ctf_enum_f): Likewise. (ctf_variable_f): Likewise. (ctf_type_f): Likewise. (ctf_type_isparent): Likewise. (ctf_type_ischild): Likewise. (ctf_type_resolve): Likewise. (ctf_type_aname): Likewise. (ctf_type_lname): Likewise. (ctf_type_name): Likewise. (ctf_type_sizee): Likewise. (ctf_type_align): Likewise. (ctf_type_kind): Likewise. (ctf_type_reference): Likewise. (ctf_type_pointer): Likewise. (ctf_type_encoding): Likewise. (ctf_type_visit): Likewise. (ctf_type_cmp): Likewise. (ctf_type_compat): Likewise. (ctf_member_info): Likewise. (ctf_array_info): Likewise. (ctf_enum_name): Likewise. (ctf_enum_value): Likewise. (ctf_member_iter): Likewise. (ctf_enum_iter): Likewise. (ctf_type_iter): Likewise. (ctf_variable_iter): Likewise. |